An Efficient Predictive Approach to Estimation in Two-phase Sampling

K. B. Panda

Reader, Department of Statistics, Utkal University, Bhubaneswar, Odisha, India

Abstract: Agrawal and Jain [1] employed a predictive framework to examine the predictive character of ratio, ratio-type and regression estimators in two-phase sampling. In this paper, an efficient predictive estimator, which is the fountainhead of a family of widely used estimators in two-phase sampling, is proposed. The newly proposed estimator has been shown to excel its competing estimators provided a weighting factor is appropriately chosen. In the absence of knowledge of the optimum weighting factor, performance-sensitivity of the proposed estimator has been carried out.

Keywords: Efficient predictive estimator in two-phase sampling; performance-sensitivity; ratio, ratio-type and regression estimators in two-phase sampling;

I. Introduction

In the ratio method of estimation,we,with a view to obtaining more efficient estimators of the population mean of the survey variable y, a known and closely related auxiliary variable x. However, when the population mean of x is not available, we invoke the technique knownas two-phase sampling or double sampling. This technique essentially consists in selecting a large sample in the first phase for collecting information on x, followed by a selection of a subsample from the first-phase sample in the second phase for measuring y.

Consider a population of N units arbitrarily labelled 1,2,....,N having mean and mean square denoted by (\bar{Y}, S_y^2) for the y-variable and (\bar{X}, S_x^2) for the x-variable, the respective measurements on the y and the x variables for the jth unit being denoted by y_j and x_j , j=1,2,...,N.Let n' and n be the sample sizes in the first and the second phases, respectively, drawn according to the method of simple random sampling without replacement. Further, let \bar{x}' and \bar{x} be the means of auxiliary variable x based on n' and n units, respectively, and \bar{y} be the mean of the survey variable y based on n units. Then, the usual ratio-type estimator in two-phase sampling is given by

$$\overline{y}_{rd} = \frac{\overline{y}}{\overline{x}} \overline{x}'. \tag{1.1}$$

Agrawal and Jain [2] have shown that \bar{y}_{rd} is predictive in character.

For this purpose, they have split the population total Y in the following form:

 $\mathbf{Y} = \sum_{\mathbf{j} \in s_2} \mathbf{y}_{\mathbf{j}} + \sum_{\mathbf{j} \in s_1 \bar{s}_2} \mathbf{y}_{\mathbf{j}} + \sum_{\mathbf{j} \in \bar{s}_1} \mathbf{y}_{\mathbf{j}}, \qquad (1.2)$

where s_1 and s_2 denote the first phase and the second phase samples,

respectively, \bar{s}_1 and \bar{s}_2 being their respective compliments. The first component of right side (1.2) being exactly known, each y_j in the segments $s_1 \bar{s}_2$ and \bar{s}_1 , in keeping with the sampling situation at hand, is predicted by means of $(\bar{y}/\bar{x})x_j$ and $(\bar{y}/\bar{x})\bar{x}'$, respectively. Although, this approach adopted by Agrawal and Jain is quite justifiable and intuitively appealing, there is need to generalize the same as regards the prediction of each y_j in $s_1 \bar{s}_2$ and \bar{s}_1 . In a practical situation, it would be ideal to utilize, for prediction purposes, the available information on the main and the auxiliary variables to form suitably weighted predictors for the x-observed segment $s_1 \bar{s}_2$ and the completely non-surveyed (unobserved) segment \bar{s}_1 . It is in the light of this background that we, in the following section, come up with an efficient predictive estimator in two-phase sampling.

II. An Efficient Predictive Estimator in Two-phase Sampling

Since no information on y has been collected in respect of the segments $s_1\bar{s}_2$ and \bar{s}_1 , it is clear from (1.2) that the population total Y can be estimated if each y_j in these segments is appropriately predicted. Since the auxiliary information is fully available in the segment $s_1\bar{s}_2$ as per the procedure of two-phase sampling, an apparently broad-based sensible predictor (employing two potential predictors) of y_j in $s_1\bar{s}_2$ that we propose is

$$\widehat{y}_j = \alpha \frac{\overline{y}}{\overline{x}} x_j + (1 - \alpha) \overline{y}, \qquad j \in s_1 \overline{s}_2(2.1)$$

