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Abstract: Following Agrawal and Sthapit [1],  we have developed  systems of exponential ratio-based and 

exponential product-based estimators. The proposed exponential ratio-based estimator of order 𝑘 and the 

proposed exponential product-based estimator of order 𝑘 are, under practical conditions, found to be more 

efficient than the customary exponential ratio and the mean per unit estimator and the customary exponential 

product estimator and the mean per unit estimator, respectively, when 𝑘 is optimally chosen. Under the optimal 

value of 𝑘, the 𝑘𝑡ℎorder exponential ratio-based and exponential product-based estimators are found to be as 

efficient as the linear regression estimator. With a view to establishing the supremacy of the proposed 

estimators over the existing estimators, numerical illustrations in respect of real populations have been 

considered. 

Keywords: Simple random sampling,  exponential ratio estimator, exponential product estimator, predictive 

estimation  

 

I. Introduction 
In survey sampling, when the auxiliary variable x  is positively correlated with the study  variable y  

and complete information on x is available, the ratio method of estimation is followed to estimate the population 

mean (Y ) or the population total (Y). The conventional ratio estimator 

𝐲 𝐑 =
𝐲 

𝐱 
𝐗  

is preferred to the mean per unit estimator(y )  if 

𝛒 >
𝟏

𝟐

𝐂𝐱

𝐂𝐲
,(1.1) 

where cx  and cy  are the coefficients of variation of x and y, respectively, and ρ, the  correlation coefficient 

between x and y, is positive. Similarly, whenx and y are negatively correlated, Murthy [2]proposed the usual 

productestimator given by  

𝐲 𝐏 = 𝐲 
𝐱 

𝐗 
 , 

which is more efficient than the simple mean if the condition 

𝛒∗ < −
𝟏

𝟐

𝐂𝐱

𝐂𝐲
 ,                          (1.2) 

where ρ∗, the correlation coefficient between x and y, is negative, holds true. It is worthwhile to note that the 

conditions (1.1) and (1.2)  hold good in practice very often. Bahland Tuteja[3] have proposed the exponential 

ratio estimator andthe exponential product estimator which are listed, respectively,as  

𝐲 𝐑𝐞 = 𝐲  exp 
𝐗 −𝐱 

𝐗 +𝐱 
 ,                     (1.3) 

                                                                 and  𝐲 𝐏𝐞 = 𝐲  exp 
𝐱 −𝐗 

𝐱 +𝐗 
 .                              (1.4) 

While 𝐲 𝐑𝐞 is more efficient than the classical ratio estimator (𝐲 𝐑) and the mean per unit estimator(𝐲 ) if 

    
𝟏

𝟒
< ρ

𝐂𝐲

𝐂𝐱
<

𝟑

𝟒
 ,(1.5) 

𝐲 𝐏𝐞 fares better than the usual product estimator (𝐲 𝐏) and the mean per unit estimator(𝐲 ) if 

−
𝟑

𝟒
< ρ

𝐂𝐲

𝐂𝐱
< −

𝟏

𝟒
 .                               (1.6) 

It may be noted here that the conditions (1.5) and (1.6) too are satisfied in several practical situations.  

  Following the predictive approach due to Basu [4] and Smith [5] for a fixed population set-up and then, 

with recursive use of this intuitive predictive format, Agrawal and Sthapit [1] have generated sequences of ratio-

based and product-based estimators which, under certain conditions, perform better than the customary well-

known estimators such as 𝐲, 𝐲 𝐑 and𝐲 𝐏. We have, in this paper, developed  systems of exponential ratio-based 

and exponential product-based estimators as per the lines of Agrawal and Sthapit [1]. The estimators thus 

proposed are, under real-life conditions, found to fare better than the customary exponential ratio  estimator𝐲 𝐑𝐞 
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and exponential product estimator 𝐲 𝐏𝐞 and the mean per unit estimator 𝐲 . The work has been supported by some 

practical numerical illustrations. 

