On N-Derivation in Prime near – Rings

Abdul Rahman H. Majeed, Enaam F.Adhab

Department of Mathematics, college of science, University of Baghdad. Baghdad, Iraq.

Abstract: The main purpose of this paper is to show that zero symmetric prime left near-rings satisfying certain *identities are commutative rings*.

I. Introduction

Let N be a zero symmetric left near - ring (i.e., a left near-ring N satisfying the property 0.x=0 for all x∈ N). we will denote the product of any two elements x and y in N ,i.e.; x.y by xy . The symbol Z will denote the multiplicative centre of N, that is $Z=\{x \in N \mid xy = yx \text{ for all } y \in N\}$. For any x, $y \in N$ the symbol [x, y] =xy - yx stands for multiplicative commutator of x and y, while the symbol $x \circ y$ will denote xy+yx. N is called a prime near-ring if $xNy = \{0\}$ implies either x = 0 or y = 0. A nonempty subset U of N is called semigroup left ideal (resp. semigroup right ideal) if $NU \subseteq U$ (resp.UN $\subseteq U$) and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. Let I be a nonempty subset of N then a normal subgroup (I,+) of (N, +) is called aright ideal (resp. A left ideal) of N if $(x+i)y-xy \in I$ for all $x,y \in N$ and $i \in$ I(resp. $xi \in I$ for all $i \in I$ and $x \in N$). I is called ideal of N if it is both a left ideal as well as a right ideal of N .For terminologies concerning near-rings, we refer to Pilz [8].

An additive endomorphism $d: N \rightarrow N$ is said to be a derivation of N if d(xy) = xd(y) + d(x)y, or equivalently, as noted in [5, lemma 4] that d(xy) = d(x)y + xd(y) for all $x, y \square N$.

A map d: $\underbrace{N \times N \times \ldots \times N}_{n-\text{times}} \to N$ is said to be permuting if the equation $d(x_1, x_2, \ldots, x_n) = d(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$ holds for all $x_1, x_2, \ldots, x_n \in N$ and for every permutation $\pi \in S_n$ where

 S_n is the permutation group on $\{1, 2, ..., n\}$.

Let n be a fixed positive integer . An additive (i.e. ; additive in each argument) mapping $d: N \times N \times ... \times N \longrightarrow N$ is said to be n-derivation if the relations

$$d(x_1 \ x_1', x_2, \dots, x_n) = d(x_1, x_2, \dots, x_n) x_1' + x_1 \ d(x_1', x_2, \dots, x_n)$$

 $d(x_1, x_2x_2', ..., x_n) = d(x_1, x_2, ..., x_n)x_2' + x_2 d(x_1, x_2', ..., x_n)$ $d(x_1, x_2, ..., x_n x_n') = d(x_1, x_2, ..., x_n) x_n' + x_n d(x_1, x_2, ..., x_n')$

Hold for all $x_1, x_1', x_2, x_2', \dots, x_n, x_n' \in N$. If in addition d is a permuting map then d is called a permuting n-derivation of N.

Many authors studied the relationship between structure of near - ring N and the behaviour of special mapping on N. There are several results in the existing literature which assert that prime near-ring with certain constrained derivations have ring like behaviour . Recently several authors (see [1-6] for reference where further references can be found) have investigated commutativeity of near-rings satisfying certain identities. Motivated by these results now we shall consider n-derivation on a near-ring N and show that prime near-rings satisfying some identities involving n-derivations and semigroup ideals or ideals are commutative rings. In fact, our results generalize some known results viz. Theorems 1,2,3,4,5,6,7 [2].

II. **Preliminary Results**

We begin with the following lemmas which are essential for developing the proofs of our main results. Proof of first lemma can be seen in [5, Lemma 3] while those of next three can be found in [4] and the last four can be found in [5].

Lemma 2.1. Let N be a prime near-ring and U a nonzero semigroup ideal of N. If $x, y \in N$ and xUy = $\{0\}$ then x = 0 or y = 0.

Lemma 2.2. Let N be a prime near-ring . then d is permuting n-derivation of N if and only if $d(x_1 x_1', x_2, ..., x_n) = x_1 d(x_1', x_2, ..., x_n) + d(x_1, x_2, ..., x_n)x_1$ for all $x_1, x_1', x_2, \dots, x_n, \in N$.

Lemma 2.3. Let N be a prime near-ring admitting a nonzero permuting n-derivation d such that $d(N, N, \ldots, N)$ \subseteq Z then N is a commutative ring.

