Semi-Invariant Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold With Semi-Symmetric Semi-Metric Connection

Nikhat Zulekha ${ }^{1}$, Shadab Ahmad Khan ${ }^{2}$, Mobin Ahmad ${ }^{3}$ And Toukeer Khan ${ }^{4}$
${ }^{1,2,4}$ Department of Mathematics, Integral University, Kursi Road Lucknow-226026,India
${ }^{3}$ Department of Mathematics, Faculty of Science, Jazan University, Jazan-2069,Saudi Arabia.

Abstract

We consider a nearly hyperbolic cosymplectic manifold and study semi-invariant submanifolds of a nearly hyperbolic cosymplectic manifold admitting semi-symmetric semi-metric connection. We also find the integrability conditions of some distributions on nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection and study parallel distributions on nearly hyperbolic cosymplectic manifold with semisymmetric semi-metric connection.

Key Words and Phrases: Semi-invariant submanifolds, Nearly hyperbolic cosymplectic manifold, Parallel distribution, Integrability condition \& Semi-symmetric semi-metric connection.
2000 AMS Mathematics Subject Classification: 53D05, 53D25, 53D12.

I. Introduction

A semi invariant submanifold is the extension of the concept of a CR-submanifold of a Kaehler manifold to submanifolds of almost contact manifolds. CR-submanifolds of a Kaehler manifold as generalization of invariant and anti-invariant submanifolds was initiated by A. Bejancu in [9]. A. Bejancu[9] also initiated a new class of submanifold of a complex manifold which he called CR-submanifold and obtained some interesting results. The notion of semi invariant submanifolds of Sasakian manifolds was initiated by Bejancu-Papaghuic in [10]. The study of CR-submanifolds of Sasakian manifold was studies by C.J.Hsu in [12]. Semi-invariant submanifolds in almost contact manifold was enriched by several geometers (see, [1], [4], [5], [6], [8], [15]). On the otherhand, Ahmad M. and Ali K., studied semi-invariant submanifolds of a nearly hyperbolic cosymplectic in [2]. In this paper, we study semi-invariant submanifolds of a nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection.

The paper is organized as follows. In section II, we give a brief introduction of nearly hyperbolic cosymplectic manifold. In section III, Some properties of semi invariant submanifolds of a nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection are investigated. We also study parallel horizontal distribution on nearly hyperbolic Kenmotsu manifold with semi-symmetric semi-metric connection.

In section IV, we discuss the integrability conditions of some distributions on nearly hyperbolic cosymplectic manifold with semi-symmetric semi-metric connection.

II. Preliminaries

Let \bar{M} be an n-dimensional almost hyperbolic Contact metric manifold with the almost hyperbolic contact metric structure $(\varnothing, \xi, \eta, \mathrm{g})$, where a tensor \emptyset of type $(1,1)$ a vector field ξ, called structure vector field and η, the dual 1 -form of ξ and the associated Riemannian metric g satisfying the following

$$
\begin{gather*}
\emptyset^{2} \mathrm{X}=\mathrm{X}+\eta(\mathrm{X}) \xi \tag{2.1}\\
\eta(\xi)=-1, \quad \mathrm{~g}(\mathrm{X}, \xi)=\eta(\mathrm{X}) \tag{2.2}\\
\emptyset(\xi)=0, \quad \eta \circ \emptyset=0 \tag{2.3}\\
\mathrm{~g}(\varnothing \mathrm{X}, \varnothing \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \mathrm{Y})-\eta(\mathrm{X}) \eta(\mathrm{Y}) \tag{2.4}
\end{gather*}
$$

For any X, Y tangent to \bar{M} [16]. In this case

$$
\begin{equation*}
g(\varnothing X, Y)=-g(\varnothing Y, X) \tag{2.5}
\end{equation*}
$$

An almost hyperbolic contact metric structure ($\varnothing, \xi, \eta, g$) on \bar{M} is called nearly hyperbolic cosymplectic manifold [10] if and only if

$$
\begin{gather*}
\left(\nabla_{X} \varnothing\right) Y+\left(\nabla_{Y} \varnothing\right) X=0 \tag{2.6}\\
\nabla_{\mathrm{X}} \xi=0 \tag{2.7}
\end{gather*}
$$

for all X, Y tangent to \bar{M}, where ∇ is Riemannian connection \bar{M}.
Now, we define a semi-symmetric semi-metric connection

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}-\eta(\mathrm{X}) \mathrm{Y}+\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi \tag{2.8}
\end{equation*}
$$

Such that

$$
\left(\bar{\nabla}_{X} g\right)(Y, Z)=2 \eta(X) g(Y, Z)-\eta(Y) g(X, Z)-\eta(Z) g(X, Y)-\eta(Z) g(X, Y)
$$

Replacing Y by $\emptyset \mathrm{Y}$, in equation (2.8) we have

$$
\begin{aligned}
\bar{\nabla}_{X} \emptyset Y & =\nabla_{\mathrm{X}} \varnothing \mathrm{Y}-\eta(\mathrm{X}) \varnothing \mathrm{Y}+\mathrm{g}(\mathrm{X}, \varnothing \mathrm{Y}) \xi \\
\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right) & =\left(\nabla_{\mathrm{X}} \emptyset\right) \mathrm{Y}+\emptyset\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)-\eta(\mathrm{X}) \emptyset \mathrm{Y}+\mathrm{g}(\mathrm{X}, \emptyset \mathrm{Y}) \xi
\end{aligned}
$$

Interchanging $X \& Y$, we have

$$
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)=\left(\nabla_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)-\eta(\mathrm{Y}) \emptyset \mathrm{X}+\mathrm{g}(\mathrm{Y}, \emptyset \mathrm{X}) \xi
$$

Adding above two equations, we have

$$
\begin{array}{r}
\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right)+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)=\left(\nabla_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\emptyset\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)- \\
\eta(\mathrm{X}) \varnothing \mathrm{Y}-\eta(\mathrm{Y}) \varnothing \mathrm{X}+\mathrm{g}(\mathrm{Y}, \emptyset \mathrm{X}) \xi+\mathrm{g}(\mathrm{X}, \emptyset \mathrm{Y}) \xi \\
\left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}-\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}-\nabla_{\mathrm{Y}} \mathrm{X}\right)=\left(\nabla_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \varnothing\right) \mathrm{X}- \\
\eta(\mathrm{X}) \emptyset \mathrm{Y}-\eta(\mathrm{Y}) \varnothing \mathrm{X}+\mathrm{g}(\mathrm{Y}, \emptyset \mathrm{X}) \xi+\mathrm{g}(\mathrm{X}, \emptyset \mathrm{Y}) \xi
\end{array}
$$

