# On N-Derivation in Prime near - Rings 

Abdul Rahman H. Majeed, Enaam F.Adhab<br>Department of Mathematics, college of science, University of Baghdad . Baghdad , Iraq .

## Abstract: The main purpose of this paper is to show that zero symmetric prime left near-rings satisfying certain identities are commutative rings .

## I. Introduction

Let N be a zero symmetric left near - ring (i.e., a left near-ring N satisfying the property $0 . \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{N}$ ). we will denote the product of any two elements x and y in N ,i.e.; $\mathrm{x} . \mathrm{y}$ by xy . The symbol Z will denote the multiplicative centre of $N$, that is $Z=\{x \in N \mid x y=y x$ for all $y \in N\}$. For any $x, y \in N$ the symbol $[x, y]=$ $x y-y x$ stands for multiplicative commutator of $x$ and $y$, while the symbol $x \circ y$ will denote $x y+y x . N$ is called a prime near-ring if $\mathrm{xNy}=\{0\}$ implies either $\mathrm{x}=0$ or $\mathrm{y}=0$. A nonempty subset U of N is called semigroup left ideal (resp. semigroup right ideal ) if $\mathrm{NU} \subseteq \mathrm{U}$ (resp. $\mathrm{UN} \subseteq \mathrm{U}$ ) and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. Let I be a nonempty subset of N then a normal subgroup ( $\mathrm{I},+$ ) of $(\mathrm{N},+$ ) is called aright ideal (resp. A left ideal) of $N$ if $(x+i) y-x y \in I$ for all $x, y \in N$ and $i \in$ $I$ (resp. $x i \in I$ for all $i \in I$ and $x \in N$ ). I is called ideal of $N$ if it is both a left ideal as well as a right ideal of $N$ .For terminologies concerning near-rings, we refer to Pilz [8].

An additive endomorphism $d: N \rightarrow N$ is said to be a derivation of $N$ if $d(x y)=x d(y)+d(x) y$, or equivalently, as noted in [5, lemma 4] that $d(x y)=d(x) y+x d(y)$ for all $x, y \square N$.

## A map d: $\underbrace{N \times N \times N}_{\text {n-times }} \rightarrow \mathrm{N}$ is said to be permuting if the equation

 $d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d\left(x_{\pi(1)}, x_{\pi(2)}, . ., x_{\pi(n)}\right)$ holds for all $x_{1}, x_{2}, \ldots, x_{n} \in N$ and for every permutation $\pi \in S_{n}$ where $S_{n}$ is the permutation group on $\{1,2, \ldots, n\}$.Let n be a fixed positive integer . An additive ( i.e. ; additive in each argument ) mapping $\mathrm{d}: \underbrace{\mathrm{N} \times \mathrm{N} \times \ldots \times \mathrm{N}} \rightarrow \mathrm{N}$ is said to be n -derivation if the relations

$$
\begin{array}{r}
\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1} \mathrm{~d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{2}{ }^{\prime}+\mathrm{x}_{2} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\vdots \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{\mathrm{n}}{ }^{\prime}+\mathrm{x}_{\mathrm{n}} \mathrm{~d}^{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)
\end{array}
$$

Hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$. If in addition d is a permuting map then d is called a permuting n -derivation of N .

Many authors studied the relationship between structure of near - ring N and the behaviour of special mapping on N . There are several results in the existing literature which assert that prime near-ring with certain constrained derivations have ring like behaviour . Recently several authors (see [1-6] for reference where further references can be found) have investigated commutativeity of near-rings satisfying certain identities. Motivated by these results now we shall consider n-derivation on a near-ring N and show that prime near-rings satisfying some identities involving n-derivations and semigroup ideals or ideals are commutative rings. In fact, our results generalize some known results viz. Theorems 1,2,3,4,5,6,7 [2] .

## II. Preliminary Results

We begin with the following lemmas which are essential for developing the proofs of our main results. Proof of first lemma can be seen in [5, Lemma 3] while those of next three can be found in [4] and the last four can be found in [5] .

Lemma 2.1. Let $N$ be a prime near-ring and $U$ a nonzero semigroup ideal of $N$. If $x, y \in N$ and $x U y=$ $\{0\}$ then $\mathrm{x}=0$ or $\mathrm{y}=0$.

Lemma 2.2. Let N be a prime near-ring . then d is permuting n -derivation of N if and only if

$$
\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}_{1} \mathrm{~d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{1}^{\prime}
$$

for all $x_{1}, x_{1}, x_{2}, \ldots, x_{n}, \in N$.
Lemma 2.3. Let N be a prime near-ring admitting a nonzero permuting n -derivation d such that $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N})$ $\subseteq \mathrm{Z}$ then N is a commutative ring.

Lemma 2.4. Let N be a near-ring .Let d be a permuting n -derivation of N . Then for every $\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}$ $\in \mathrm{N}$,
(i) $\left(\mathrm{x}_{1} \mathrm{~d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{1}{ }^{\prime}\right) \mathrm{y}=$ $\mathrm{x}_{1} \mathrm{~d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}_{1}{ }^{\prime} \mathrm{y}$,
(ii) $\left(d\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}+x_{1} d\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) y=$ $d\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1} y+x_{1} d\left(x_{1}, x_{2}, \ldots, x_{n}\right) y$.

Remark 2.1. It can be easily shown that above lemmas (2.2-2.4) also hold if $d$ is a nonzero $n$-derivation of near-ring N .

Lemma 2.5. Let $d$ be an $n$-derivation of a near ring $N$. then $d(Z, N, \ldots, N) \subseteq Z$.
Lemma 2.6. Let $N$ be a prime near ring, $d$ a nonzero $n$-derivation of $N$, and $U_{1}, U_{2}, \ldots, U_{n}$ be a nonzero semigroup left ideals of $N$. If $d\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subseteq Z$, then $N$ is a commutative ring .

Lemma 2.7. Let N be a prime near ring, d a nonzero n -derivation of N .and $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}$ be a nonzero semigroup ideals of $N$ such that $d\left([x, y], u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$, then $N$ is a commutative ring .