Lemma 2.4. Let N be a near-ring .Let d be a permuting n-derivation of N. Then for every $x_1, x_1, x_2, \dots, x_n, y_n$ $\in N$.

(i) $(x_1 d(x_1', x_2, ..., x_n) + d(x_1, x_2, ..., x_n)x_1')y =$ $x_1 d(x_1, x_2, ..., x_n)y + d(x_1, x_2, ..., x_n)x_1y$, (ii) $(d(x_1, x_2, ..., x_n)x_1 + x_1 d(x_1, x_2, ..., x_n))y =$ $d(x_1, x_2, ..., x_n)x_1'y + x_1 d(x_1', x_2, ..., x_n)y$.

Remark 2.1. It can be easily shown that above lemmas (2.2 - 2.4) also hold if d is a nonzero n-derivation of near-ring N.

Lemma 2.5. Let d be an n-derivation of a near ring N . then $d(Z,N,...,N) \subseteq Z$.

Lemma 2.6. Let N be a prime near ring, d a nonzero n-derivation of N, and U_1, U_2, \dots, U_n be a nonzero semigroup left ideals of N. If $d(U_1, U_2, ..., U_n) \subseteq Z$, then N is a commutative ring.

Lemma 2.7. Let N be a prime near ring d a nonzero n-derivation of N and $U_1, U_2, ..., U_n$ be a nonzero semigroup ideals of N such that $d([x, y], u_2, ..., u_n) = 0$ for all x, $y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$, then N is a commutative ring.

Lemma 2.8. Let N be a prime near-ring, d a nonzero n-derivation of N and U1, U2, . . ., Un be nonzero semigroup ideals of N. (i) If $x \in N$ and $D(U1, U2, ..., Un)x = \{0\}$, then x = 0. (ii) If $x \in N$ and $xD(U1, U2, ..., Un) = \{0\}$, then x = 0.

Main Result.

Theorem (2.1) Let N be a prime near ring which admits a nonzero n-derivation d, if $U_1, U_2, ..., U_n$ are semigroup ideals of N ,then the following assertions are equivalent

(i) $d([x, y], u_2, ..., u_n) = [d(x, u_2, ..., u_n), y]$ for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$. (ii) $[d(x,u_2,...,u_n),y] = [x, y]$ for all $x,y \square U_1, u_2 \square U_2,...,u_n \square U_n$ (iii) N is a commutative ring.

Proof. It is easy to verify that $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$. (i) \Rightarrow (iii) Assume that $d([x, y], u_2, ..., u_n) = [d(x, u_2, ..., u_n), y]$ for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$ (1)

If we take y = x in (1) we get $[d(x,u_2,...,u_n),x]=0$, that is $d(x,u_2,...,u_n)x = xd(x,u_2,...,u_n) \text{ for all } x \Box U_1,u_2 \Box U_2,...,u_n \Box U_n$ Replacing y by xy in (1) we get (2) $d([x,xy],u_2,...,u_n) = [d(x,u_2,...,u_n),xy]$, then $d(x[x,y],u_2,...,u_n) = [d(x,u_2,...,u_n),xy]$, by definition of d we get $d(x,u_2,...,u_n)[x,y]+xd([x,y],u_2,...,u_n)=[d(x,u_2,...,u_n),$ xy], by using (1)again we get $d(x,u_2,...,u_n)[x,y]+x[d(x,u_2,...,u_n),y]=[d(x,u_2,...,u_n),xy]$, previous equation can be reduced to $xd(x,u_2,...,u_n)y$ $=d(x,u_2,...,u_n)yx$, by (2) the previous equation yields $d(x,u_2,...,u_n)xy = d(x,u_2,...,u_n)yx$ for all $x,y \Box U_1, u_2 \Box U_2,...,u_n \Box U_n$ (3)

if we replace y by yr, where $r \square N$, in (3) and using it again we get $d(x,u_2,...,u_n)y[x,r] = 0$, that is $d(x,u_2,...,u_n)U_1[x,r] = 0 \text{ for all } x \Box U_1,u_2 \Box U_2,...,u_n \Box U_n \text{ , } r \Box N \text{ .}$ By using lemma 2.1 ,we conclude that for each $x \square U_1$ either $x \square Z$ or $d(x,u_2,...,u_n) = 0$, but using lemma 2.5 lastly we get $d(x,u_2,...,u_n) \Box Z$ for all $x \Box U_1, u_2 \Box U_2,...,u_n \Box U_n$, i.e., $d(U_1,U_2,...,U_n) \subseteq Z$. Now by using lemma 2.6 we find that N is commutative ring. (ii) \Rightarrow (iii) suppose that (5)

$$[d(x,u_2,...,u_n),y] = [x, y] \text{ for all } x,y \Box U_1, u_2 \Box U_2,...,u_n \Box U_n.$$