Using equation (2.6) \& (2.8) in above, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=0 \tag{2.9}
\end{equation*}
$$

Now replacing Y by ξ in (2.8) we get

$$
\begin{gather*}
\bar{\nabla}_{\mathrm{X}} \xi=\nabla_{\mathrm{X}} \xi-\eta(\mathrm{X}) \xi+\mathrm{g}(\mathrm{X}, \xi) \xi \tag{2.10}\\
\bar{\nabla}_{\mathrm{X}} \xi=0
\end{gather*}
$$

An almost hyperbolic contact metric manifold with almost hyperbolic contact structure ($\varnothing, \xi, \eta, g$) is called nearly hyperbolic Cosymplectic manifold with semi-symmetric semi-metric connection if it is satisfied (2.9) \& (2.10).

III. Semi-invariant Sub manifold

Let M be submanifold immersed in \bar{M}, we assume that the vector ξ is tangent to M, denoted by $\{\xi\}$ the $1-$ dimentional distribution spanned by ξ on M, then M is called a semi-invariant sub manifold [8] of \bar{M} if there exist two differentiable distribution $\mathrm{D} \& \mathrm{D}^{\perp}$ on M satisfying
(i) $\mathrm{TM}=\mathrm{D} \oplus \mathrm{D}^{\perp} \oplus \xi$, where $\mathrm{D}, \mathrm{D}^{\perp} \& \xi$ are mutually orthogonal to each other.
(ii) The distribution D is invariant under \emptyset that is $\emptyset D_{X}=D_{X}$ for each $X \in M$,
(iii) The distribution D^{\perp} is anti-invariant under \emptyset, that is $\emptyset D^{\perp}{ }_{X} \subset T^{\perp} M$ for each $X \in M$,

Where $\mathrm{TM} \& \mathrm{~T}^{\perp} \mathrm{M}$ be the Lie algebra of vector fields tangential \& normal to M respectively.
Let Riemannian metric g and ∇ be induced Levi-Civita connection on M then the Guass formula is given by

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \mathrm{Y}) \tag{3.1}
\end{equation*}
$$

For Weingarten formula putting $\mathrm{Y}=\mathrm{N}$ in (2.8), we have

$$
\begin{align*}
& \bar{\nabla}_{\mathrm{X}} \mathrm{~N}=\nabla_{\mathrm{X}} \mathrm{~N}-\eta(\mathrm{X}) \mathrm{N}+\mathrm{g}(\mathrm{X}, \mathrm{~N}) \\
& \bar{\nabla}_{\mathrm{X}} \mathrm{~N}=-\mathrm{A}_{\mathrm{N}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \mathrm{N} \tag{3.2}
\end{align*}
$$

For any $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp} M, \quad h$ is the second fundamental form \& A_{N} is the Weingarten map associated with N as

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{3.3}
\end{equation*}
$$

Any vector X tangent to M is given as

$$
\begin{equation*}
X=P X+Q X+\eta(X) \xi \tag{3.4}
\end{equation*}
$$

Where $\mathrm{PX} \in \mathrm{D}$ and $\mathrm{QX} \in \mathrm{D}^{\perp}$.
Similarly, for N normal to M , we have

$$
\begin{equation*}
\emptyset \mathrm{N}=\mathrm{BN}+\mathrm{CN} \tag{3.5}
\end{equation*}
$$

Where BN (resp. CN) is tangential component (resp. normal component) of $\emptyset \mathrm{N}$.
Using the semi-symmetric non-metric connection the Nijenhuis tensor is expressed as

$$
\begin{equation*}
N(X, Y)=\left(\bar{\nabla}_{\phi X} \varnothing\right) Y-\left(\bar{\nabla}_{\phi Y} \varnothing\right) X-\varnothing\left(\bar{\nabla}_{X} \varnothing\right) Y+\varnothing\left(\bar{\nabla}_{Y} \varnothing\right) X \tag{3.6}
\end{equation*}
$$

Now from (2.9) replacingX by $\emptyset X$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\phi X} \varnothing\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \emptyset \mathrm{X}=0 \tag{3.7}
\end{equation*}
$$

From (2.1) again,

$$
\begin{gathered}
\emptyset^{2} X=X+\eta(X) \xi \\
\emptyset(\emptyset X)=X+\eta(X) \xi
\end{gathered}
$$

Differentiating conveniently along the vector, we have

$$
\bar{\nabla}_{\mathrm{Y}}\{\varnothing(\varnothing \mathrm{X})\}=\bar{\nabla}_{\mathrm{Y}}\{\mathrm{X}+\eta(\mathrm{X}) \xi\}
$$

$$
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \emptyset \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \emptyset \mathrm{X}\right)=\bar{\nabla}_{\mathrm{Y}} \mathrm{X}+\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(\mathrm{X}) \xi+\eta\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right) \xi+\eta(\mathrm{X}) \bar{\nabla}_{\mathrm{Y}} \xi
$$

Using equation (2.10) in above, we have

$$
\begin{gather*}
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \emptyset \mathrm{X}+\emptyset\left\{\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)\right\}=\bar{\nabla}_{\mathrm{Y}} \mathrm{X}+\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(\mathrm{X}) \xi+\eta\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right) \xi \\
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \emptyset \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\phi^{2}\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)=\bar{\nabla}_{\mathrm{Y}} \mathrm{X}+\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(\mathrm{X}) \xi+\eta\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right) \xi \\
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \emptyset \mathrm{X}+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\bar{\nabla}_{\mathrm{Y}} \mathrm{X}+\eta\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right) \xi=\bar{\nabla}_{\mathrm{Y}} \mathrm{X}+\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(\mathrm{X}) \xi+\eta\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right) \xi \\
\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \varnothing \mathrm{X}=\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(\mathrm{X}) \xi-\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X} \tag{3.8}
\end{gather*}
$$

From (3.7) \& (3.8), we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\phi X} \emptyset\right) Y=-\left(\bar{\nabla}_{Y} \eta\right)(X) \xi+\emptyset\left(\bar{\nabla}_{Y} \emptyset\right) X \tag{3.9}
\end{equation*}
$$