 

II. A system of exponential ratio-based estimators with performance 
Under the predictive set-up, we can write the population total Y as 

𝐘 =   𝐲𝐢𝐢𝛜𝐬 + 𝐲𝐢𝐢𝛜𝐬 ,(2.1) 

where s denotes the sample of selected units and 𝐬  its complement.To estimate 𝐘, we have to predict 𝐲𝐢(𝐢𝛜𝐬 ).In 

otherwords, the predictive format for the estimation of 𝐘 is 

𝐘 =  𝐲𝐢𝐢𝛜𝐬 + 𝐲 𝐢𝐢𝛜𝐬 ,                                                   (2.2) 

where 𝐲 𝐢 is the implied predictor of 𝐲𝐢 (𝐢𝛜𝐬 ). 
Now, if we use 𝐲 𝐑𝐞 as an intuitive predictor of𝐲𝐢(𝐢𝛜𝐬 ) in  (2.2),  we obtain 

𝐘 =   𝐲𝐢

𝐢∈𝐬

+  𝐍 − 𝐧 𝐲 𝐑𝐞 

or equivalentely, 

𝐘  =𝐲 𝐑𝐞
(𝟏)

, 

where 𝐲 𝐑𝐞
(𝟏)

=∅𝟏𝐳 𝐑𝐞 + 𝐲 𝐑𝐞, with∅𝟏 = 𝟏 + 𝛌∅𝟎,   ∅𝟎= 0,    𝛌 =𝟏 −
𝐧

𝐍
(2.3) 

and                                                     𝐳 𝐑𝐞 =  
𝐧

𝐍
𝐲  𝟏 − 𝐞𝐱𝐩 

𝐗 −𝐱 

𝐗 +𝐱 
   

A second iteration with 𝐲 𝐑𝐞
(𝟏)

 as an intuitive predictor of 𝐲𝐢(𝐢𝛜𝐬 ) in (2.2) would result in 𝐲 𝐑𝐞
(𝟐)

 given by 

𝐲 𝐑𝐞
(𝟐)

=∅𝟐𝐳 𝐑𝐞 + 𝐲 𝐑𝐞, 

where ∅𝟐 = 𝟏 + 𝛌∅𝟏.Continuing in this way, we would ,at the k
th

iteration, arrive at 

𝐲 𝐑𝐞
(𝐤)

=∅𝐤𝐳 𝐑𝐞 + 𝐲 𝐑𝐞, 

where∅𝐤 = 𝟏 + 𝛌∅𝐤−𝟏= 
𝟏−𝛌𝐤

𝟏−𝛌
. 

Thus,𝐲 𝐑𝐞
(𝐤)

 can be expressed as 

𝐲 𝐑𝐞
(𝐤)

=  𝟏 − 𝛌𝐤 𝐲 + 𝛌𝐤𝐲 𝐑𝐞.  (2.4) 

We will address  𝐲 𝐑𝐞
(𝐤)

 the exponential ratio-based estimator of the kth order. It may be noted here that , for 

𝐤 = 𝟎,𝐲 𝐑𝐞
(𝐤)

(i.e.𝐲 𝐑𝐞
(𝟎)

) is the usual exponential ratio estimator given in (1.1) and that , as𝐤 → ∞, we have𝛌𝐤 → 𝟎 and 

𝐲 𝐑𝐞
(𝐤)

→ 𝐲 .Here, we assume N to be finite because, if we draw samples of fixed sizes from an infinite population, 

then 𝐲 𝐑𝐞
(𝐤)

 will be no different from𝐲  𝐑𝐞 as λ becomes 1. The bias of 𝐲 𝐑𝐞
(𝐤)

 to 𝐎(n
-1

) can be obtained as 

B(𝐲 𝐑𝐞
(𝐤)

)=  𝛌𝐤  
𝟏

𝐧
−

𝟏

𝐍
 𝐘  

𝟑

𝟖
𝐂𝐱

𝟐 −
𝟏

𝟐
𝛒𝐂𝐲𝐂𝐱 (2.5) 

For 𝐤 ≥ 𝟏, this is invariably smaller than the bias of customary exponential ratio estimator𝐲 𝐑𝐞.The mean square 

error or variance of𝐲 𝐑𝐞
(𝐤)

 to 𝐎(n
-1

) can be found out as 

MSE(𝐲 𝐑𝐞
(𝐤)

)=
𝛌

𝐧
𝐘 𝟐𝐂𝐲

𝟐  𝟏 +
𝛌𝟐𝐤

𝟒
 
𝐂𝐱

𝐂𝐲
 
𝟐

− 𝛌𝐤𝛒  
𝐂𝐱

𝐂𝐲
  . (2.6) 

Then, when 𝐤 is determined optimally with a view to minimizing (2.6), we find 

        𝛌𝐤 = 𝟐 𝛒
𝐂𝐲

𝐂𝐱
.(2.7) 