(6)

If we take y = x in (5), we get $d(x,u_2,...,u_n)x = xd(x,u_2,...,u_n)$ for all $x \Box U_1, u_2 \Box U_2,...,u_n \Box U_n$.

Replacing x by yx in (5) and using it again , we get $[d(yx,u_2,...,u_n),y] = [yx, y] = y[x, y] = y[d(x,u_2,...,u_n),y]$ for all $x,y \square U_1$, $u_2 \square U_2,...,u_n \square U_n$, so we have $d(yx,u_2,...,u_n)y-yd(yx,u_2,...,u_n) = yd(x,u_2,...,u_n)y - y^2d(x,u_2,...,u_n)$.

In view of lemmas 2.2 and 2.4 the last equation can be rewritten as $yd(x,u_2,...,u_n)y + d(y,u_2,...,u_n)xy - (yd(y,u_2,...,u_n)x + y^2d(x,u_2,...,u_n)) = yd(x,u_2,...,u_n)y - y^2d(x,u_2,...,u_n)$, so we have $d(y,u_2,...,u_n)xy = yd(y,u_2,...,u_n)x$, by using (6) we have $d(y,u_2,...,u_n)xy = d(y,u_2,...,u_n)yx$ for all $x,y \square U_1, u_2 \square U_2,...,u_n \square U_n$. (7)

Since equation (7) is the same as equation (3), arguing as in the proof of (i) \Rightarrow (iii) we find that N is a commutative ring.

Corollary (2.2) Let N be a prime near ring which admits a nonzero n-derivation d , then the following assertions are equivalent

 $\begin{array}{ll} (i) & d([x_1,y],x_2,...,x_n) = [d(x_1,x_2,...,x_n),y] \text{ for all } x_1,x_2,...,x_n \,,y \ \square \ N \,. \\ (ii) & [d(x_1,x_2,...,x_n),y] = [x_1,y] \text{ for all } x_1,x_2,..., \, x_n \,,y \ \square \ N \,. \\ (iii) & \text{N is a commutative ring }. \end{array}$

Corollary (2.3)Let N be a prime near-ring .U is a nonzero semigroup ideal of N . If N admits a nonzero derivation d then the following assertions are equivalent

(i) d([x, y]) = [d(x),y] for all $x, y \square U$. (ii) [d(x), y] = [x, y] for all $x, y \square U$. (iii) N is commutative ring .

Corollary (2.4) ([2],theorem(1))Let N be a prime near-ring . If N admits a nonzero derivation d then the following assertions are equivalent (i) d([x, y]) = [d(x),y] for all x, y \square N. (ii) [d(x),y] = [x, y] for all x, y \square N . (iii) N is commutative ring .

Theorem (2.5) Let N be a 2-torsion free prime near ring, if $U_1, U_2, ..., U_n$ are nonzero ideals of N, d is a nonzero n-derivation. Then the following assertions are equivalent

 $\begin{array}{l} (i) \ d([x, \, y], u_2, ..., u_n) \ \square \ Z \ \ for \ all \ x, y \square \ U_1 \ , u \ _2 \square \ U_2, ..., u_n \ \square \ U_n \ . \\ (ii) \ N \ is \ a \ commutative \ ring \ . \end{array}$

Proof. It is clear that (ii) \Rightarrow (i). (i) \Rightarrow (ii) . d([x, y],u_2,...,u_n) \Box Z for all x,y \Box U₁,u₂ \Box U₂,...,u_n \Box U_n. (8) (1) If Z= {0} then d([x,y],u_2,...,u_n) = 0 for all x,y \Box U₁,u₂ \Box U₂,...,u_n \Box U_n.