Interchanging $\mathrm{X} \& \mathrm{Y}$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\varnothing Y} \varnothing\right) X=-\left(\bar{\nabla}_{X} \eta\right)(Y) \xi+\varnothing\left(\bar{\nabla}_{X} \varnothing\right) Y \tag{3.10}
\end{equation*}
$$

Using equation (3.9), (3.10) in (3.6), we have
$N(X, Y)=\left(\bar{\nabla}_{X} \eta\right)(Y) \xi-\left(\bar{\nabla}_{\mathrm{Y}} \eta\right)(X) \xi+\emptyset\left(\bar{\nabla}_{Y} \varnothing\right) X-\emptyset\left(\bar{\nabla}_{X} \emptyset\right) Y-\emptyset\left(\bar{\nabla}_{X} \varnothing\right) Y+\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) X$
$N(X, Y)=\left(\bar{\nabla}_{X} \eta\right)(Y) \xi-\left(\bar{\nabla}_{Y} \eta\right)(X) \xi-2 \emptyset\left(\bar{\nabla}_{X} \emptyset\right) Y+2 \emptyset\left(\bar{\nabla}_{Y} \emptyset\right) X$
$N(X, Y)=2 d \eta(X, Y) \xi+4 \varnothing\left(\bar{\nabla}_{Y} \varnothing\right) X-2 \emptyset\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) X-2 \varnothing\left(\bar{\nabla}_{X} \varnothing\right) Y$
$N(X, Y)=2 g(\varnothing X, Y) \xi+4 \emptyset\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}-2 \emptyset\left\{\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}\right\}$
Using equation (2.9), we have

$$
\begin{equation*}
N(X, Y)=2 g(\varnothing X, Y) \xi+4 \emptyset\left(\bar{\nabla}_{Y} \varnothing\right) X \tag{3.11}
\end{equation*}
$$

As we know,

$$
\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\bar{\nabla}_{\mathrm{Y}} \emptyset \mathrm{X}-\emptyset\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)
$$

Using Guass formula, we have

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})-\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}+\mathrm{h}(\mathrm{Y}, \mathrm{X})\right) \\
& \left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)-\emptyset \mathrm{h}(\mathrm{Y}, \mathrm{X}) \\
& \emptyset\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}=\varnothing\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}\right)+\emptyset \mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\varnothing^{2}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)-\varnothing^{2} \mathrm{~h}(\mathrm{Y}, \mathrm{X}) \\
& \emptyset\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}=\emptyset\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}\right)+\emptyset \mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\nabla_{\mathrm{Y}} \mathrm{X}-\eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \xi-\mathrm{h}(\mathrm{Y}, \mathrm{X})-\eta(\mathrm{h}(\mathrm{Y}, \mathrm{X})) \xi \\
& \emptyset\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\emptyset\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}\right)+\emptyset \mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\nabla_{\mathrm{Y}} \mathrm{X}-\eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \xi-\mathrm{h}(\mathrm{Y}, \mathrm{X}) \tag{3.12}
\end{align*}
$$

Using equation (3.12) in (3.11)), we have
$N(X, Y)=4 \emptyset\left(\nabla_{Y} \emptyset X\right)+4 \emptyset h(Y, \emptyset X)-4\left(\nabla_{Y} X\right)-4 \eta\left(\nabla_{Y} X\right) \xi-4 h(Y, X)+2 g(\varnothing X, Y) \xi$
Lemma 3.1. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}=\nabla_{\mathrm{X}} \emptyset \mathrm{Y}-\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{Y})-\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\emptyset[\mathrm{X}, \mathrm{Y}] .
$$

for each $X, Y \in D$.
Proof. By Gauss formulas (3.1), we have

$$
\bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \mathrm{Y})
$$

Replacing by $\emptyset \mathrm{Y}$, we have

$$
\begin{gather*}
\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}=\nabla_{\mathrm{X}} \varnothing \mathrm{Y}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{Y}) \\
\bar{\nabla}_{\mathrm{Y}} \varnothing \mathrm{X}=\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X}) \tag{3.14}
\end{gather*}
$$

Similarly,

Also, by covariant differentiation, we have

$$
\begin{aligned}
& \bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}=\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right) \\
& \bar{\nabla}_{\mathrm{Y}} \varnothing \mathrm{X}=\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\varnothing\left(\bar{\nabla}_{\mathrm{X}} \mathrm{X}\right)
\end{aligned}
$$

Similarly,
From above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}-\bar{\nabla}_{\mathrm{Y}} \varnothing \mathrm{X}=\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset[\mathrm{X}, \mathrm{Y}] \tag{3.15}
\end{equation*}
$$

From (3.14) and (3.15), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \varnothing\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\emptyset[\mathrm{X}, \mathrm{Y}]=\nabla_{\mathrm{X}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}+\mathrm{h}(\mathrm{X}, \varnothing \mathrm{Y})-\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X}) \\
& \left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\nabla_{\mathrm{X}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}+\mathrm{h}(\mathrm{X}, \varnothing \mathrm{Y})-\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})-\emptyset[\mathrm{X}, \mathrm{Y}] \tag{3.16}
\end{align*}
$$

Adding (2.9) and (3.16), we obtain
$2\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}=\nabla_{\mathrm{X}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{Y})-\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\emptyset[\mathrm{X}, \mathrm{Y}]$.
for each $\mathrm{X}, \mathrm{Y} \in \mathrm{D}$.
Lemma 3.2. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric non-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\nabla_{\mathrm{Y}} \emptyset \mathrm{X}-\nabla_{\mathrm{X}} \emptyset \mathrm{Y}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\mathrm{h}(\mathrm{X}, \emptyset \mathrm{Y})+\emptyset[\mathrm{X}, \mathrm{Y}]
$$

for each $X, Y \in D$.
Lemma 3.3. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric non-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}=\mathrm{A}_{\phi \mathrm{X}} \mathrm{Y}-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{X}-\emptyset[\mathrm{X}, \mathrm{Y}]
$$

for all $X, Y \in D^{\perp}$.
Proof. Using Weingarten formula (3.2), we have

$$
\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}
$$

Interchanging $\mathrm{X} \& \mathrm{Y}$, we have

$$
\bar{\nabla}_{\mathrm{Y}} \emptyset \mathrm{X}=-\mathrm{A}_{\varnothing \mathrm{X}} \mathrm{Y}+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{X}
$$