where α is a weight which might be preassigned or might depend on quantities estimated from the sample. In this context, it would be apt to point out that, while \overline{y} is the mean for the segment s_2 , the quantity $(\overline{y}/\overline{x})x_j$ is the usual

predictor for y_i ($j \in s_1 \bar{s}_2$), see Agrawal and Jain [1]. As regards the non-surveyed segment $\bar{s}_{1,2}$ plausible weighted predictor would then be

$$\widehat{y}_j = \alpha \frac{\overline{y}}{\overline{x}} \overline{x}' + (1-\alpha) \overline{y}, j \in \overline{s}_1(2.2)$$

which represents the weighted mean of the potential predictors $(\bar{y}/\bar{x})\bar{x}$ and \bar{y} for each $y_{i,j} \in \bar{s}_1$

Now, to estimate the population mean \overline{Y} , we follow up the predictive decomposition of Y as given in (1.2) and employing the predictors given in (2.1) and (2.2), the proposed estimator is

 $\overline{y}_{\alpha d} = \alpha \frac{y}{\overline{x}} \overline{x}' + (1 - \alpha) \overline{y}.$ (2.3)

Note that, $\bar{y}_{\alpha d}$ reduces to well-known estimators in two-phase sampling via specific values of α ,e.g.,

(a) \bar{y}_{rd} (the usual ratio estimator in two-phases ampling given by (1.1))

If
$$\alpha = 1$$

 $(b)\overline{y}_{ld}$ (the usual regression estimator in twophase sampling) if $\alpha = b\overline{x}/\overline{y}$, where b is the sample regression coefficient.

It is evident that even the predictors \hat{y}_i given in (2.1) and (2.2) in respect of $s_1 \bar{s}_2$ and \bar{s}_1 , respectively, reduce to the known forms, cf. Agrawal and Jain [1]

We refer to Sukhatme et al. ([4],p.213) for a discussion of the other estimators employed in two-phase sampling, namely, the Hartley-Ross, Tin's and Beale's estimators defined by

$$\overline{y}_{HRd} = \overline{r} \overline{x}' + \frac{n(n-1)}{n'(n-1)} (\overline{y} - \overline{r} \overline{x})$$
(2.4)
$$\overline{y}_{Td} = \overline{y}_{rd} [1 - (\frac{1}{n} - \frac{1}{n'})(\frac{s_{\overline{x}}^2}{\overline{x^2}} - \frac{s_{xy}}{\overline{xy}})] (2.5)$$
and
$$\overline{y}_{Bd} = \overline{y}_{rd} [1 + (\frac{1}{n} - \frac{1}{n'})\frac{s_{xy}}{\overline{xy}}]/[1 + (\frac{1}{n} - \frac{1}{n})\frac{s_{\overline{x}}^2}{\overline{x^2}}], \quad (2.6)$$
where $\overline{r} = \frac{1}{2} \sum_{i=1}^n \frac{y_i}{\overline{y}}, s_{\overline{x}}^2$ and s_{xy} are, respectively, the sample m

d s_{xy} are, respectively, the sample mean square of x and the sample covariance between $n \Delta j = 1 x_j^{-, s_x}$ and x and y. The estimators given in (2.4), (2.5) and (2.6) are obtainable from (2.3) choosing a suitable α in each case.

The results based on predictive approach that is developed here can also apply to one-phase sampling when n'=N in relation to the customary ratio and regression methods of estimation.

III. Performance of the Proposed Estimator vis-à-vis the Competing Estimators in **Two-phase Sampling**

The mean square error, to the first degree of approximation, of the composite estimator $\bar{y}_{\alpha d}$, taking α as a preassigned weight, is obtained as

$$M(\bar{y}_{\alpha d}) = \left(\frac{1}{n} - \frac{1}{N}\right)S_y^2 + \left(\frac{1}{n} - \frac{1}{n'}\right)\left(\alpha^2 R^2 S_x^2 - 2\alpha R\rho S_y S_x\right),(3.1)$$

where ρ is the correlation coefficient between x and y and R

 $= \overline{Y} / \overline{X}$, the other notations having the same meaning as given in section 1.