By lemma 2.7, we conclude that N is a commutative ring . (2) If $Z \neq \{0\}$, replacing y by zy in (8) where $z \Box Z$, we get $d([x, zy], u_2, ..., u_n) = d(z[x, y], u_2, ..., u_n) \Box Z$ for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, z \Box Z$. That is mean $d(z[x,y], u_2, ..., u_n)$ r = rd($z[x, y], u_2, ..., u_n$) for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, z \Box Z$, r \Box N . By using lemma 2.4 we get $d(z, u_2, ..., u_n)[x, y]r + zd([x, y], u_2, ..., u_n)r = rd(z, u_2, ..., u_n)[x, y]r + zd([x, y], u_2, ..., u_n)r = rd(z, u_2, ..., u_n)[x, y] + rzd([x, y], u_2, ..., u_n)$ Using (8) the previous equation implies [$d(z, u_2, ..., u_n)[x, y], r] = 0$ for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, z \Box Z, r \Box N$. Accordingly , $0 = [d(z, u_2, ..., u_n)[x, y], r] = d(z, u_2, ..., u_n)[[x, y], r]$ for all r \Box N. Then we get $td(z, u_2, ..., u_n)[[x, y], r] = 0$ for all t \Box N, so by lemma 2.5 we get $d(z, u_2, ..., u_n)N[[x, y], r] = 0$ for all $x, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, z \Box Z, r \Box N$. (9)

Primeness of N yields either $d(Z,U_2,...,U_n)=0$ or [[x, y], r] = 0 for all $x,y \Box U_1, r \Box N$. Assume that [[x, y], r] = 0 for all $x,y \Box U_1, r \Box N$ (10) Replacing y by xy in (10) yields

[[x, xy], r] = 0 and therefore [x[x,y], r] = 0, hence [x,y][x, r] = 0 for all $x,y \Box U_1, r \Box N$, so we get [x, y]N[x, r] = 0 for all $x,y \Box U_1, r \Box N$. (11)

Primeness of N implies that either [x,y] = 0 for all $x,y \Box U_1$, or $x \Box Z$ for all $x \Box U_1$. If [x,y] = 0 for all $x,y \Box U_1$ then we get $d([x, y], u_2, ..., u_n) = 0$ for all $x,y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$ and by lemma 2.7 we get the required result, now assume that $x \Box Z$ for all $x \Box U_1$, then by lemma 2.5 we obtain that $d(U_1, U_2, ..., U_n) \subseteq Z$. Now by using lemma(1.16) we find that N is commutative ring.

On the other hand , if $d(Z,U_2,...,U_n) = 0$, then $d(d([x,y],u_2,...,u_n),u_2,...,u_n) = 0$ for all $x,y \Box U_1, u_2 \Box U_2,...,u_n \Box U_n$, replace y by xy in the previous equation we get

 $d(x,\!u_2,\!...,\!u_n)d([x,y],\!u_2,\!...,\!u_n)\!+\,xd(d([x,y],\!u_2,\!...,\!u_n),\!u_2,\!...,\!u_n))$, hence we get

 $d(d(x,u_2,...,u_n), u_2,...,u_n)[x,y] + 2d(x,u_2,...,u_n)d([x,y], u_2,...,u_n) = 0 \text{ for all } x,y \Box U_1, u_2 \Box U_2,...,u_n \Box U_n. (12)$

Replace x by $[x_1,y_1]$ in (12) ,where $x_1,y_1 \Box U_1$, we get $2d([x_1,y_1],u_2,...,u_n)d([[x_1,y_1],y], u_2,...,u_n) = 0$ for all $x_1,y_1,y \Box U_1,u_2 \Box U_2,...,u_n \Box U_n$, but N is 2-torsion free so we obtain $d([x_1,y_1],u_2,...,u_n)d([[x_1,y_1],y], u_2,...,u_n) = 0$ for all $x_1,y_1,y \Box U_1,u_2 \Box U_2,...,u_n \Box U_n$.

From(8) we get

 $d([x_1,y_1],u_2,...,u_n)Nd([[x_1,y_1],y], u_2,...,u_n) = 0$, primeness of N yields

either $d([x_1,y_1],u_2,...,u_n) = 0$ for all $x_1,y_1 \Box U_1, u_2 \Box U_2,...,u_n \Box U_n$ and by lemma 2.7 we conclude that N is commutative ring.

or $d([[x_1,y_1],y],u_2,...,u_n)=0$ for all $x_1,y_1,y \square U_1,u_2 \square U_2,...,u_n \square U_n$, hence $0 = d(([x_1,y_1]y-y[x_1,y_1]), u_2,...,u_n) = d([x_1,y_1]y,u_2,...,u_n) - d(y[x_1,y_1],u_2,...,u_n)=[x_1,y_1]d(y,u_2,...,u_n) + d([x_1,y_1],u_2,...,u_n)y- (yd([x_1,y_1],u_2,...,u_n) + d(y,u_2,...,u_n)[x_1,y_1])$, using(8) in the last equation yields