It follows that MSE(𝐲 𝐑𝐞
(𝐤)

), under the condition (2.7), will overlap with the approximate variance of the usual 

linear regression estimator, say 𝐲 𝐥𝐫, given by  

MSE(𝐲 𝐥𝐫)=
𝛌

𝐧
𝐘 𝟐𝐂𝐲

𝟐 𝟏 − 𝛒𝟐 . (2.8) 

There will be a natural problem in case  the optimal value of𝐤 is  found to be a non-integer and,as such, it may 

have to be replaced by the nearest integer. Also, if 𝛒
𝐂𝐲

𝐂𝐱
  exceeds 1 2 ,then it is apparent that a suitable value 

of𝐤cannot be found from (2.7).In general, 𝐲 𝐑𝐞
(𝐤)

 will be more efficient than𝐲 𝐑𝐞 if 

𝛒
𝐂𝐲

𝐂𝐱
<

𝟏

𝟒
 𝟏 + 𝛌𝐤 (2.9) 

And, furthermore,𝐲 𝐑𝐞
(𝐤)

 fares better than 𝐲  if 

𝛒
𝐂𝐲

𝐂𝐱
>

𝟏

𝟒
𝛌𝐤 (2.10) 

Thus,  combining conditions (2.9) and (2.10), we find that𝐲 𝐑𝐞
(𝐤)

 performs better than both 𝐲 𝐑𝐞 and 𝐲  if 
𝟏

𝟒
𝛌𝐤 < ρ

𝐂𝐲

𝐂𝐱
<

𝟏

𝟒
 𝟏 + 𝛌𝐤 . (2.11) 
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The bounds on 𝛒𝐂𝐲 𝐂𝐱  given in (2.11) will be called the efficiency bounds. Because of its role, 𝛒𝐂𝐲 𝐂𝐱     may 

be looked upon as some sort of a pivotal quantity.By choosing values of the sampling fraction 𝐟(=
𝐧

𝐍
) and, hence, 

𝛌 =  𝟏 − 𝐟 ,we have prepared Table-1, which presents the bounds on 𝛒(𝐂𝐲 𝐂𝐱)  for which 𝐲 𝐑𝐞
(𝐤)

 (for various 

values of k) will be more efficient than 𝐲 𝐑𝐞 and 𝐲 . 

 

Table-1: Efficiency bounds of 𝛒𝐂𝐲 𝐂𝐱  for various values of 𝐟 and 𝐤 

 𝐤 

𝐟 1 2 5 8 10 50 

0.05 (0.237,0.487) (0.226,0.476) (0.193,0.443) (0.166,0.416) (0.150,0.340) (0.019,0.269) 

0.10 (0.225,0.475) (0.202,0.452) (0.148,0.398) (0.108,0.358) (0.087,0.337) (0.001,0.251) 

0.20 (0.200,0.450) (0.160,0.410) (0.082,0.332) (0.042,0.292) (0.027,0.277) (0,0.250) 

0.50 (0.125,0.375) (0.062,0.312) (0.008,0.258) (0,0.250) (0,0.250) (0,0.250) 

0.80 (0.050,0.262) (0.010,0.260) (0,0.250) (0,0.250) (0,0.250) (0,0.250) 

0.90 (0.025,0.275) (0.002,0.253) (0,0.250) (0,0.250) (0,0.250) (0,0.250) 

 

Table-1, in general, is of great help in locating a suitable value of 𝐤 for given values of𝛒(𝐂𝐲 𝐂𝐱)  and 𝐟. As 

regards knowledge of 𝛒(𝐂𝐲 𝐂𝐱)  , it can besaid that the quantities 𝛒, 𝐂𝐱 and 𝐂𝐲 can be based on pilot survey, or 

can be  available from a past survey, if any, because they remain stable over a considerable period of time.For a 

specified value of 𝛒(𝐂𝐲 𝐂𝐱) , Table-1 offers more than one value of k which ensures better performance of 𝐲 𝐑𝐞
(𝐤)

 

relative to 𝐲 𝐑𝐞 and𝐲 . However, the optimal value of𝐤 is obtainable from equation (2.7), provided that 

𝛒(𝐂𝐲 𝐂𝐱) < 𝟏 𝟐 . Even if the exact optimal  value of 𝐤 is not available, a suitable value of k that renders 𝐲 𝐑𝐞
(𝐤)