Lemma 2.8. Let N be a prime near-ring, d a nonzero n -derivation of N and $\mathrm{U} 1, \mathrm{U} 2$, . . ., Un be nonzero semigroup ideals of N .
(i) If $x \in N$ and $D(U 1, U 2, \ldots, U n) x=\{0\}$, then $x=0$.
(ii) If $x \in N$ and $x D(U 1, U 2, \ldots, U n)=\{0\}$, then $x=0$.

## Main Result .

Theorem (2.1) Let $N$ be a prime near ring which admits a nonzero $n$-derivation $d$, if $U_{1}, U_{2}, \ldots, U_{n}$ are semigroup ideals of N ,then the following assertions are equivalent
(i) $d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), y\right]$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$.
(ii) $\left[\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$
(iii) N is a commutative ring .

Proof. It is easy to verify that (iii) $\Rightarrow$ (i) and (iii) $\Rightarrow$ (ii) .
(i) $\Rightarrow$ (iii) Assume that
$\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\left[\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$
If we take $y=x$ in $(1)$ we get $\left[d\left(x, u_{2}, \ldots, u_{n}\right), x\right]=0$, that is
$\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{x}=\mathrm{xd}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ for all $\mathrm{x} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}} \quad$ (2) Replacing y by xy in (1) we get $d\left([x, x y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), x y\right]$, then $d\left(x[x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), x y\right]$, by definition of $d$ we get $d\left(x, u_{2}, \ldots, u_{n}\right)[x, y]+x d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right)\right.$, $\left.x y\right]$, by using (1) again we get $d\left(x, u_{2}, \ldots, u_{n}\right)[x, y]+x\left[d\left(x, u_{2}, \ldots, u_{n}\right), y\right]=\left[d\left(x, u_{2}, \ldots, u_{n}\right), x y\right]$, previous equation can be reduced to $x d\left(x, u_{2}, \ldots, u_{n}\right) y$ $=\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{yx}$, by (2) the previous equation yields $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{xy}=\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{yx}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$
if we replace $y$ by yr , where $\mathrm{r} \square \mathrm{N}$, in (3) and using it again we get $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{y}[\mathrm{x}, \mathrm{r}]=0$, that is $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{U}_{1}[\mathrm{x}, \mathrm{r}]=0$ for all $\mathrm{x} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{r} \square \mathrm{N}$.
By using lemma 2.1 ,we conclude that for each $\mathrm{x} \square \mathrm{U}_{1}$ either $\mathrm{x} \square \mathrm{Z}$ or $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$, but using lemma 2.5 lastly we get $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $\mathrm{x} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$, i.e., $\mathrm{d}\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}\right) \subseteq \mathrm{Z}$. Now by using lemma 2.6 we find that N is commutative ring .
(ii) $\Rightarrow$ (iii) suppose that
$\left[\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.

If we take $y=x$ in (5), we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{x}=\mathrm{xd}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ for all $\mathrm{x} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.
Replacing $x$ by $y x$ in (5) and using it again, we get
$\left[d\left(y x, u_{2}, \ldots, u_{n}\right), y\right]=[y x, y]=y[x, y]=y\left[d\left(x, u_{2}, \ldots, u_{n}\right), y\right]$ for all $x, y \square U_{1}, u{ }_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$, so we have $d\left(y x, u_{2}, \ldots, u_{n}\right) y-y d\left(y x, u_{2}, \ldots, u_{n}\right)=y d\left(x, u_{2}, \ldots, u_{n}\right) y-y^{2} d\left(x, u_{2}, \ldots, u_{n}\right)$.

In view of lemmas 2.2 and 2.4 the last equation can be rewritten as
$y d\left(x, u_{2}, \ldots, u_{n}\right) y+d\left(y, u_{2}, \ldots, u_{n}\right) x y-\left(y d\left(y, u_{2}, \ldots, u_{n}\right) x+y^{2} d\left(x, u_{2}, \ldots, u_{n}\right)\right)=y d\left(x, u_{2}, \ldots, u_{n}\right) y-y^{2} d\left(x, u_{2}, \ldots, u_{n}\right)$, so we have $d\left(y, u_{2}, \ldots, u_{n}\right) x y=y d\left(y, u_{2}, \ldots, u_{n}\right) x$,by using (6) we have
$\mathrm{d}\left(\mathrm{y}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{xy}=\mathrm{d}\left(\mathrm{y}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{yx}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.
Since equation (7) is the same as equation (3), arguing as in the proof of (i) $\Rightarrow$ (iii) we find that N is a commutative ring .

Corollary (2.2) Let N be a prime near ring which admits a nonzero n -derivation d , then the following assertions are equivalent
(i) $\mathrm{d}\left(\left[\mathrm{x}_{1}, \mathrm{y}\right], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left[\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}\right]$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(ii) $\left[\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}\right]=\left[\mathrm{x}_{1}, \mathrm{y}\right]$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(iii) N is a commutative ring .

Corollary (2.3)Let N be a prime near-ring . U is a nonzero semigroup ideal of N . If N admits a nonzero derivation d then the following assertions are equivalent
(i) $\mathrm{d}([\mathrm{x}, \mathrm{y}])=[\mathrm{d}(\mathrm{x}), \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}$.
(ii) $[\mathrm{d}(\mathrm{x}), \mathrm{y}]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}$.
(iii) N is commutative ring .

Corollary (2.4) ([2],theorem(1) )Let N be a prime near-ring. If N admits a nonzero derivation d then the following assertions are equivalent
(i) $\mathrm{d}([\mathrm{x}, \mathrm{y}])=[\mathrm{d}(\mathrm{x}), \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
(ii) $[\mathrm{d}(\mathrm{x}), \mathrm{y}]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
(iii) N is commutative ring

Theorem (2.5) Let N be a 2-torsion free prime near ring, if $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}$ are nonzero ideals of $\mathrm{N}, \mathrm{d}$ is a nonzero n -derivation.Then the following assertions are equivalent
(i) $\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.
(ii) N is a commutative ring .