The mean square errors, to the first degree of approximation, of \bar{y}_{rd} and \bar{y}_{HRd} given in (1.1) and (2.3), respectively, are known to be

 $M(\bar{y}_{rd}) = \left(\frac{1}{n} - \frac{1}{N}\right)S_{y}^{2} + \left(\frac{1}{n} - \frac{1}{n'}\right)\left(R^{2}S_{x}^{2} - 2R\rho S_{y}S_{x}\right) (3.2)$ and $M(\bar{y}_{HRd}) = \left(\frac{1}{n} - \frac{1}{N}\right)S_{y}^{2} + \left(\frac{1}{n} - \frac{1}{n'}\right)\left(\bar{R}^{2}S_{x}^{2} - 2\bar{R}\rho S_{y}S_{x}\right),$ (3.3) where $\bar{R} = \frac{1}{N}\sum_{j=1}^{N}\frac{y_{j}}{x_{j}}$, see Sukhatme et al. ([4],pp.212-213). Using (3.1) and (3.2),a condition for better

performance of \overline{y}_{ad} relative to \overline{y}_{rd} , namely

$$(\alpha^2 - 1)RS_x - 2(\alpha - 1)\rho S_y \le 0$$

leads to

$$\rho \geq \left(\frac{1+\alpha}{2}\right) \frac{C_x}{C_y} \text{if} \alpha \geq 1;$$

otherwise

$$\rho \leq \left(\frac{1+\alpha}{2}\right) \frac{C_x}{C_y} \text{if}\alpha \leq 1;$$

which, in turn, yield the following equivalent conditions on the range of α :

 $1 \le \alpha \le 2\Delta - 1$ if $\Delta \ge 1(3.4)$ otherwise, $2\Delta - 1 \le \alpha \le 1$ if $\Delta \le 1$, (3.5)

forwhich $\bar{y}_{\alpha d}$ is to be preferred to \bar{y}_{rd} where $\Delta = \rho C_v / C_x$ and C_v and C_x are the coefficients of variation of y and x, respectively. It is thus clear from (3.4) and (3.5) that a suitable value of α can invariably be chosen with a view to rendering $\bar{y}_{\alpha d}$ more efficient than \bar{y}_{rd} . Since \bar{y}_{rd} is a widely used estimator, it would be worthwhile to note that the condition $\Delta \ge 1$ always points to the y-variability being higher than the x-variability, while the condition $\Delta \le 1$ would often point to the reverse case. As a matter of fact, we are faced with the condition $\Delta \ge 1$ in a large variety of practical situations.

In this context, it would be apt to consider two well-known ratio- type estimators in two-phase sampling given in (2.3) and (2.4), namely, Tin's and Beale's estimators \bar{y}_{Td} and \bar{y}_{Bd} which have the same approximate mean square error as that of \bar{y}_{rd} given in (3.2), see Sukhatme et al. ([4], p.213) and hence, $\bar{y}_{\alpha d}$ would fare better than \bar{y}_{Td} and \bar{y}_{Bd} under the same conditions as given in (3.4) and (3.5).

Analogously, employing (3.1) and (3.3), the conditions on α for $\bar{y}_{\alpha d}$ to perform better than \bar{y}_{HRd} can be expressed as

 $\varphi \leq \alpha \leq 2\Delta - \varphi$ if $\Delta \geq \varphi$ (3.6) or $2\Delta - \varphi \leq \alpha \leq \varphi$ if $\Delta \leq \varphi$, (3.7) where $\varphi = \overline{R}/R$. It may be noted that

$$\varphi \ge 1 \Longrightarrow \overline{R} \ge R \Longrightarrow \rho_{zx} \le 0$$

and $\varphi \leq 1 \Longrightarrow \overline{R} \leq R \Longrightarrow \rho_{zx} \ge 0$,

where ρ_{zx} is the correlation coefficient between z=y/x and x. Thus, a choice, in accordance with (3.6) or (3.7), of a suitable value of α can unexceptionably be made so that $\bar{y}_{\alpha d}$ fares better than \bar{y}_{HRd} .

Now, a comparison of $\bar{y}_{\alpha d}$ with the usual regression estimator \bar{y}_{ld} in two-phase sampling whose mean square error, to the first degree of approximation, is given by

$$M(\bar{y}_{\alpha d}) = (\frac{1}{n} - \frac{1}{N})S_{y}^{2} - (\frac{1}{n} - \frac{1}{n'})\rho^{2}S_{y}^{2}$$

shows that the former will be as efficient as the latter when $\alpha = \Delta$.