From above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset X=A_{\varnothing X} Y-A_{\emptyset Y} X+\nabla_{X}^{\perp} \emptyset Y-\nabla_{Y}^{\perp} \varnothing X \tag{3.17}
\end{equation*}
$$

Comparing equation (3.15) \& (3.17), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset[\mathrm{X}, \mathrm{Y}]=\mathrm{A}_{\emptyset \mathrm{X}} \mathrm{Y}-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{Y}-\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{X} \\
& \left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}=\mathrm{A}_{\varnothing \mathrm{X}} \mathrm{Y}-\mathrm{A}_{\emptyset \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{X}-\emptyset[\mathrm{X}, \mathrm{Y}] \tag{3.18}
\end{align*}
$$

Adding (2.9) \& (3.18), we have

$$
2\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}=\mathrm{A}_{\varnothing \mathrm{X}} \mathrm{Y}-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\frac{1}{X}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}}^{\perp} \varnothing \mathrm{X}-\emptyset[\mathrm{X}, \mathrm{Y}]
$$

for all $\mathrm{X}, \mathrm{Y} \in \mathrm{D}^{\perp}$.
Lemma 3.4. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}=\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}-\mathrm{A}_{\varnothing \mathrm{X}} \mathrm{Y}+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{X}-\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}+\emptyset[\mathrm{X}, \mathrm{Y}]
$$

for all $\mathrm{X}, \mathrm{Y} \in \mathrm{D}^{\perp}$.
Lemma 3.5. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\frac{1}{}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}-\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})-\varnothing[\mathrm{X}, \mathrm{Y}]
$$

for all $X \in D$ and $Y \in D^{\perp}$.
Proof. By Gauss formulas (3.1), we have

$$
\bar{\nabla}_{\mathrm{Y}} \emptyset \mathrm{X}=\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})
$$

Also, by Weingarten formula (3.2), we have

$$
\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{Y}=-\mathrm{A}_{\emptyset \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{Y}
$$

From above two equations, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \emptyset Y-\bar{\nabla}_{Y} \emptyset \mathrm{X}=-\mathrm{A}_{\emptyset \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{Y}-\nabla_{\mathrm{Y}} \emptyset \mathrm{X}-\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X}) \tag{3.19}
\end{equation*}
$$

Comparing equation (3.15) and (3.19), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset[\mathrm{X}, \mathrm{Y}]=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \emptyset \mathrm{X}-\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X}) \\
& \left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\frac{1}{2}} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}-\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})-\emptyset[\mathrm{X}, \mathrm{Y}] \tag{3.20}
\end{align*}
$$

Adding equation (2.9) \& (3.20), we get

$$
2\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}-\nabla_{\mathrm{Y}} \varnothing \mathrm{X}-\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})-\varnothing[\mathrm{X}, \mathrm{Y}]
$$

for all $X \in D$ and $Y \in D^{\perp}$.
Lemma 3.6. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
2\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}=\mathrm{A}_{\emptyset \mathrm{Y}} \mathrm{X}-\nabla_{\mathrm{X}}^{\frac{1}{1}} \varnothing \mathrm{Y}+\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})+\emptyset[\mathrm{X}, \mathrm{Y}]
$$

for all $X \in D$ and $Y \in D^{\perp}$.
Lemma 3.7. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semisymmetric semi-metric connection, then

$$
\begin{align*}
& P\left(\nabla_{X} \emptyset P Y\right)+P\left(\nabla_{Y} \emptyset P X\right)-P A_{\emptyset Q Y} X-P A_{\emptyset Q X} Y=\emptyset P\left(\nabla_{X} Y\right)+\emptyset P\left(\nabla_{Y} X\right) \tag{3.21}\\
& \mathrm{Q}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right)+\mathrm{Q}\left(\nabla_{Y} \emptyset \mathrm{PX}\right)-\mathrm{QA} \mathrm{\emptyset QY} \mathrm{X}-\mathrm{QA}_{\emptyset \mathrm{Q} X} \mathrm{Y}=2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y}) \tag{3.22}\\
& h(\mathrm{X}, \emptyset \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{QY}+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{QX}=\varnothing \mathrm{Q}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y}) \tag{3.23}\\
& \eta\left(\nabla_{X} \emptyset P Y\right)+\eta\left(\nabla_{Y} \emptyset P X\right)-\eta\left(A_{\emptyset Q Y} X\right)-\eta\left(A_{\emptyset Q X} Y\right)=0 \tag{3.24}
\end{align*}
$$

for all $X, Y \in T M$.
Proof. From equation (3.4), we have

$$
\begin{gathered}
\varnothing \mathrm{Y}=\emptyset \mathrm{PY}+\emptyset \mathrm{QY}+\eta(\mathrm{Y}) \emptyset \xi \\
\emptyset \mathrm{Y}=\emptyset \mathrm{PY}+\emptyset \mathrm{QY}
\end{gathered}
$$

Differentiating covariantly with respect to vector, we have

$$
\begin{gather*}
\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{Y}=\bar{\nabla}_{\mathrm{X}}(\varnothing \mathrm{PY}+\emptyset \mathrm{QY}) \\
\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{Y}=\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{PY}+\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{QY} \\
\left(\bar{\nabla}_{\mathrm{X}} \emptyset\right) \mathrm{Y}+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right)=\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{PY}+\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{QY} \tag{3.25}
\end{gather*}
$$

Using equations (3.1) and (3.2), we have
$\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\emptyset\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{h}(\mathrm{X}, \mathrm{Y})=\nabla_{\mathrm{X}} \varnothing \mathrm{PY}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{PY})-\mathrm{A}_{\emptyset \mathrm{QY}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{QY}$
Interchanging $X \& Y$, we have
$\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+\emptyset \mathrm{h}(\mathrm{Y}, \mathrm{X})=\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})-\mathrm{A}_{\emptyset \mathrm{QX}} \mathrm{Y}+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{QX}$
Adding equations (3.25) \& (3.26), we have

$$
\begin{array}{r}
\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y}} \emptyset\right) \mathrm{X}+\emptyset\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \emptyset \mathrm{~h}(\mathrm{X}, \mathrm{Y})=\nabla_{\mathrm{X}} \emptyset \mathrm{PY}+\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{PY})+ \tag{3.26}\\
\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})--\mathrm{A}_{\emptyset \mathrm{QY}} \mathrm{X}-\mathrm{A}_{\emptyset \mathrm{QX}} \mathrm{Y}+\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{QY}+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{QX}
\end{array}
$$