Proof. It is clear that (ii) $\Rightarrow$ (i).
(i) $\Rightarrow$ (ii) . $\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.
(1) If $Z=\{0\}$ then $d\left([x, y], u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$.

By lemma 2.7 , we conclude that N is a commutative ring .
(2) If $\mathrm{Z} \neq\{0\}$, replacing y by zy in (8) where $\mathrm{z} \square \mathrm{Z}$, we get $\mathrm{d}\left([\mathrm{x}, \mathrm{zy}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{z}[\mathrm{x}, \mathrm{y}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}, z \square Z$. That is mean $d\left(z[x, y], u_{2}, \ldots, u_{n}\right) r=r d\left(z[x, y], u_{2}, \ldots, u_{n}\right)$ for all $x, y \square U_{1}, u_{2} \square$ $\mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{z} \square \mathrm{Z}, \mathrm{r} \square \mathrm{N}$. By using lemma 2.4 we get
$d\left(z, u_{2}, \ldots, u_{n}\right)[x, y] r+z d\left([x, y], u_{2}, \ldots, u_{n}\right) r=r d\left(z, u_{2}, \ldots, u_{n}\right)[x, y]+r z d\left([x, y], u_{2}, \ldots, u_{n}\right)$
Using (8) the previous equation implies
$\left[\mathrm{d}\left(\mathrm{z}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)[\mathrm{x}, \mathrm{y}], \mathrm{r}\right]=0$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{z} \square \mathrm{Z}, \mathrm{r} \square \mathrm{N}$
Accordingly, $0=\left[\mathrm{d}\left(\mathrm{z}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)[\mathrm{x}, \mathrm{y}], \mathrm{r}\right]=\mathrm{d}\left(\mathrm{z}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)[[\mathrm{x}, \mathrm{y}], \mathrm{r}]$ for all $\mathrm{r} \square \mathrm{N}$. Then we get $\operatorname{td}\left(\mathrm{z}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)[[\mathrm{x}, \mathrm{y}], \mathrm{r}]=0$ for all $\mathrm{t} \square \mathrm{N}$, so by lemma 2.5 we get
$\mathrm{d}\left(\mathrm{z}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{N}[[\mathrm{x}, \mathrm{y}], \mathrm{r}]=0$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{z} \square \mathrm{Z}, \mathrm{r} \square \mathrm{N}$.
Primeness of $N$ yields either $d\left(Z, U_{2}, \ldots, U_{n}\right)=0$ or $[[x, y], r]=0$ for all $x, y \square U_{1}, r \square N$.
Assume that $[[\mathrm{x}, \mathrm{y}], \mathrm{r}]=0$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{r} \square \mathrm{N}$
Replacing y by xy in (10) yields
$[[x, x y], r]=0$ and therefore $[x[x, y], r]=0$, hence $[x, y][x, r]=0$ for all $x, y \square U_{1, r} \square \square N$, so we get $[x$, $y] N[x, r]=0$ for all $x, y \square U_{1}, r \square N$.

Primeness of $N$ implies that either $[x, y]=0$ for all $x, y \square U_{1}$, or $x \square Z$ for all $x \square U_{1}$. If $[x, y]=0$ for all $x, y \square U_{1}$ then we get $d\left([x, y], u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$ and by lemma 2.7 we get the required result, now assume that $\mathrm{x} \square \mathrm{Z}$ for all $\mathrm{x} \square \mathrm{U}_{1}$, then by lemma 2.5 we obtain that $\mathrm{d}\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}\right) \subseteq \mathrm{Z}$. Now by using lemma(1.16) we find that N is commutative ring .

On the other hand, if $d\left(Z, U_{2}, \ldots, U_{n}\right)=0$,then $d\left(d\left([x, y], u_{2}, \ldots, u_{n}\right), u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \square U_{1}, u_{2} \square$ $\mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$, replace y by xy in the previous equation we get
$0=\mathrm{d}\left(\mathrm{d}\left([\mathrm{x}, \mathrm{xy}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{d}\left(\mathrm{x}[\mathrm{x}, \mathrm{y}], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)[\mathrm{x}, \mathrm{y}] \quad+\right.$ $\left.x d\left([x, y], u_{2}, \ldots, u_{n}\right), u_{2}, \ldots, u_{n}\right)=d\left(d\left(x, u_{2}, \ldots, u_{n}\right)[x, y], u_{2}, \ldots, u_{n}\right)+d\left(x d\left([x, y], u_{2}, \ldots, u_{n}\right), u_{2}, \ldots, u_{n}\right)=d\left(d\left(x, u_{2}, \ldots, u_{n}\right)\right.$, $\left.u_{2}, \ldots, u_{n}\right)[x, y]+d\left(x, u_{2}, \ldots, u_{n}\right) d\left([x, y], u_{2}, \ldots, u_{n}\right)+$
$\left.d\left(x, u_{2}, \ldots, u_{n}\right) d\left([x, y], u_{2}, \ldots, u_{n}\right)+x d\left(d\left([x, y], u_{2}, \ldots, u_{n}\right), u_{2}, \ldots, u_{n}\right)\right)$, hence we get
$d\left(d\left(x, u_{2}, \ldots, u_{n}\right), u_{2}, \ldots, u_{n}\right)[x, y]+2 d\left(x, u_{2}, \ldots, u_{n}\right) d\left([x, y], u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n} .(12)$
Replace x by $\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right]$ in (12), where $\mathrm{x}_{1}, \mathrm{y}_{1} \square \mathrm{U}_{1}$, we get $2 \mathrm{~d}\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{d}\left(\left[\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{y}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$, but N is 2-torsion free so we obtain $\mathrm{d}\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{d}\left(\left[\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{y}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$.