In the context of our foregoing appraisal of the proposed estimator $\bar{y}_{\alpha d}$, it is quite natural to examine its performance vis-à-vis the usual sample mean \bar{y} having the variance

$$V(\bar{y}) = \left(\frac{1}{n} - \frac{1}{N}\right)S_y^2.$$

The results obtained in this section are now concisely presented in Table 3.1.

Competing Estimators	Estimator to be used	Choice of α
$\overline{y}_{\alpha d} v s \overline{y}_{r d} $ or $\overline{y}_{T d} $ or $\overline{y}_{B d}$	$\overline{\mathcal{Y}}_{lpha d}$	$1 \le \alpha \le 2\Delta - 1 \text{if } \Delta \ge 1$ $2\Delta - 1 \le \alpha \le 1 \text{if } \Delta \le 1$
$\overline{y}_{\alpha d} v s \overline{y}_{HRd}$	$\overline{\mathcal{Y}}_{lpha d}$	$arphi \leq lpha \leq 2 \Delta - arphi ext{ if } \Delta \geq arphi \ 2 \Delta - arphi \leq lpha \leq lpha ext{ if } \Delta \leq arphi \ arphi$
$\overline{y}_{\alpha d} vs \overline{y}_{ld}$	$\overline{\mathcal{Y}}_{lpha d}$	$\alpha = \Delta$
$\overline{y}_{\alpha d} vs \overline{y}$	$\overline{y}_{\alpha d}$	$lpha \leq \Delta$

Table 3.1 Choice of estimator for various values of α

As evidenced from the above table, a common single value of α that renders $\bar{y}_{\alpha d}$ the best among the competing estimators considered by us is $\Delta (=\rho C_y/C_x)$ which, in fact, yields the minimum value of the mean square error of $\bar{y}_{\alpha d}$ given in (3.1).

As regards the choice of α equal to Δ , it can be said that the population coefficients of variation C_y and C_x and the correlation coefficient ρ may often be more or less known on the basis of past data, experience, a pilot survey or otherwise and hence some prior information on Δ may not be a problem, see Ray and Sahay[3].

To conclude the foregoing discussion, it can be said that the composite estimator $\bar{y}_{\alpha d}$, employing a suitable choice of α , can invariably be invoked with a view to scoring over the well-known estimators in two-phase sampling.

IV. Performance-Sensitivity due to Lack of Optimality of α

We now appraise performance-sensitivity of $\bar{y}_{\alpha d}$ when optimum α , viz., Δ is not available, meaning thereby that we examine the performance of the estimation $\bar{y}_{\alpha d}$ if the optimum α (i.e., Δ) is not employed and instead we use a weight α , which embodies a certain error in Δ , defined as

$$\boldsymbol{\alpha} = (\mathbf{1} + \boldsymbol{\delta})\Delta,$$

where δ symbolises proportional deviation in Δ . As a result of use of α in stead of Δ , there will be proportional increase in mean square error measured by

$$\boldsymbol{P}_{\boldsymbol{I}} = \frac{M(\overline{\boldsymbol{y}}_{\alpha d}) - M(\overline{\boldsymbol{y}}_{\alpha d})_{\alpha = \Delta}}{M(\overline{\boldsymbol{y}}_{\alpha d})_{\alpha = \Delta}},$$

which, for large N, can be worked out as

$$P_{I} = (\frac{1}{n} - \frac{1}{n'})\delta^{2}\rho^{2}/(\frac{1-\rho^{2}}{n} + \frac{\rho^{2}}{n'})$$

and the same can then yield

 $P_I \leq \delta^2 \mathrm{if} \rho^2 < \frac{n'}{2(n'-n)},$

(4.1)

which will always hold if $n' \leq 2n$. From (4.1), it is clear that, if $n' \leq 2n$, the proportional increase in mean square error (P_l) resulting from lack of optimality of α would be less than the square of proportional deviation δ in optimum α . In other words, if δ is of the order of 10% or 20%, then P_t will not exceed 1% or 4% as the case may be.