 

superior to 𝐲 𝐑𝐞 and 𝐲  might still be found as evidenced by Table-1.Furthermore, with a view to finding the 

gainsin efficiency  of 𝐲 𝐑𝐞and 𝐲 𝐑𝐞
(𝐤)

with respect to 𝐲,  when𝐤is optimally determined, Table-2 presents for various 

values of 𝐟, 𝛒 and 𝐂𝐲 𝐂𝐱  the percentage gain 𝐆𝟏 and 𝐆𝟐 defined as 

 

𝐆𝟏= 
𝐕(𝐲 )

𝐕(𝐲 𝐑𝐞)
− 𝟏 × 𝟏𝟎𝟎 

𝐆𝟐= 
𝐕(𝐲 )

𝐕(𝐲 𝐑𝐞
(𝐤)

)
− 𝟏 × 𝟏𝟎𝟎. 

 

Table-2.Optimum values of 𝐤, along with (𝐆𝟏and 𝐆𝟐), for various combinations of 𝐟, 𝛒 and 𝐂𝐲 𝐂𝐱  

 

Table-2 reflects that , for various configurations of𝐟, 𝛒 and,𝐂𝐲 𝐂𝐱  the estimator𝐲 𝐑𝐞
(𝐤)

 fares better than 𝐲 , and the 

usual exponential ratio estimator 𝐲 𝐑𝐞 could be considerably less efficient than 𝐲 when the quantity 𝛒(𝐂𝐲 𝐂𝐱 ) is 

small, e.g., less than 0.125. It can also be noted from table-2 that, even for configurations of 𝛒 and 𝐂𝐲 𝐂𝐱  for 

which 𝐲 𝐑𝐞 is more efficient than 𝐲 , i.e. when 𝛒(𝐂𝐲 𝐂𝐱 )>
𝟏

𝟒
, 𝐲 𝐑𝐞

(𝐤)
 is more efficient than both 𝐲 𝐑𝐞 and 𝐲  , provided 

𝐟 𝐂𝐲 𝐂𝐱  𝛒 

0.25 0.50 0.80 0.95 

 

 

 

 

 

0.10 

0.10 

 

0.25 

 

0.50 

 

0.80 

 

1.00 

 

2.00 

28 

(-95.7, 6.4) 

20 

(-75.0, 6.4) 

13 

(-33.3, 6.4) 

9 

(-7.4, 6.4) 

6 

(0, 6.4) 

0 

(6.4, 6.4) 

22 

(-95.2, 33.3) 

13 

(-66.7, 33.3) 

6 

(0, 33.3) 

2 

(29.8, 33.3) 

0 

(33.3, 33.3) 

 

 

17 

(-94.4, 177.8) 

9 

(-44.4, 177.8) 

2 

(150.0, 177.8) 

 

 

 

 

 

16 

(-94.1, 900.0) 

7 

(-16.7, 1011.1) 

0 

(900, 900) 

 

 

 

 

 

 

 

 

 

 

0.25 

0.10 

 

0.25 

 

0.50 

 

0.80 

 

1.00 

 

2.00 

10 

(-95.7, 6.4) 

7 

(-75.0, 6.4) 

5 

(-33.3, 6.4) 

3 

(-7.4, 6.4) 

2 

(0, 6.4) 

0 

(6.4, 6.4) 

8 

(-95.2, 33.3) 

5 

(-66.7, 33.3) 

2 

(0, 31.6) 

1 

(29.8, 33.3) 

0 

(33.3, 33.3) 

 

 

6 

(-94.4, 170.3) 

3 

(-44.4, 177.8) 

1 

(150.0, 177.8) 

0 

(156.4, 156.4) 

 

 

 

6 

(-94.1, 900.0) 

2 

(-16.7, 733.3) 

0 

(900, 900) 

 

 

 

 



Systems of exponential ratio-based and exponential product-based estimators with their efficiency 

DOI: 10.9790/5728-11317377                                        www.iosrjournals.org                                          76 | Page 

that 𝛒(𝐂𝐲 𝐂𝐱 )≤ 𝟏 𝟐 . It is also observed from Table 2 that if𝛒(𝐂𝐲 𝐂𝐱 )< 1/2, then 𝐆𝟐increases with 𝛒 for a 

given value of 𝐂𝐲 𝐂𝐱 , and remains  invariant to 𝐂𝐲 𝐂𝐱  for a given value of 𝛒. 