From(8) we get
$\mathrm{d}\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{Nd}\left(\left[\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{y}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$, primeness of N yields
either $\mathrm{d}\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{y}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$ and by lemma 2.7 we conclude that N is commutative ring.
or $\mathrm{d}\left(\left[\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right], \mathrm{y}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{y} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$, hence $0=\mathrm{d}\left(\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right] \mathrm{y}-\mathrm{y}\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right]\right), \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=$ $d\left(\left[x_{1}, y_{1}\right] y, u_{2}, \ldots, u_{n}\right)-d\left(y\left[x_{1}, y_{1}\right], u_{2}, \ldots, u_{n}\right)=\left[x_{1}, y_{1}\right] d\left(y, u_{2}, \ldots, u_{n}\right)+d\left(\left[x_{1}, y_{1}\right], u_{2}, \ldots, u_{n}\right) y-\left(y d\left(\left[x_{1}, y_{1}\right], u_{2}, \ldots, u_{n}\right)+d(y\right.$, $\left.\left.u_{2}, \ldots, u_{n}\right)\left[x_{1}, y_{1}\right]\right)$, using(8) in the last equation yields
$\left.\left[x_{1}, y_{1}\right] d\left(y, u_{2}, \ldots, u_{n}\right)\right)=d\left(y, u_{2}, \ldots, u_{n}\right)\left[x_{1}, y_{1}\right]$ for all $x_{1}, y_{1}, y \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}$. (13)
Let $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{t} \square \mathrm{U}_{1}$, then $\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right] \square \mathrm{U}_{1}$, hence we can taking $\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]$ instead of y in (13) to get $\left.\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right] \mathrm{d}\left(\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\right)=\mathrm{d}\left(\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right]$, hence $\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right] \mathrm{d}\left(\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{t}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ [ $\mathrm{x}_{2}, \mathrm{y}_{2}$ ], therefore
$\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]\left(\mathrm{d}\left(\mathrm{t}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]+\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right] \operatorname{td}\left(\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{t}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]^{2}+\operatorname{td}\left(\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]\right.$, using (12) and(8) implies
$d\left(\left[x_{2}, y_{2}\right], u_{2}, \ldots, u_{n}\right)\left[x_{2}, y_{2}\right] t=d\left(\left[x_{2}, y_{2}\right], u_{2}, \ldots, u_{n}\right) t\left[x_{2}, y_{2}\right]$, so we have
$d\left(\left[x_{2}, y_{2}\right], u_{2}, \ldots, u_{n}\right)\left[\left[x_{2}, y_{2}\right], t\right]=0$. i.e ; $d\left(\left[x_{2}, y_{2}\right], u_{2}, \ldots, u_{n}\right) N\left[\left[x_{2}, y_{2}\right], t\right]=\{0\}$ for all $t \square U$.
Primeness of N yields that
$\mathrm{d}\left(\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ or $\left[\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{t}\right]=0$ for all $\mathrm{t} \square \mathrm{U}_{1}$, if $\mathrm{d}\left(\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ then by lemma 2.7 we conclude that N is commutative ring .

Now, when $\left[\left[x_{2}, y_{2}\right], t\right]=0$ for all $t \square U_{1}$, Replacing $y_{2}$ by $x_{2} y_{2}$ in previous equation yields
$\left[\left[\mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{y}_{2}\right], \mathrm{t}\right]=0$ and therefore $\left[\mathrm{x}_{2}\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{t}\right]=0$, hence $\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]\left[\mathrm{x}_{2}, \mathrm{t}\right]=0$ for all $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{t} \square \mathrm{U}_{1}$, so we get $\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right] \mathrm{U}_{1}\left[\mathrm{x}_{2}, \mathrm{t}\right]=0$,by lemma 2.1 we get $\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right]=0$ for all $\mathrm{x}_{2}, \mathrm{y}_{2} \square \mathrm{U}_{1}$ so we have $\mathrm{d}\left(\left[\mathrm{x}_{2}, \mathrm{y}_{2}\right], \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=0$ then by lemma 2.7 we find that N is commutative ring .

Corollary(2.6) Let N be a 2-torsion free prime near ring, if d is a nonzero n -derivation of N . Then the following assertions are equivalent
(i) $d\left(\left[x_{1}, y\right], x_{2}, \ldots, x_{n}\right) \square Z$ for all $x_{1}, x_{2}, \ldots, x_{n}, y \square N$.
(ii) N is a commutative ring

Corollary(2.7) Let N be a 2-torsion free prime near ring, U is a nonzero ideal of N . If d is a nonzero derivation of N . Then the following assertions are equivalent
(i) $\mathrm{d}([\mathrm{x}, \mathrm{y}]) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}$.
(ii) N is a commutative ring .

Corollary(2.8)([2],Theorem 2) Let N be a 2-torsion free prime near ring, if d is a nonzero derivation of N .Then the following assertions are equivalent
(i) $\mathrm{d}([\mathrm{x}, \mathrm{y}]) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Theorem(2.9) Let $N$ be a prime near ring, if $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of $N$, $d$ is a nonzero $n$ derivation.Then the following assertions are equivalent
(i) $\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right] \square \mathrm{Z}$ for all $\mathrm{u}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Proof. It is clear that (ii) $\Rightarrow$ (i).
(i) $\Rightarrow$ (ii) . $\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right] \square \mathrm{Z}$ for all $\mathrm{u}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$

Replacing y by $d\left(u_{1}, u_{2}, \ldots, u_{n}\right) y$ in (14), we get $\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), d\left(u_{1}, u_{2}, \ldots, u_{n}\right) y\right] \square Z$,
that is $\left[\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \mathrm{y}\right], \mathrm{t}\right]=0$ for all $\mathrm{u}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}$ and $\mathrm{y}, \mathrm{t} \square \mathrm{N}$.
Then we get $\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right], \mathrm{t}\right]=0$, hence
$d\left(u_{1}, u_{2}, \ldots, u_{n}\right)\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), y\right] t=\operatorname{td}\left(u_{1}, u_{2}, \ldots, u_{n}\right)\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), y\right]$,by using (14) we get $\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), y\right]\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), t\right]=0$

$$
\begin{equation*}
\text { for all } \mathrm{u}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}} \text { and } \mathrm{y}, \mathrm{t} \square \mathrm{~N} \tag{15}
\end{equation*}
$$