 $[x_1, y_1]d(y, u_2, ..., u_n) = d(y, u_2, ..., u_n)[x_1, y_1] \text{ for all } x_1, y_1, y \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n.$ (13)

Let $x_{2},y_{2},t \Box U_{1}$, then $t[x_{2},y_{2}] \Box U_{1}$, hence we can taking $t[x_{2},y_{2}]$ instead of y in (13) to get $[x_{1},y_{1}]d(t[x_{2},y_{2}],u_{2},...,u_{n}) = d(t[x_{2},y_{2}],u_{2},...,u_{n})[x_{1},y_{1}]$, hence $[x_{2},y_{2}]d(t[x_{2},y_{2}],u_{2},...,u_{n}) = d(t[x_{2},y_{2}],u_{2},...,u_{n})[x_{2},y_{2}]$, therefore

 $[x_2,y_2](d(t,u_2,...,u_n)[x_2,y_2] + [x_2,y_2]td([x_2,y_2], u_2,...,u_n) = d(t,u_2,...,u_n)[x_2,y_2]^2 + td([x_2,y_2], u_2,...,u_n) [x_2,y_2], using (12)and(8) implies$

 $\begin{array}{l} d([x_{2},y_{2}],u_{2},...,u_{n}) \ [x_{2},y_{2}]t = d([x_{2},y_{2}],u_{2},...,u_{n})t[x_{2},y_{2}] \ , \ so \ we \ have \\ d([x_{2},y_{2}],u_{2},...,u_{n}) \ [[x_{2},y_{2}],t \]=0 \ . \ i.e \ ; \ d([x_{2},y_{2}],u_{2},...,u_{n})N[[x_{2},y_{2}],t]= \{0\} \ for \ all \ t \Box U. \\ Primeness \ of \ N \ yields \ that \\ d([x_{2},y_{2}],u_{2},...,u_{n})=0 \ or \ [[x_{2},y_{2}],t]=0 \ for \ all \ t \ \Box U_{1} \ , \ if \ d([x_{2},y_{2}],u_{2},...,u_{n})=0 \ then \ by \ lemma \ 2.7 \ we \ conclude \ that \ N \ is \ commutative \ ring \ . \end{array}$

Now, when $[[x_2,y_2],t]=0$ for all $t \Box U_1$, Replacing y_2 by x_2y_2 in previous equation yields $[[x_2, x_2y_2], t] = 0$ and therefore $[x_2[x_2, y_2], t] = 0$, hence $[x_2, y_2][x_2, t] = 0$ for all x_2, y_2 , $t \Box U_1$, so we get $[x_2, y_2] U_1 [x_2, t] = 0$, by lemma 2.1 we get $[x_2, y_2] = 0$ for all $x_2, y_2 \Box U_1$ so we have $d([x_2, y_2], u_2, ..., u_n)=0$ then by lemma 2.7 we find that N is commutative ring.

Corollary(2.6) Let N be a 2-torsion free prime near ring, if d is a nonzero n-derivation of N. Then the following assertions are equivalent (i) $d(|x_1 - x_2|) = 7$ for all $|x_1 - x_2| = 1$.

(i) d([x_1,y],x_2,...,x_n) \Box Z for all x_1,x_2,..., x_n,y \Box N . (ii) N is a commutative ring

Corollary(2.7) Let N be a 2-torsion free prime near ring, U is a nonzero ideal of N. If d is a nonzero derivation of N. Then the following assertions are equivalent (i) $d([x, y]) \square Z$ for all $x, y \square U$. (ii) N is a commutative ring.

Corollary(2.8)([2],Theorem 2) Let N be a 2-torsion free prime near ring, if d is a nonzero derivation of N. Then the following assertions are equivalent (i) $d([x, y]) \square Z$ for all $x, y \square N$. (ii) N is a commutative ring.