By Virtue of (2.9) \& (3.27), we have
$\varnothing\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \emptyset \mathrm{~h}(\mathrm{X}, \mathrm{Y})=\nabla_{\mathrm{X}} \varnothing \mathrm{PY}+\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})$

$$
-\mathrm{A}_{\emptyset \mathrm{QY}} \mathrm{X}-\mathrm{A}_{\emptyset \mathrm{QX}} \mathrm{Y}+\nabla_{\mathrm{X}}^{\frac{1}{X}} \varnothing \mathrm{QY}+\nabla_{\mathrm{Y}}^{\perp} \varnothing \mathrm{QX}
$$

Using equations (3.4) \& (3.5), we have

$$
\emptyset \mathrm{P}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\eta\left(\nabla_{\mathrm{X}} \mathrm{Y}\right) \emptyset \xi+\emptyset \mathrm{P}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+\eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \emptyset \xi
$$

$$
\begin{aligned}
& +2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y})+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y})=\mathrm{P}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right)+\mathrm{Q}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right)+\eta\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right) \xi+\mathrm{P}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}\right) \\
& +\mathrm{Q}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{PX}\right)+\eta\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{PX}\right) \xi+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})-\mathrm{PA}_{\emptyset \mathrm{QY}} \mathrm{X}-\mathrm{QA}_{\emptyset \mathrm{QY}} \mathrm{X} \\
& \quad-\eta\left(\mathrm{A}_{\emptyset \mathrm{QY}} \mathrm{X}\right) \xi-\mathrm{PA}_{\emptyset \mathrm{QX}} \mathrm{Y}-\mathrm{QA}_{\emptyset \mathrm{QX}} \mathrm{Y}-\eta\left(\mathrm{A}_{\emptyset \mathrm{QX}} \mathrm{Y}\right) \xi+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{QY}+\nabla_{Y}^{\perp} \emptyset \mathrm{QX}
\end{aligned}
$$

Using equation (2.3), we have

$$
\emptyset \mathrm{P}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{P}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)
$$

$$
+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y})+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y})=\mathrm{P}\left(\nabla_{\mathrm{X}} \varnothing \mathrm{PY}\right)+\mathrm{Q}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right)+\eta\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right) \xi
$$

$+\mathrm{P}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}\right)+\mathrm{Q}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}\right)+\eta\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{PX}\right) \xi+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})-\mathrm{PA}_{\emptyset \mathrm{Q}} \mathrm{X}$
$-Q A_{\varnothing Q Y} X-\eta\left(A_{\varnothing Q Y} X\right) \xi-P_{\varnothing Q X} Y-Q A_{\varnothing Q X} Y-\eta\left(A_{\varnothing Q X} Y\right) \xi+\nabla_{X}^{\perp} \varnothing Q Y+\nabla_{Y}^{\perp} \varnothing Q X$
Comparing horizontal, vertical and normal components we get
$P\left(\nabla_{X} \emptyset P Y\right)+P\left(\nabla_{Y} \emptyset P X\right)-P A_{\emptyset Q Y} X-P A_{\emptyset Q X} Y=\emptyset P\left(\nabla_{X} Y\right)+\emptyset P\left(\nabla_{Y} X\right)$
$\mathrm{Q}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{PY}\right)+\mathrm{Q}\left(\nabla_{Y} \emptyset \mathrm{PX}\right)-\mathrm{Q} A_{\emptyset Q \mathrm{Y}} \mathrm{X}-\mathrm{Q} \mathrm{A}_{\emptyset \mathrm{QX}} \mathrm{Y}=2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y})$
$h(\mathrm{X}, \emptyset \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})+\nabla_{\mathrm{X}}^{\frac{1}{X}} \varnothing \mathrm{Q} Y+\nabla_{\mathrm{Y}}^{\perp} \emptyset \mathrm{QX}=\emptyset \mathrm{Q}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y})$
$\eta\left(\nabla_{X} \varnothing P Y\right)+\eta\left(\nabla_{Y} \emptyset P X\right)-\eta\left(A_{\varnothing Q Y} X\right)-\eta\left(A_{\varnothing Q X} Y\right)=0$
for all $X, Y \in T M$.
Definition 3.8. The horizontal distribution D is said to be parallel [10] on M
if $\nabla_{X} Y \in D$, for all $X, Y \in D$.
Theorem 3.9. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection. If horizontal distribution D is parallel, then

$$
h(X, \varnothing Y)=h(Y, \varnothing X)
$$

for all $X, Y \in D$.
Proof. Let $X, Y \in D$, as D is parallel distribution, then

$$
\nabla_{\mathrm{X}} \emptyset \mathrm{Y} \in \mathrm{D} \& \nabla_{\mathrm{Y}} \emptyset \mathrm{X} \in \mathrm{D} .
$$

Then, from (3.22) and (3.23), we have

As Q being a projection operator on D^{\perp} then we have

$$
\begin{gather*}
\mathrm{h}(\mathrm{X}, \varnothing \mathrm{Y})+\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})=2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y})+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{h}(\mathrm{X}, \varnothing \mathrm{Y})+\mathrm{h}(\mathrm{Y}, \varnothing \mathrm{X})=2 \emptyset \mathrm{~h}(\mathrm{X}, \mathrm{Y}) \tag{3.28}
\end{gather*}
$$

Replacing X by $\emptyset \mathrm{X}$ in (3.28), we have

$$
h(\varnothing \mathrm{X}, \emptyset \mathrm{Y})+\mathrm{h}\left(\mathrm{Y}, \varnothing^{2} \mathrm{X}\right)=2 \emptyset \mathrm{~h}(\varnothing \mathrm{X}, \mathrm{Y})
$$

Using equation (2.1) in above, we have

$$
\begin{align*}
& h(\varnothing \mathrm{X}, \varnothing \mathrm{Y})+\mathrm{h}(\mathrm{Y}, \mathrm{X})+\eta(\mathrm{X}) \mathrm{h}(\mathrm{Y}, \xi)=2 \emptyset \mathrm{~h}(\varnothing \mathrm{X}, \mathrm{Y}) \\
& \mathrm{h}(\varnothing \mathrm{X}, \varnothing \mathrm{Y})+\mathrm{h}(\mathrm{Y}, \mathrm{X})=2 \emptyset \mathrm{~h}(\varnothing \mathrm{X}, \mathrm{Y}) \tag{3.29}
\end{align*}
$$

Replacing Y by $\emptyset \mathrm{Y}$ \& using (2.1) in (3.28), we have

$$
\begin{equation*}
h(\mathrm{X}, \mathrm{Y})+\mathrm{h}(\varnothing \mathrm{Y}, \varnothing \mathrm{X})=2 \emptyset \mathrm{~h}(\mathrm{X}, \emptyset \mathrm{Y}) \tag{3.30}
\end{equation*}
$$

By Virtue of (3.29) and (3.30), we have

$$
h(X, \varnothing Y)=h(Y, \varnothing X)
$$

for all $X, Y \in D$.