In view of (14), equation (15) assures that
$\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right] \mathrm{N}\left[\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right), \mathrm{y}\right]=0$

$$
\begin{equation*}
\text { for all } \mathrm{u}_{1} \square \mathrm{U}_{1}, \mathrm{u}_{2} \square \mathrm{U}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} \square \mathrm{U}_{\mathrm{n}}, \mathrm{y} \square \mathrm{~N} \tag{16}
\end{equation*}
$$

Primeness of $N$ shows that $\left[d\left(u_{1}, u_{2}, \ldots, u_{n}\right), y\right]=0$ for all $u_{1} \square U_{1}, u_{2} \square U_{2}, \ldots, u_{n} \square U_{n}, y \square N$, Hence $d\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subseteq Z$. Then by lemma 2.6 we conclude that $N$ is a commutative ring .

Corollary(2.10) Let N be a prime near-ring, if d is a nonzero n -derivation of N . Then the following assertions are equivalent
(i) $\left[\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}\right] \square \mathrm{Z}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Corollary(2.11) Let $N$ be a prime near ring, U is a nonzero semigroup ideal of N. If d is a nonzero derivation of N . Then the following assertions are equivalent
(i) $[\mathrm{d}(\mathrm{x}), \mathrm{y}] \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{U}$.
(ii) N is a commutative ring .

Corollary(2.12) ([2]Theorem 3) Let N be a prime near ring, if d is a nonzero derivation of N . Then the following assertions are equivalent
(i) $[\mathrm{d}(\mathrm{x}), \mathrm{y}] \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Theorem(2.13) Let N be a 2-torsion free prime near ring, then there exists no nonzero n -derivation d of N such that $d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \circ y=x_{1} \circ y$ for all $x_{1}, x_{2}, \ldots, x_{n}, y \square N$.

## Proof.

$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \circ \mathrm{y}=\mathrm{x}_{1} \circ \mathrm{y}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
replacing $x_{1}$ by $\mathrm{yx}_{1}$ in(17), we get $d\left(\mathrm{yx}_{1}, \mathrm{x}_{2}, \ldots, x_{n}\right) \circ y=\left(\mathrm{yx}_{1}\right) \circ y=\mathrm{y}\left(\mathrm{x}_{1} \circ \mathrm{y}\right)=\mathrm{y}\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, x_{n}\right) \circ \mathrm{y}\right)$
since $d\left(\mathrm{yx}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \circ \mathrm{y}=\mathrm{d}\left(\mathrm{yx}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{yd}\left(\mathrm{yx}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, by using lemma (1.13), we obtain $y d\left(x_{1}, x_{2}, \ldots, x_{n}\right) y+d\left(y, x_{2}, \ldots, x_{n}\right) x_{1} y+y d\left(y, x_{2}, \ldots, x_{n}\right) x_{1}+y^{2} d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=y d\left(x_{1}, x_{2}, \ldots, x_{n}\right) y+y^{2} d\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, hence we get
$d\left(y, x_{2}, \ldots, x_{n}\right) x_{1} y+y d\left(y, x_{2}, \ldots, x_{n}\right) x_{1}=0$ for all $x_{1}, x_{2}, \ldots, x_{n}, y \square N$.
Replacing $\mathrm{x}_{1}$ by $\mathrm{zx}_{1}$ in (18), where $\mathrm{z} \square \mathrm{N}$, we get
$d\left(y, x_{2}, \ldots, x_{n}\right) \mathrm{zx}_{1} y+y d\left(y, x_{2}, \ldots, x_{n}\right) \mathrm{zx}_{1}=0$, for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}, \mathrm{z} \square \mathrm{N}$ that is
$d\left(y, x_{2}, \ldots, x_{n}\right) \mathrm{zx}_{1} y=-y d\left(y, x_{2}, \ldots, x_{n}\right) \mathrm{zx}_{1}=\left(-y d\left(y, x_{2}, \ldots, x_{n}\right) z\right) x_{1}=d\left(y, x_{2}, \ldots, x_{n}\right) z x_{1}$, therefore $d\left(y, x_{2}, \ldots, x_{n}\right) z x_{1} y-$ $\mathrm{d}\left(\mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{zy} \mathrm{x}_{1}=0$, hence $\mathrm{d}\left(\mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{z}\left(\mathrm{x}_{1} \mathrm{y}-\mathrm{y} \mathrm{x}_{1}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}{ }_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}, \mathrm{z} \square \mathrm{N}$, so we obtain $\mathrm{d}\left(\mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{N}\left(\mathrm{x}_{1} \mathrm{y}-\mathrm{y} \mathrm{x}_{1}\right)=0$, primeness of N yields that $\mathrm{d}(\mathrm{N}, \mathrm{N}, . . \mathrm{N})=0$ or $\mathrm{y} \square \mathrm{Z}$, since d is a nonzero $\mathrm{n}-$ derivation of $N$ we conclude $y \square Z$ for all $y \square N$,since $N$ is 2-torsion free therefore (17) implies that $y d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=y x_{1}$ for all $x_{1}, x_{2}, \ldots, x_{n}, y, \square N$, which implies that $y d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=y x x_{1}$ for all $x_{1}, x_{2}, \ldots, x_{n}, x, y \square$ N.
hence $\operatorname{yd}\left(x, x_{2}, \ldots, x_{n}\right) x_{1}+\operatorname{yxd}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=y x x_{1}$,hence $\operatorname{yxd}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n}, x, y \square N$. i.e.; $y N d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.By primeness of $N$ and $d \neq 0$, we conclude that $y=0$ for all $\mathrm{y} \square \mathrm{N}$; a contradiction .