 

III. A system of exponential product-based estimators with performance 
As stated  in Section 1, when the auxiliary variable 𝐱is negatively correlated with the study variable 𝐲, the 

exponential product estimator 𝐲 𝐏𝐞as defined in (1.2) is used to estimate the population mean 𝐘 . 

 Like 𝐲 𝐑𝐞 in Section2, we proceed also for 𝐲 𝐏𝐞 so as to find 

𝐲 𝐏𝐞
(𝐤)

=  𝟏 − 𝛌𝐤 𝐲 + 𝛌𝐤𝐲 𝐏𝐞.                (3.1) 

Now,                               B(𝐲 𝐏𝐞
(𝐤)

)=  𝛌𝐤  
𝟏

𝐧
−

𝟏

𝐍
 𝐘  

𝟏

𝟐
𝛒∗𝐂𝐲𝐂𝐱 −

𝟏

𝟖
𝐂𝐱

𝟐   (3.2) 

and MSE(𝐲 𝐏𝐞
(𝐤)

)=
𝛌

𝐧
𝐘 𝟐𝐂𝐲

𝟐  𝟏 +
𝛌𝟐𝐤

𝟒
 
𝐂𝐱

𝐂𝐲
 
𝟐

+ 𝛌𝐤𝛒∗  
𝐂𝐱

𝐂𝐲
  ,(3.3) 

where  𝛒∗ is the correlation coefficient between the negatively correlated variables 𝐱and y and an optimum value 

of 𝐤 that minimizes the MSE or variance given in(3.3) is obtained from 

        𝛌𝐤 = −𝟐𝛒∗ 𝐂𝐲

𝐂𝐱
 ,   (3.4) 

which, when substituted in condition (3.3) will render it equal to the approximate variance of the linear 

regression estimator. It can easily be seen that 𝐲 𝐏𝐞
(𝐤)

 performs better than the customary exponential product 

estimator 𝐲 𝐏𝐞 if 

𝛒∗ 𝐂𝐲

𝐂𝐱
> −

(𝟏+𝛌𝐤)

𝟒
.   (3.5) 

Also, 𝐲 𝐏𝐞
(𝐤)

 fares better than the usual simple mean𝐲  if 

𝛒∗ 𝐂𝐲

𝐂𝐱
< −

𝟏

𝟒
𝛌𝐤 .    (3.6) 

Thus , 𝐲 𝐏𝐞
(𝐤)

 performs better than both 𝐲 𝐏𝐞 and 𝐲 if 

−
 𝟏+𝛌𝐤 

𝟒
< 𝛒∗ 𝐂𝐲

𝐂𝐱
< −

𝟏

𝟒
𝛌𝐤 .   (3.7) 

 

IV. Numerical illustration: 
The following examples reflect the potential gains from the use of the exponential ratio-based and exponential 

product-based estimators of order 𝐤 in the place of the classical exponential ratio-based and exponential 

product-based estimators 𝐲 𝐑𝐞 and 𝐲 𝐏𝐞 and the mean per unit estimator 𝐲 . 

IV (A).      Exponential ratio-based estimator 

Illustration 1. The data, which relate to the number of persons (𝐱) and weekly expenditure on food (𝐲)of 33 

low-income families, have been taken from Cochran ([6], p.33). We have however, treated these data as the 

population data and computed the following quantities: 𝐗 = 𝟑. 𝟕𝟓, 𝐘 = 𝟐𝟕. 𝟒𝟗, 𝐒𝐱 = 𝟏. 𝟓𝟎 , 𝐒𝐲 = 𝟏𝟎. 𝟏𝟎, 𝐂𝐱 =

𝟎. 𝟒𝟏, 𝐂𝐲 = 𝟎. 𝟑𝟕. Here, thecorrelation coefficient between 𝐱 and 𝐲, 𝛒, becomes 𝟎. 𝟒𝟎.  Based on these quantities 

gains in efficiencies (𝐆𝟏and 𝐆𝟐 ) for various sample sizes are computed below. 

Case 1. Consider weekly expenditure as the main variate (𝐲) and the number of persons as the auxiliary variate 

(𝐱). Then, for 𝐧 = 𝟓, the optimum value of 𝐤 (rounded off to the nearest integer) is found to be 𝟐; hence, 

𝐆𝟏 = 𝟏𝟒. 𝟗𝟐 and 𝐆𝟐 = 𝟏𝟗. 𝟎𝟓. 