Theorem(2.9) Let N be a prime near ring, if $U_1, U_2, ..., U_n$ are nonzero semigroup ideals of N, d is a nonzero n-derivation. Then the following assertions are equivalent

 $\begin{array}{ll} (i) \; [d(u_1,u_2,...,u_n),y] \; \square \; Z \; \; for \; all \; u_1 \square \; U_1 \; , u \; _2 \square \; U_2,...,u_n \; \square \; U_n \; , y \square \; N \; . \\ (ii) \; N \; is \; a \; commutative \; ring \; . \end{array}$

Proof. It is clear that (ii) ⇒ (i). (i) ⇒ (ii) . $[d(u_1, u_2, ..., u_n), y] \Box Z$ for all $u_1 \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, y \Box N$ (14) Replacing y by $d(u_1, u_2, ..., u_n)$ y in (14), we get $[d(u_1, u_2, ..., u_n), d(u_1, u_2, ..., u_n)y] \Box Z$, that is $[[d(u_1, u_2, ..., u_n), d(u_1, u_2, ..., u_n)y], t] = 0$ for all $u_1 \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$ and y, t $\Box N$. Then we get $[d(u_1, u_2, ..., u_n), [d(u_1, u_2, ..., u_n), y], t] = 0$, hence $d(u_1, u_2, ..., u_n) [d(u_1, u_2, ..., u_n), y], t] = 0$, hence $d(u_1, u_2, ..., u_n) [d(u_1, u_2, ..., u_n), y] = 0$ for all $u_1 \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n$ and y, t $\Box N$ (15) In view of (14), equation (15) assures that $[d(u_1, u_2, ..., u_n), y]N[d(u_1, u_2, ..., u_n), y] = 0$ for all $u_1 \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, y \Box N$ (16) Primeness of N shows that $[d(u_1, u_2, ..., u_n), y] = 0$ for all $u_1 \Box U_1, u_2 \Box U_2, ..., u_n \Box U_n, u_n \Box U_n, y \Box N$,

Hence $d(U_1, U_2, ..., U_n) \subseteq Z$. Then by lemma 2.6 we conclude that N is a commutative ring.

Corollary(2.10) Let N be a prime near-ring, if d is a nonzero n-derivation of N. Then the following assertions are equivalent

 $\begin{array}{l} (i) \; [d(x_1,x_2,...,x_n),y] \; \; \Box \; Z \; \; for \; all \; x_1 \; , x \; _2,...,x_n \; , y \; \Box \; N \; . \\ (ii) \; N \; is \; a \; commutative \; ring \; . \end{array}$

Corollary(2.11) Let N be a prime near ring , U is a nonzero semigroup ideal of N . If d is a nonzero derivation of N .Then the following assertions are equivalent (i) $[d(x),y] \square Z$ for all $x,y \square U$. (ii) N is a commutative ring .

Corollary(2.12) ([2]Theorem 3) Let N be a prime near ring , if d is a nonzero derivation of N .Then the following assertions are equivalent (i) $[d(x),y] \square Z$ for all $x,y\square N$. (ii) N is a commutative ring .

Theorem(2.13) Let N be a 2-torsion free prime near ring, then there exists no nonzero n-derivation d of N such that $d(x_1, x_2, ..., x_n) \circ y = x_1 \circ y$ for all $x_1, x_2, ..., x_n, y \square$ N.

Proof.

 $\begin{array}{ll} d(x_1, x_2, ..., x_n) \circ y = x_1 \circ y \text{ for all } x_1, x_2, ..., x_n, y \ \Box N \, \cdot \ (17) \\ \text{replacing } x_1 \ by \ yx_1 \ in(17), \text{we get } d(yx_1, x_2, ..., x_n) \circ y = (yx_1) \circ y = y(x_1 \circ y) = y(d(x_1, x_2, ..., x_n) \circ y) \\ \text{since } d(yx_1, x_2, ..., x_n) \circ y = d(yx_1, x_2, ..., x_n) y + yd(yx_1, x_2, ..., x_n) , \text{ by using lemma } (1.13) , \text{ we obtain} \\ yd(x_1, x_2, ..., x_n) \ y + d(y, x_2, ..., x_n) \ x_1y \ + \ yd(y, x_2, ..., x_n) x_1 + \ y^2 \ d(x_1, x_2, ..., x_n) = \ yd(x_1, x_2, ..., x_n) y \ + \ y^2 d(x_1, x_2, ..., x_n) \\ \text{hence we get} \\ d(y, x_2, ..., x_n) x_1y \ + \ yd(y, x_2, ..., x_n) x_1 = 0 \quad \text{for all } x_1, x_2, ..., x_n, y \ \Box N \, . \end{aligned}$