Theorem (2.14) Let N be a 2-torsion free prime near ring which admits a nonzero n -derivation , then the following assertions are equivalent
(i) $d\left(x \circ y, x_{2}, \ldots, x_{n}\right) \in Z$ for all $x, y, x_{2}, \ldots, x_{n} \square N$.
(ii) N is a commutative ring .

Proof. It is easy to verify that (ii) $\Rightarrow$ (i) .
(i) $\Rightarrow$ (ii). Assume that $\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$
(1) If $\mathrm{Z}=\{0\}$ then $\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$.

Replacing y by xy in (19) we obtain $0=d\left(x \circ x y, x_{2}, \ldots, x_{n}\right)=d\left(x(x \circ y), x_{2}, \ldots, x_{n}\right)=\quad x d\left(x \circ y, x_{2}, \ldots, x_{n}\right)+$ $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)(\mathrm{x} \circ \mathrm{y})$, we get $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)(\mathrm{x} \circ \mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$, thus $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{yx}=-\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{xy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$.

Replacing y by zy in (20) and using (20) again, we get
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{zyx}=-\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{xzy}=\left(-\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{xz}\right) \mathrm{y}=\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{zxy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$.
That is $d\left(x, x_{2}, \ldots, x_{n}\right) z[x, y]=0$ for all $x, y, x_{2}, \ldots, x_{n}, z \square N$.i.e.; $d\left(x, x_{2}, \ldots, x_{n}\right) N[x, y]=0$, primeness of $N$ yields
either $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ or $[\mathrm{x}, \mathrm{y}]=0$, it follows that either $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ or $\mathrm{x} \square \mathrm{Z}$ for all $\mathrm{x} \square \mathrm{N}$, but $\mathrm{x} \square \mathrm{Z}$ also implies $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \square \mathrm{Z}$, hence $\mathrm{d}(\mathrm{N}, \mathrm{N}, . ., \mathrm{N}) \subseteq \mathrm{Z}$ and using lemma 2.3 we conclude that N is a commutative ring .
(2) ) If $Z \neq\{0\}$. Replacing $y$ by $z y$ in (18) where $z \square Z$, we get $d\left((x \circ z y), x_{2}, \ldots, x_{n}\right) \square Z$, that is $\mathrm{d}\left(\mathrm{z}(\mathrm{x} \circ \mathrm{y}), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}, \mathrm{z} \square \mathrm{Z}$, that is mean $\mathrm{d}\left(\mathrm{z}(\mathrm{x} \circ \mathrm{y}), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{r}=\operatorname{rd}\left(\mathrm{z}(\mathrm{x} \circ \mathrm{y}), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ for all $r \square N$. then we have $d\left(z, x_{2}, \ldots, x_{n}\right)(x \circ y) r+z d\left((x \circ y), x_{2}, \ldots, x_{n}\right) r=r d\left(z, x_{2}, \ldots, x_{n}\right)(x \circ y)+\operatorname{rzd}\left((x \circ y), x_{2}, \ldots, x_{n}\right)$, by (18) we get
$\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)(\mathrm{x} \circ \mathrm{y}) \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}, \mathrm{z} \square \mathrm{Z}$.
By lemma 2.5 we have $d\left(z, x_{2}, \ldots, x_{n}\right) \square Z$ so (21) yields that $0=\left[d\left(z, x_{2}, \ldots, x_{n}\right)(x \circ y), t\right]=d\left(z, x_{2}, \ldots, x_{n}\right)[(x \circ y), t]$, hence $\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{N}[(\mathrm{x} \circ \mathrm{y}), \mathrm{t}]=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{t} \square \mathrm{N}, \mathrm{z} \square \mathrm{Z}$. By primeness of N , the last equation forces either $\mathrm{d}(\mathrm{Z}, \mathrm{N}, \ldots, \mathrm{N})=\{0\}$ or $\mathrm{x} \circ \mathrm{y} \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
Suppose that $d(Z, N, \ldots, N)=\{0\}$, if $0 \neq y \square Z$, then $d\left(x \circ y, x_{2}, \ldots, x_{n}\right)=d\left(x y+y x, x_{2}, \ldots, x_{n}\right)=d\left(x y, x_{2}, \ldots, x_{n}\right)+d(y x$, $\left.x_{2}, \ldots, x_{n}\right)=d\left(x, x_{2}, \ldots, x_{n}\right) y+x d\left(y, x_{2}, \ldots, x_{n}\right)+y d\left(x, x_{2}, \ldots, x_{n}\right)+d\left(y, x_{2}, \ldots, x_{n}\right) x=d\left(x, x_{2}, \ldots, x_{n}\right) y+d\left(x, x_{2}, \ldots, x_{n}\right) y$, since $\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \square \mathrm{Z}$, hence $0=\mathrm{d}\left(\mathrm{d}\left(\mathrm{x} \circ \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ $=\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right.$, using the definition of d implies that
$d\left(\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right) y+d\left(x, x_{2}, \ldots, x_{n}\right) d\left(\left(y, x_{2}, \ldots, x_{n}\right)+d\left(\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right) y+d\left(x, x_{2}, \ldots, x_{n}\right) d((y\right.\right.\right.$, $\left.\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$,hence
$\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}=0\right.\right.$, since $\mathrm{y} \square \mathrm{Z}$, then we get
$y\left(d\left(\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)+d\left(\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)\right)=0\right.\right.$, hence we get
y $N 2 d\left(\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)\right.$, since $N$ is 2 -torsion free prime and $y \neq 0$ then we get
$\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0\right.$ for all $\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$,
$0=\mathrm{d}\left(\left(\mathrm{d}\left(\mathrm{x}^{2}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{xd}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right.\right.$
$=d\left(x, x_{2}, \ldots, x_{n}\right) d\left(x, x_{2}, \ldots, x_{n}\right)+x d\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)+d\left(x, x_{2}, \ldots, x_{n}\right) d\left(x, x_{2}, \ldots, x_{n}\right)+d\left(d\left(x, x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right) x=2$ $d\left(x, x_{2}, \ldots, x_{n}\right) d\left(x, x_{2}, \ldots, x_{n}\right)$, but $N$ is 2- torsion free, so we get $d\left(x, x_{2}, \ldots, x_{n}\right) d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x, x_{2}, \ldots, x_{n} \square N$ , hence get $d\left(x, x_{2}, \ldots, x_{n}\right) d(N, N, \ldots, N)=0 \quad$ by lemma 2.8 we get $d\left(x, x_{2}, \ldots, x_{n}\right)=0$, but $x, x_{2}, \ldots, x_{n}$ are arbitrary element of N , thus we conclude that $\mathrm{d}=0$. This leads to a contradiction. Accordingly we have $\mathrm{x} \circ \mathrm{y} \square \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.