Case 2. For𝐧 = 𝟏𝟎, the optimum value of 𝐤 (rounded off to the nearest integer) is found to be 𝟏; hence, 

𝐆𝟏 = 𝟏𝟒. 𝟗𝟗 and 𝐆𝟐 = 𝟏𝟗. 𝟏𝟕. 

Illustration 2 : We consider the following information given in Murthy ([7], p.228): 

𝐱: fixed capital, 𝐲: output, 𝐍 = 𝟖𝟎, 𝐧 = 𝟏𝟎, 𝐘 = 𝟓𝟏𝟖𝟐. 𝟔𝟒, 𝐂𝐱 = 𝟎. 𝟕𝟓𝟎𝟕, 𝐂𝐲 = 𝟎. 𝟑𝟓𝟒𝟐, 𝛒 = 𝟎. 𝟗𝟒𝟏𝟑. 

For 𝐧 = 𝟏𝟎, the optimum value of𝐤 (rounded off to the nearest integer) is found to be 𝟏; hence, 𝐆𝟏 =
𝟔𝟔𝟗. 𝟐𝟑 and 𝐆𝟐 = 𝟕𝟑𝟑.34. 

It is clearly demonstrated through theseillustrations  that there are populations for which 𝐲 𝐑𝐞
(𝐤)

 performs better 

than𝐲 and𝐲 𝐑𝐞. 
IV(B).      Exponential product-based estimator 

Illustration 1. The data relating to the automobile accidents rate in accidents per million vehicle miles (y) and 

length of the segment in miles (x) have been taken from Weisberg([8],p.179) . The data given here, however, are 

assumed to relate to the population and the following quantities are computed: 𝐍 = 𝟑𝟗, 𝐗 = 𝟏𝟐. 𝟖𝟖, 𝐘 =
𝟑. 𝟗𝟑, 𝐒𝐱 = 𝟕. 𝟔𝟏 , 𝐒𝐲 = 𝟏. 𝟗𝟗, 𝐂𝐱 = 𝟎. 𝟓𝟗, 𝐂𝐲 = 𝟎. 𝟓𝟏  and 𝛒∗ = −𝟎. 𝟒𝟕.  Invoking the formulae for gains in 

efficiency of 𝐲 𝐏𝐞 and 𝐲 𝐏𝐞
(𝐤)

 with respect to 𝐲  such as 

 

𝐆𝟏
∗= 

𝐕(𝐲 )

𝐕(𝐲 𝐏𝐞)
− 𝟏 × 𝟏𝟎𝟎 
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𝐆𝟐
∗= 

𝐕(𝐲 )

𝐕(𝐲 𝐏𝐞
(𝐤)

)
− 𝟏 × 𝟏𝟎𝟎 

and considering sample size 𝟏𝟎, the optimum value of 𝐤 (rounded off to the nearest integer) is found to be 𝟏 and 

consequently𝐆𝟏
∗ = 𝟐𝟔. 𝟔𝟐 and 𝐆𝟐

∗ = 𝟐𝟖. 𝟐𝟓. Thus, 𝐲 𝐏𝐞
(𝐤)

 is more efficient than both 𝐲 𝐏𝐞 and 𝐲 . 

Illustration 2.We refer to Steel and Torrie ([9], p.282), wherein the following information is considered: 

𝐱: chlorine percentage,𝐲: log of leaf burn in sacs, 𝐍 = 𝟑𝟎, 𝐧 = 𝟒, 𝐘 = 𝟎. 𝟔𝟖𝟔𝟎, 𝐂𝐱 = 𝟎. 𝟕𝟒𝟗𝟑, 𝐂𝐲 =

𝟎. 𝟒𝟖𝟎𝟑, 𝛒 = −𝟎. 𝟒𝟗𝟗𝟔. 
For 𝐧 = 𝟒,the optimum value of 𝐤 (rounded off to the nearest integer) is found to be 𝟑; hence,𝐆𝟏

∗ = 𝟐𝟎. 𝟓𝟏 and 

𝐆𝟐
∗ = 𝟑𝟓. 𝟎𝟓. The above illustrations clearly establish the fact that, 𝐲 𝐏𝐞

(𝐤)
(with an optimum or near optimum 

value of k ) is more efficient  than  both  𝐲 and𝐲 𝐏𝐞 . 
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