However, we can obtain P_I as

$$\boldsymbol{P}_{\boldsymbol{I}} = \boldsymbol{\delta}^{2} \left\{ \frac{V(\overline{\boldsymbol{y}}) - \boldsymbol{M}(\, \overline{\boldsymbol{y}}_{\alpha d})_{\alpha = \Delta}}{\boldsymbol{M}(\, \overline{\boldsymbol{y}}_{\alpha d})_{\alpha = \Delta}} \right\},$$

from which it can be interpreted that P_l is δ^2 times the gain in efficiency of $(\bar{y}_{\alpha d})_{\alpha=\Delta}$ relative to \bar{y} .

From the above results, we can conclude that, unless δ is quite large, the inflation in variance of $\bar{y}_{\alpha d}$ resulting from the use of non- optimum α will not be significant. Note that P_I is symmetric with respect to deviations from Δ .

V. **Numerical Illustration**

We now illustrate the performance of the composite estimator $\bar{y}_{\alpha\alpha}$ vis-à-vis some well-known estimators in twophase sampling.

For a certain population, it is a priori known that $\Delta = 0.60$. On the the basis of a sample survey, the following quantities are obtained:

N=117, n = 40, n=17, $\hat{R} = \bar{y}/\bar{x} = 0.99$, $\bar{r} = \frac{1}{n} \sum_{j=1}^{n} y_j/x_j = 1.00$, $s_y^2 = 287.85$, $s_x^2 = 458.56$ and $\hat{\rho} = 0.72$. For the above example, the estimated relative efficiency of each of the estimators \bar{y}_{rd} (or \bar{y}_{Td} or \bar{y}_{Bd}), \bar{y}_{HRd} and $\bar{y}_{\alpha d}$ with respect to \bar{y} is presented in Table 5.1 given below.

Table 5.1 Estimated relative efficiency of the competing estimators w.r.t. \overline{y}

Estimator	Estimated Relative Efficiency w.r.t. \overline{y}
\overline{y}	1.00
\bar{y}_{rd} or \bar{y}_{Td} or \bar{y}_{Bd}	1.19
\overline{y}_{HRd}	1.18
$\bar{y}_{\alpha d}$ (with $\alpha = \Delta = 0.60$)	1.53

The above table demonstrates that, in the context of two-phase sampling, appreciable gain in efficiency can be achieved through the use of $\bar{y}_{\alpha d}$.

In the light of our findings of section 4, we examine the impact of variation in Δ (=0.60) on the relative efficiency of \bar{y}_{ad} . For this purpose, we have prepared the following table:

Table 5.2 Impact of variation in Δ on the relative efficiency of $y_{\alpha d}$		
$\alpha = \hat{\Delta}$	Estimated Loss in	
$($ guessed $\Delta $ $)$	Efficiency of $(\overline{y}_{\alpha d})_{\alpha=\Delta}$	
0.45	0.0331	
0.55	0.0037	
0.65	0.0037	
0.75	0.0031	

Table 5.2 Imment of maniation in A on the valation officiance of a

Table 5.2 makes it abundantly clear that even if Δ is subject to the error to the extent of 25%, the superiority of $(\bar{y}_{\alpha d})_{\alpha = \Lambda}$ remains considerably intact in the sense that the estimated loss in efficiency is around 3% or less.

VI. Conclusion

Besides being predictive in character, the newly proposed estimator in two-phase samplingexcels its competing estimators from the standpoint of efficiency if the weighting factor is optimally determined. In case there is a problem in the determination of optimum weighting factor, one can go ahead with a guessed value since the variation between the true value and the guessed value results in a negligible loss in efficiency.

Acknowledgement

The author is greatly thankful to Dr. M.C.Agrawal, former Professor of Statistics, University of Delhi for his guidance in the preparation of this paper.

References

- [1]. M.C.Agrawal and N.Jain.Predictive estimation in doublesampling procedures.American Statistician.42.1988.184-186.
- M.C.Agrawal and N. Jain. A new predictive product estimator.Biometrika.76. 1989. 822-823. [2].
- S.K. Rayand ASahai. Efficient families of ratio and ratio-type estimators.Biometrika.67. 1980.211-215. [3].
- P. V. Sukhatme, B. V. Sukhatme, S. Sukhatme and C. Asok. Sampling theory of surveys with applications. (ISAS, New Delhi, India [4]. and Iowa State University Press, Iowa, U.S.A. 1980)