Replacing x_1 by zx_1 in (18), where $z \square N$, we get

 $d(y, x_2, ..., x_n) \ zx_1y + \ yd(y, x_2, ..., x_n) zx_1 = 0, \ for \ all \ x_1 \ ,x \ _2, ..., x_n \ ,y, \ z \Box \ N \quad that \ is$

 $\begin{array}{l} d(y,x_2,\ldots,x_n)\ zx_1y\ =\ -\ yd(y,x_2,\ldots,x_n)zx_1=(\ -\ yd(y,x_2,\ldots,x_n)z)x_1=\ d(y,x_2,\ldots,x_n)zy\ x_1\ ,\ therefore\ \ d(y,x_2,\ldots,x_n)\ zx_1y\ -\ d(y,x_2,\ldots,x_n)zy\ x_1=0\ ,\ hence\ \ d(y,x_2,\ldots,x_n)\ z(x_1y\ -\ y\ x_1)=0\ \ for\ all\ x_1\ ,x\ 2,\ldots,x_n\ ,y\ ,z\ \ \square\ N\ ,\ so\ we\ obtain\ \ d(y,x_2,\ldots,x_n)\ N(x_1y\ -\ y\ x_1)=0\ ,\ primeness\ of\ N\ yields\ that\ \ d(N,N,\ldots N)=0\ or\ y\ \ Z\ ,\ since\ \ d\ is\ a\ nonzero\ n-derivation\ of\ N\ we\ conclude\ y\ \ Z\ for\ all\ y\ \ N\ ,\ since\ N\ is\ 2-torsion\ free\ therefore\ \ (17)\ implies\ that\ yd(x_1,x_2,\ldots,x_n)=y\ x_1\ for\ all\ x_1\ ,x\ 2,\ldots,x_n\ ,x,y\ \ N\ .\end{array}$

hence $yd(x_1,x_2,...,x_n) = yx x_1$, hence $yxd(x_1,x_2,...,x_n) = 0$ for all $x_1,x_2,...,x_n,x_n,x_n = 0$. $yNd(x_1,x_2,...,x_n) = 0$. By primeness of N and $d \neq 0$, we conclude that y=0 for all $y \square N$; a contradiction.

Theorem (2.14) Let N be a 2-torsion free prime near ring which admits a nonzero n-derivation , then the following assertions are equivalent

(i) $d(x \circ y, x_2, ..., x_n) \in \mathbb{Z}$ for all $x, y, x_2, ..., x_n \square \mathbb{N}$.

(ii) N is a commutative ring.