Definition 3.10. A semi-invariant submanifold is said to be mixed totally geodesic [8] if $h(X, Y)=0$, for all $X \in D$ and $Y \in D^{\perp}$.
Theorem 3.11. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection. Then M is a mixed totally geodesic if and only if $A_{N} X \in D$ for all $X \in$ D.

Proof. Let $A_{N} X \in D$ for all $X \in D$.
Now, $g(h(X, Y), N)=g\left(A_{N} X, Y\right)=0$, for $Y \in D^{\perp}$.
Which is equivalent to $\mathrm{h}(\mathrm{X}, \mathrm{Y})=0$.
Hence M is totally mixed geodesic.
Conversely, Let M is totally mixed geodesic.
That is $h(X, Y)=0$ for $X \in D$ and $Y \in D^{\perp}$.
Now, $\quad g(h(X, Y), N)=g\left(A_{N} X, Y\right)$.
This implies that $\quad g\left(A_{N} X, Y\right)=0$
Consequently, we have

$A_{N} X \in D$, for all $Y \in D^{\perp}$

$$
\begin{aligned}
& \mathrm{Q}\left(\nabla_{\mathrm{X}} \varnothing \mathrm{PY}\right)+\mathrm{Q}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{PX}\right)-\mathrm{QA} \mathrm{\emptyset QY} \mathrm{X}-\mathrm{QA}_{\emptyset \mathrm{QX}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \varnothing \mathrm{PY})+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{PX})+\nabla_{\mathrm{X}}^{ \pm} \varnothing \mathrm{QY} \\
& +\nabla_{\mathrm{Y}}^{\perp} \varnothing \mathrm{QX}=\varnothing \mathrm{Q}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+2 \mathrm{Bh}(\mathrm{X}, \mathrm{Y})+2 \mathrm{Ch}(\mathrm{X}, \mathrm{Y})
\end{aligned}
$$

IV. Integrability Condition of Distribution

Theorem 4.1. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric non-metric connection, then the distribution $D \oplus\langle\xi\rangle$ is integrable if

$$
\begin{equation*}
\mathrm{h}(\mathrm{X}, \varnothing \mathrm{Z})=\mathrm{h}(\varnothing \mathrm{X}, \mathrm{Z}) \tag{4.1}
\end{equation*}
$$

for each $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in(\mathrm{D} \oplus\langle\xi\rangle)$.
Proof. The torsion tensor $\mathrm{S}(\mathrm{X}, \mathrm{Y})$ of an almost hyperbolic contact manifold is given by

$$
\mathrm{S}(\mathrm{X}, \mathrm{Y})=\mathrm{N}(\mathrm{X}, \mathrm{Y})+2 \mathrm{~d} \eta(\mathrm{X}, \mathrm{Y}) \xi
$$

Where $N(X, Y)$ is Neijenhuis tensor
If $(D \oplus(\xi\rangle)$ is integrable, then $N(X, Y)=0$, for any $X, Y \in(D \oplus\langle\xi\rangle)$
Hence from (3.13), we have
$4 \emptyset\left(\nabla_{Y} \emptyset \mathrm{X}\right)+4 \emptyset \mathrm{~h}(\mathrm{Y}, \emptyset \mathrm{X})-4\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)-4 \eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \xi-4 \mathrm{~h}(\mathrm{Y}, \mathrm{X})+2 \mathrm{~g}(\varnothing \mathrm{X}, \mathrm{Y}) \xi=0$
Comparing normal part both side of (4.2), we have

$$
\begin{align*}
& 4 \emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{X}\right)-4 \mathrm{~h}(\mathrm{Y}, \mathrm{X})+4 \mathrm{Ch}(\mathrm{Y}, \varnothing \mathrm{X})=0 \tag{4.2}\\
& \emptyset \mathrm{Q}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{X}\right)-\mathrm{h}(\mathrm{Y}, \mathrm{X})+\mathrm{Ch}(\mathrm{Y}, \varnothing \mathrm{X})=0, \tag{4.3}
\end{align*}
$$

For $X, Y \in(D \oplus\langle\xi\rangle)$
Replacing Y by $\emptyset \mathrm{Z}$, where $\mathrm{Z} \in \mathrm{D}$ in (4.3), we have

$$
\begin{equation*}
\emptyset \mathrm{Q}\left(\nabla_{\varnothing \mathrm{Z}} \varnothing \mathrm{X}\right)-\mathrm{h}(\varnothing \mathrm{Z}, \mathrm{X})+\mathrm{Ch}(\varnothing \mathrm{Z}, \emptyset \mathrm{X})=0 \tag{4.4}
\end{equation*}
$$

Interchanging X and Z, we have

$$
\begin{equation*}
\emptyset \mathrm{Q}\left(\nabla_{\phi \mathrm{X}} \varnothing \mathrm{Z}\right)-\mathrm{h}(\varnothing \mathrm{X}, \mathrm{Z})+\mathrm{Ch}(\varnothing \mathrm{X}, \varnothing \mathrm{Z})=0 \tag{4.5}
\end{equation*}
$$

Subtracting (4.4) from (4.5), we obtain

$$
\begin{align*}
& \phi Q\left(\nabla_{\phi \mathrm{X}} \varnothing \mathrm{Z}-\nabla_{\phi \mathrm{Z}} \varnothing \mathrm{X}\right)-\mathrm{h}(\varnothing \mathrm{X}, \mathrm{Z})+\mathrm{h}(\varnothing \mathrm{Z}, \mathrm{X})=0 \\
& \emptyset \mathrm{Q}[\varnothing \mathrm{X}, \varnothing \mathrm{Z}]-\mathrm{h}(\varnothing \mathrm{X}, \mathrm{Z})+\mathrm{h}(\varnothing \mathrm{Z}, \mathrm{X})=0 \tag{4.6}
\end{align*}
$$