If $0 \neq y \square Z$, we have $x \circ y \square Z$, that is $x \circ y=y(x+x) \square Z$, it follows that $y(x+x) r=r y(x+x)$ for all $r \square N$ and. it follows that $y[x+x, r]=0$, so we get $y N[x+x, r]=0$, since $N$ is prime and $y \neq 0$ then we conclude that $x+x \square Z$ for all $x \square N$, since $x \circ y \square Z$ then $x^{\circ} x \square Z$, hence $x^{2}+x^{2} \square Z$ for all $x \square N$.
Thus $\quad(x+x) t x=t x(x+x)=t\left(x^{2}+x^{2}\right)=\left(x^{2}+x^{2}\right) t=x(x+x) t=(x+x) x$ for all $x, t \square N$ and therefore $(x+x) N[x, t]=0$ for all $x, t \square N$, primeness of $N$ yields $x \square Z$ or $2 x=0$, since $N$ is 2-torsion free consequently, in both case we arrive at $\mathrm{x} \square \mathrm{Z}$ for all $\mathrm{x} \square \mathrm{N}$. Hence $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$ and lemma 2.3 assures that N is a commutative ring .

Corollary (2.15)([2] Theorem 5 ) Let N be a 2-torsion free prime near ring which admits a nonzero derivation d , then the following assertions are equivalent
(i) $\mathrm{d}(\mathrm{x} \circ \mathrm{y}) \in \mathrm{Z}$ for all $\mathrm{x}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Theorem (2.16) Let N be 2-torsion free a prime near ring which admits a nonzero n -derivation, then the following assertions are equivalent
(i) $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \circ \mathrm{y} \in \mathrm{Z}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(ii) N is a commutative ring .

Proof. It is clear that (ii) $\Rightarrow$ (i) .
(i) $\Rightarrow$ (ii).Assume that $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \circ \mathrm{y} \in \mathrm{Z}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$.
(1) If $Z=\{0\}$, then equation (22) reduced to
$\operatorname{yd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=-\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$
Replacing y by zy in(23) we obtain
$\operatorname{zyd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=-\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{zy}=\left(-\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{z}\right) \mathrm{y}=\mathrm{zd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}, \mathrm{z} \square \mathrm{N}$, hence $\mathrm{z}\left[\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}\right]=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}, \mathrm{z} \square \mathrm{N}$, primeness of N yields [ $\left.\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}\right]=0$, thus we have $\mathrm{d}(\mathrm{N}, \mathrm{N}, . ., \mathrm{N}) \subseteq \mathrm{Z}$ and from lemma 2.3 it follows that N is commutative .
(2) Suppose that $Z \neq\{0\}$, if $0 \neq z \square Z$, since $d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \circ y \in Z$ for all $x_{1}, x_{2}, \ldots, x_{n}, y \square N$ then $d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \circ z$ $\in \mathrm{Z}$, hence we get $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{z}+\mathrm{zd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Z}$, hence $\mathrm{z}\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \in \mathrm{Z}$, by lemma (1.18) we find that
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Z} \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$.
Moreover from (22) it follows that
$\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}+\mathrm{yd}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \in \mathrm{Z} \quad$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y} \square \mathrm{N}$, and by (23) we obtain $\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)+d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) y \in Z$ for all $x_{1}, x_{2}, \ldots, x_{n}, y \square N$ and therefore we have
$\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)+d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) t \quad y=y\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1} \quad, x_{2} \quad, \ldots, \quad x_{n}\right)\right)\right.$ $\left.+d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) t=\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)+d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) y t \quad$ for all $x_{1}$ $, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}, \mathrm{t} \square \mathrm{N}$. So that
$\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)+d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right) N[t, y]=\{0\}$ for all $x_{1}, x_{2}, \ldots, x_{n}, y, t \square N$.
In view of the primeness of $N$, the previous equation yields
either $\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)+\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)=0$ and thus $\mathrm{d}=0$, a contradiction ,or $\mathrm{N} \subseteq \mathrm{Z}$ in which case $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$, hence by lemma 2.3 we conclude that N is a commutative ring .

Theorem (2.17) Let N be a 2-torsion free prime near-ring . Then there exists no nonzero n - derivation d of N satisfying one of the following conditions
(i) $d\left(x \circ y, x_{2}, \ldots, x_{n}\right)=[x, y]$
(ii) $d\left([x, y], x_{2}, \ldots, x_{n}\right)=x \circ y$

Proof .(i) We have $d\left(x \circ y, x_{2}, \ldots, x_{n}\right)=[x, y]$.
Replacing y by xy in(25) we get $d\left(x \circ x y, x_{2}, \ldots, x_{n}\right)=[x, x y]$,so we have
$d\left(x(x \circ y), x_{2}, \ldots, x_{n}\right)=x[x, y]$, hence by def of d we obtain $d\left(x, x_{2}, \ldots, x_{n}\right)(x \circ y)+x d\left((x \circ y), x_{2}, \ldots, x_{n}\right)=x[x, y]$,
using (25) in previous equation yields $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)(\mathrm{x} \circ \mathrm{y})+\mathrm{x}[\mathrm{x}, \mathrm{y}]=\mathrm{x}[\mathrm{x}, \mathrm{y}]$ and we obtain
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)(\mathrm{x} \circ \mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$.
Replacing y by yz in (26) we get $d\left(x, x_{2}, \ldots, x_{n}\right)(x y z+y z x)=0$, hence $0=d\left(x, x_{2}, \ldots, x_{n}\right) x y z+d\left(x, x_{2}, \ldots, x_{n}\right) y z x=$ $-\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{yxz}+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{yzx}$, so we have
$\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}((-\mathrm{x}) \mathrm{z}+\mathrm{xz})=0$, but N is prime so we obtain for any fixed $\mathrm{x} \square \mathrm{N}$ either $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ or $\mathrm{x} \square \mathrm{Z}$ (27)