Since $(D \oplus\langle\xi\rangle)$ is integrable, so that $[\varnothing X, \varnothing Z] \in(D \oplus\langle\xi\rangle)$, for $X, Z \in D$
Consequently, (4.6) gives

$$
h(\varnothing X, Z)=h(\varnothing Z, X)
$$

for each $X, Y, Z \in(D \oplus\langle\xi\rangle)$.
Theorem 4.2. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection, then

$$
\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}=\frac{1}{3} \emptyset \mathrm{P}[\mathrm{Y}, \mathrm{Z}]
$$

for each $Y, Z \in D^{\perp}$.
Proof. Let $\mathrm{Y}, \mathrm{Z} \in \mathrm{D}^{\perp}$ and $\mathrm{X} \in \mathrm{TM}$, from (3.3), we have

$$
g\left(A_{N} X, Y\right)=g(h(X, Y), N)
$$

As $N \in T^{\perp} M \& \in D^{\perp} \Rightarrow \emptyset Z \in T^{\perp} M$, then from above

$$
\begin{equation*}
2 \mathrm{~g}\left(\mathrm{~A}_{\emptyset \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=\mathrm{g}(\mathrm{~h}(\mathrm{Y}, \mathrm{X}), \emptyset \mathrm{Z})+\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \emptyset \mathrm{Z}) \tag{4.7}
\end{equation*}
$$

Using (3.1) in (4.7), we have

$$
\begin{gathered}
2 \mathrm{~g}\left(\mathrm{~A}_{\phi \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}-\nabla_{\mathrm{Y}} \mathrm{X}, \varnothing \mathrm{Z}\right)+\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}-\nabla_{\mathrm{X}} \mathrm{Y}, \varnothing \mathrm{Z}\right) \\
2 \mathrm{~g}\left(\mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}, \varnothing \mathrm{Z}\right)+\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \varnothing \mathrm{Z}\right)-\mathrm{g}\left(\nabla_{\mathrm{Y}} \mathrm{X}, \varnothing \mathrm{Z}\right)-\mathrm{g}\left(\nabla_{\mathrm{X}} \mathrm{Y}, \varnothing \mathrm{Z}\right)
\end{gathered}
$$

As $\nabla_{X} Y \& \nabla_{Y} X \in T M, \emptyset Z \in T^{\perp} M$, then

$$
\begin{aligned}
& 2 g\left(A_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}, \varnothing \mathrm{Z}\right)+\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \varnothing \mathrm{Z}\right) \\
& 2 g\left(A_{\varnothing Z} Y, X\right)=-g\left(\varnothing \bar{\nabla}_{Y} X, Z\right)-g\left(\varnothing \bar{\nabla}_{X} Y, Z\right) \\
& 2 \mathrm{~g}\left(\mathrm{~A}_{\phi \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\varnothing\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{X}\right)+\emptyset\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right), \mathrm{Z}\right) \\
& 2 \mathrm{~g}\left(\mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \varnothing \mathrm{X}-\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}-\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}, \mathrm{Z}\right) \\
& 2 \mathrm{~g}\left(\mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \varnothing \mathrm{X}+\bar{\nabla}_{\mathrm{X}} \varnothing \mathrm{Y}, \mathrm{Z}\right)+\mathrm{g}\left(\left(\bar{\nabla}_{\mathrm{Y}} \varnothing\right) \mathrm{X}+\left(\bar{\nabla}_{\mathrm{X}} \varnothing\right) \mathrm{Y}, \mathrm{Z}\right)
\end{aligned}
$$

Using (3.1) and (2.9) in above, we have

$$
\begin{align*}
& 2 \mathrm{~g}\left(\mathrm{~A}_{\phi \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}+\mathrm{h}(\mathrm{Y}, \emptyset \mathrm{X})+\nabla_{\mathrm{X}} \emptyset \mathrm{Y}+\mathrm{h}(\mathrm{X}, \emptyset \mathrm{Y}), \mathrm{Z}\right) \\
& 2 \mathrm{~g}\left(\mathrm{~A}_{\phi \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}, \mathrm{Z}\right)-\mathrm{g}\left(\nabla_{\mathrm{X}} \emptyset \mathrm{Y}, \mathrm{Z}\right) \tag{4.8}
\end{align*}
$$

From (3.2), we have

$$
\bar{\nabla}_{\mathrm{X}} \mathrm{~N}=-\mathrm{A}_{\mathrm{N}} \mathrm{X}+\nabla_{\mathrm{X}}^{1} \mathrm{~N}
$$

Replacing N by $\emptyset \mathrm{Y}$

$$
\bar{\nabla}_{\mathrm{X}} \emptyset \mathrm{Y}=-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{Y}
$$

As ∇ is a Levi-Civita connection, using above, then from (4.8), we have

$$
\begin{gather*}
2 \mathrm{~g}\left(\mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{X}, \mathrm{Z}\right)-\mathrm{g}\left(-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{X}+\nabla_{\mathrm{X}}^{\perp} \emptyset \mathrm{Y}, \mathrm{Z}\right) \\
2 \mathrm{~g}\left(\mathrm{~A}_{\phi \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\nabla_{\mathrm{Y}} \emptyset \mathrm{X}, \mathrm{Z}\right)+\mathrm{g}\left(\mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{X}, \mathrm{Z}\right)-\mathrm{g}\left(\nabla_{\mathrm{X}}^{\perp} \varnothing \mathrm{Y}, \mathrm{Z}\right) \\
2 \mathrm{~g}\left(\mathrm{~A}_{\emptyset \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\nabla_{\mathrm{Y}} \varnothing \mathrm{X}, \mathrm{Z}\right)+\mathrm{g}\left(\mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{X}, \mathrm{Z}\right) \\
2 \mathrm{~g}\left(\mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)=-\mathrm{g}\left(\varnothing \nabla_{\mathrm{Y}} \mathrm{Z}, \mathrm{X}\right)+\mathrm{g}\left(\mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{Z}, \mathrm{X}\right) \tag{4.9}
\end{gather*}
$$

Transvecting X from both sides from (4.9), we obtain

$$
\begin{equation*}
2 \mathrm{~A}_{\varnothing \mathrm{Z}} \mathrm{Y}=-\emptyset \nabla_{\mathrm{Y}} \mathrm{Z}+\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z} \tag{4.10}
\end{equation*}
$$

Interchanging Y \& Z, we have

$$
\begin{equation*}
2 \mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{Z}=-\emptyset \nabla_{\mathrm{Z}} \mathrm{Y}+\mathrm{A}_{\phi \mathrm{Z}} \mathrm{Y} \tag{4.11}
\end{equation*}
$$

Subtracting (4.10) from (4.11), we have

$$
\begin{gathered}
2\left(\mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\phi \mathrm{Z}} \mathrm{Y}\right)=\varnothing\left(\nabla_{\mathrm{Y}} \mathrm{Z}-\nabla_{\mathrm{Z}} \mathrm{Y}\right)+\left(\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}-\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z}\right) \\
3\left(\mathrm{~A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}\right)=\emptyset[\mathrm{Y}, \mathrm{Z}] \\
\left(\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}\right)=\frac{1}{3} \emptyset[\mathrm{Y}, \mathrm{Z}]
\end{gathered}
$$

Comparing the tangential part both side in above equation, we have

$$
\left(\mathrm{A}_{\emptyset \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}\right)=\frac{1}{3} \emptyset \mathrm{P}[\mathrm{Y}, \mathrm{Z}]
$$

Where [Y, Z] is Lie Bracket.
Theorem 4.3. Let M be a semi-invariant submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with semi-symmetric semi-metric connection, then the distribution is integrable if and only if

$$
\begin{equation*}
\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}=0 \tag{4.12}
\end{equation*}
$$

for all $Y, Z \in D^{\perp}$.
Proof. Suppose that the distribution D^{\perp} is integrable, that is $[\mathrm{Y}, \mathrm{Z}] \in \mathrm{D}^{\perp}$
For any $\mathrm{Y}, \mathrm{Z} \in \mathrm{D}^{\perp}$, therefore $\mathrm{P}[\mathrm{Y}, \mathrm{Z}]=0$.
Consequently, from (4.11) we have

$$
\mathrm{A}_{\varnothing \mathrm{Y}} \mathrm{Z}-\mathrm{A}_{\varnothing \mathrm{Z}} \mathrm{Y}=0
$$

Conversely, let (4.12) holds. Then by virtue of (4.11), we have

$$
\emptyset \mathrm{P}[\mathrm{Y}, \mathrm{Z}]=0
$$

For all $\mathrm{Y}, \mathrm{Z} \in \mathrm{D}^{\perp}$. Since rank $\emptyset=2 \mathrm{n}$
Therefore, either $\mathrm{P}[\mathrm{Y}, \mathrm{Z}]=0$ or $\mathrm{P}[\mathrm{Y}, \mathrm{Z}]=\mathrm{k} \xi$.
But $\mathrm{P}[\mathrm{Y}, \mathrm{Z}]=\mathrm{k} \xi$ is not possible as P being a projection operator on D .
So, $\mathrm{P}[\mathrm{Y}, \mathrm{Z}]=0$, this implies that $[\mathrm{Y}, \mathrm{Z}] \in \mathrm{D}^{\perp}$, for all $\mathrm{Y}, \mathrm{Z} \in \mathrm{D}^{\perp}$.
Hence D^{\perp} is integrable.

References:

[1]. Ahmad. M., Semi-invariant submanifolds of nearly Kenmotsu manifold with semi-symmetric semi-metric connection, Mathematicki Vesnik 62 (2010),189-198.
[2]. Ahmad M. and Ali K, Semi-invariant submanifolds of a nearly hyperbolic cosymplectic manifold, Global Journal of Science Frontier Research Mathematics and Decision Sciences Journal of Mathematics, Volume 13, Issue 4,Version 1.0 (2013), PP 73-81
[3]. Ahmad, M and Ali. K., CR- submanifolds of nearly hyperbolic cosympletic manifold, IOSR journal of Mathematics (iosr- jm), vol6 issue 3, 2013 page 74-77.
[4]. Ahmad, M. and Jun, J.B., On semi-invariant submanifold of nearly Kenmotsu manifold with a semi-symmetric non-metric connection, Journal of the Chungcheong Math. Soc. Vol. 23, no. 2, June (2010), 257-266.
[5]. Ahmad, M., Jun, J. B. and Siddiqi, M. D., Some properties of semi-invariant submanifolds of a nearly trans-Sasakian manifold admitting a quarter symmetric non-metric connection, JCCMS, vol. 25, No. 1 (2012), 73-90.
[6]. Ahmad, M. and Siddiqi, M.D., On nearly Sasakian manifold with a semi-symmetric semi-metric connection, Int. J. Math. Analysis, Vol. 4 (2010), 35, 1725-1732.
[7]. Ahmad, M. and Siddiqi, M.D., Semi-invariant submanifolds of Kenmotsu manifold immersed in a generalized almost r-contact structure admitting quarter-symmetric non-metric connection, Journ. Math. Comput. Sci. 2 (2012), No. 4, 982-998.
[8]. Ahmad, M. Rahman, S. and Siddiqui, M.D., Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semisymmetric metric connection, Bull. Allahabad Math. Soc., vol. 25 (1), 2010, 23-33.
[9]. Bejancu, A., CR- submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69(1978), 135-142
[10]. Bejancu, A. and Papaghuic N., Semi-invariant submanifolds of a Sasakian manifold, An. St. Univ. Al. I. Cuza, Iasi 27 (1981), 163170.
[11]. Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
[12]. C.J.Hsu, CR- submanifolds of a Sasakian manifolds,I.Math.Research Centre Reports, Symposium Summer, (1983), 117-140
[13]. Das, Lovejoy S., Ahmad, M. and Haseeb, A., Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semisymmetric non-metric connection, Journal of Applied Analysis, vol. 17 (2011), no. 1, 119-130.
[14]. Joshi, N.K. and Dube, K.K., Semi-invariant submanifolds of an almost r-contact hyperbolic metric manifold, Demonstratio Math. 36 (2001), 135.143.
[15]. Matsumoto, K., On contact CR-submanifolds of Sasakian manifold, Intern. J. Math. Sci., 6 (1983), 313-326.
[16]. Shahid, M.H., On semi-invariant submanifolds of a nearly Sasakian manifold, Indian J. Pure and Applied Math. 95 (10) (1993), 571-580.
[17]. Upadhyay, M. D. and Dube, K.K., Almost contact hyperbolic (ϕ, ξ, η, g) structure, Acta. Math. Acad. Scient. Hung. Tomus 28 (1976), 1-4.
[18]. Yano, K. and Kon, M., Contact -CR submanifolds, Kodai Math. J. 5 (1982), 238-252.