But $x \in Z$ also implies that $d\left(x, x_{2}, \ldots, x_{n}\right) \in Z(N)$ and (24)forces $d\left(x, x_{2}, \ldots, x_{n}\right) \in Z$ for all $x \in N$, hence $d(N, N, \ldots, N)$ $\subset \mathrm{Z}$ and using Lemma 2.3 , we conclude that N is a commutative ring. In this case (25) and 2-torsion freeness implies that
$\mathrm{d}\left(\mathrm{xy}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \square \mathrm{N}$
This mean $d\left(x, x_{2}, \ldots, x_{n}\right) y+x d\left(y, x_{2}, \ldots, x_{n}\right)=0$, replacing $x$ by $z x$ in previous theorem yields $d\left(z x, x_{2}, \ldots, x_{n}\right) y+$ $\operatorname{zxd}\left(\mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$,using (28) implies $\quad \mathrm{zxd}\left(\mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \quad, \mathrm{z} \square \mathrm{N}$. that is mean $x N d\left(y, x_{2}, \ldots, x_{n}\right)=0$ for all $x, y, x_{2}, \ldots, x_{n} \square N$. Since $N$ is prime and $d \neq 0$, we conclude that $x=0$ for all $x \square N$ , a contradiction .
(ii) If N satisfies $\mathrm{d}\left([\mathrm{x}, \mathrm{y}], \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{x} \circ \mathrm{y}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, then again using the same arguments we get the required result .
The following example proves that the hypothesis of primness in various theorems is not superfluous.
$N=\left\{\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z\end{array}\right), x, y, z, 0 \in S\right\}$ is zero symmetric near-ring with regard to matrix addition and matrix multiplication. Define d: $\underbrace{N \times N \times \ldots \times N}_{n-\text { times }} \rightarrow \mathrm{N}$ such that
$\mathrm{d}\left(\left(\begin{array}{ccc}0 & x_{1} & y_{1} \\ 0 & 0 & 0 \\ 0 & 0 & z_{1}\end{array}\right),\left(\begin{array}{ccc}0 & x_{2} & y_{2} \\ 0 & 0 & 0 \\ 0 & 0 & z_{2}\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & x_{n} & y_{n} \\ 0 & 0 & 0 \\ 0 & 0 & z_{n}\end{array}\right)\right)=\left(\begin{array}{ccc}0 & x_{1} x_{2} \ldots x_{n} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
It is easy to verify that d is a nonzero derivation of N satisfying the following conditions for all $\mathrm{A}, \mathrm{B}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \in \mathrm{N}$,
(i) $\mathrm{d}\left([\mathrm{A}, \mathrm{B}], \mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=\left[\mathrm{d}\left(\mathrm{A}, \mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right), \mathrm{B}\right]$
(ii) $\left[\mathrm{d}\left(\mathrm{A}, \mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right), \mathrm{B}\right]=[\mathrm{A}, \mathrm{B}]$
(iii) $\mathrm{d}\left([\mathrm{A}, \mathrm{B}], \mathrm{A}_{2, \ldots, \ldots}, \mathrm{~A}_{\mathrm{n}}\right) \in \mathrm{Z}$
(iv) $\left[\mathrm{d}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right), \mathrm{B}\right] \square \mathrm{Z}$ for all $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B} \square \mathrm{N}$.
(v) $d\left(A_{1}, A_{2}, \ldots, A_{n}\right) \circ B=A_{1} \circ B$
(vi) $\mathrm{d}\left(\mathrm{A} \circ \mathrm{B}, \mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right) \in \mathrm{Z}$
(vii) $d\left(A_{1}, A_{2}, \ldots, A_{n}\right) \circ B \in Z$
$($ viii $) d\left(A \circ B, A_{2}, \ldots, A_{n}\right)=[A, B]$
(iX) $\mathrm{d}\left([\mathrm{A}, \mathrm{B}], \mathrm{A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=\mathrm{A} \circ \mathrm{B}$

However, N is not a commutative ring.

## Reference

[1]. ArgaÇ.N. "On Prime And Semiprime Near-Rings With Derivations. Int .J. \& Math .J.Sci.Vol. 20 , No. 4 (1997)737-740 .
[2]. Ashraf.M., Bouab .A. and Raji .A " On derivations and commutativity in prime near-rings" Science Direct Journal of Taibah University for Science ,V. 8 , (2014) 301-306
[3]. Asraf.M. and Siddeeque.M.A , "On permuting n-derivations in near-rings , Commun. Kor. Math. Soc. 28 (4) (2013)697-707.
[4]. Ashraf.M., Sideeque.M.A and Parveen.N " On semigroup ideals and n-derivations in near-rings " Science Direct Journal of Taibah University for Science, V. 9 (2015) 126-132.
[5]. Bell.H.E. , "On Derivations in Near-Rings II ", vol. 426, Kluwer Aca-demic Publishers, Dordrecht, 1997, pp. 191-197.
[6]. Bell.H.E . and mason. G. "on derivations in near-rings, near-rings and near fields". (G.Betsch , ed.) North - Holland, Amsterdam (1987), 31 - 35 .
[7]. Boua.A. and Oukhtite.L. ," Derivations on prime near-rings", Int. J. Open Problems Comput. Math. 4 (2) (2011) 162-167.
[8]. Pilz . G. "Near-Rings". North Holland Publishing Company Amsterdam .New York , Oxford. (1983) .