Proof. It is easy to verify that $(ii) \Rightarrow (i)$. (i) \Rightarrow (ii). Assume that d(x • y, x₂,..., x_n) \Box Z for all x,y,x₂,...,x_n \Box N (19)(1) If $Z = \{0\}$ then $d(x \circ y, x_2, ..., x_n) = 0$ for all $x, y, x_2, ..., x_n \Box N$. Replacing y by xy in (19) we obtain $0 = d(x \circ xy, x_2, ..., x_n) = d(x(x \circ y), x_2, ..., x_n) =$ $xd(x \circ y, x_2, \dots, x_n) +$ $d(x, x_2, ..., x_n)(x \circ y)$, we get $d(x, x_2, ..., x_n)(x \circ y) = 0$ for all $x, y, x_2, ..., x_n \Box N$, thus $d(x, x_2, ..., x_n)yx = -d(x, x_2, ..., x_n)xy$ for all $x, y, x_2, \dots, x_n \Box N$. (20)Replacing y by zy in (20) and using (20) again, we get $d(x,x_2,...,x_n)zyx = -d(x,x_2,...,x_n)xzy = (-d(x,x_2,...,x_n)xz) \ y = d(x,x_2,...,x_n)zxy \quad \text{for all } x \ ,y \ ,x_2,...,x_n \ \Box N \ .$ That is $d(x,x_2,...,x_n)z[x, y] = 0$ for all $x,y,x_2,...,x_n,z \Box N$ i.e.; $d(x,x_2,...,x_n)N[x, y] = 0$, primeness of N yields either $d(x,x_2,...,x_n) = 0$ or [x,y]=0, it follows that either $d(x,x_2,...,x_n) = 0$ or $x \Box Z$ for all $x \Box N$, but $x \Box Z$ also implies $d(x,x_2,...,x_n) \Box Z$, hence $d(N,N,...,N) \subseteq Z$ and using lemma 2.3 we conclude that N is a commutative ring. (2) If $Z \neq \{0\}$. Replacing y by zy in (18) where $z \square Z$, we get $d((x \circ zy), x_2, ..., x_n) \square Z$, that is $d(z(x \circ y), x_2, ..., x_n) \square Z$ for all $x, y, x_2, ..., x_n \square N, z \square Z$, that is mean $d(z(x \circ y), x_2, ..., x_n)r = rd(z(x \circ y), x_2, ..., x_n)$ for all $r \square N$. then we have $d(z, x_2, ..., x_n) (x \circ y)r + zd((x \circ y), x_2, ..., x_n)r = rd(z, x_2, ..., x_n) (x \circ y) + rzd((x \circ y), x_2, ..., x_n)$, by (18) we get $d(z,x_2,...,x_n)$ (xoy) \Box Z for all x,y,x_2,...,x_n \Box N, Z \Box Z. (21)By lemma 2.5 we have $d(z, x_2, ..., x_n) \Box Z$ so (21) yields that $0 = [d(z, x_2, ..., x_n) (x \circ y), t] = d(z, x_2, ..., x_n)[(x \circ y), t]$, hence $d(z,x_2,...,x_n)N[(x \circ y),t] = 0$ for all $x, y, x_2,..., x_n$ t $\Box N, z \Box Z$. By primeness of N , the last equation forces either $d(Z,N,...,N) = \{0\}$ or $x \circ y \Box Z$ for all $x,y \Box N$. Suppose that $d(Z,N,...,N) = \{0\}$, if $0 \neq y \square Z$, then $d(x \circ y, x_2,...,x_n) = d(xy + yx, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) + d(yx, x_2,...,x_n) = d(xy, x_2,...,x_n) = d(xy,$ $x_{2,...,x_{n}}) = d(x, x_{2,...,x_{n}})y + x d(y, x_{2,...,x_{n}}) + yd(x, x_{2,...,x_{n}}) + d(y, x_{2,...,x_{n}})x = d(x, x_{2,...,x_{n}})y + d(x, x_{2,...,x_{n}})y ,$ since $d(x \circ y, x_2, ..., x_n) \square Z$, hence $0 = d(d(x \circ y, x_2, ..., x_n), x_2, ..., x_n) = d((d(x, x_2, ..., x_n)y + d(x, x_2, ..., x_n)y), x_2, ..., x_n)$ $= d((d(x, x_2, ..., x_n)y, x_2, ..., x_n) + d(d(x, x_2, ..., x_n)y, x_2, ..., x_n) \text{ , using the definition of d implies that}$ $d((d(x, x_2,...,x_n), x_2,...,x_n)y + d(x, x_2,...,x_n)d((y, x_2,...,x_n) + d((d(x, x_2,...,x_n), x_2,...,x_n)y + d(x, x_2,...,x_n) d((y, x_2,...,x_n), x_2,...,x_n)y + d(x, x_2,...,x_n)d((y, x_2,...,x_n), x_2,...,x_n)y + d(x, x_2,...,x_n)d((y, x_2,...,x_n), x_2,...,x_n)d((y, x, x_2,...,x_n)d((y, x, x_2,...,x_n))d((y, x, x_2,...,x_n))d((y, x, x_2,...,x_n))d((y, x, x_2,...,x_n)d((y, x, x_2,...,x_n))d((y, x, x_2,...,x_n))d((y, x, x_2,...,x_n)d((y, x, x_n,x_n))d((y, x, x_n,x_n))d((y, x, x_n,x_n))d((y, x, x_$ $x_{2},...,x_{n}$) = 0, hence

 $d((d(x, x_2, ..., x_n), x_2, ..., x_n)y + d((d(x, x_2, ..., x_n), x_2, ..., x_n)y = 0, \text{ since } y \Box Z, \text{ then we get}$ $y(d((d(x, x_2, ..., x_n), x_2, ..., x_n) + d((d(x, x_2, ..., x_n), x_2, ..., x_n)) = 0, \text{ hence we get}$ $y N 2d((d(x, x_2, ..., x_n), x_2, ..., x_n) + d((d(x, x_2, ..., x_n), x_2, ..., x_n)) = 0, \text{ hence we get}$

y N 2d((d(x ,x_2,...,x_n),x_2,...,x_n), since N is 2-torsion free prime and $y \neq 0$ then we get

 $d((d(x, x_2,...,x_n), x_2,...,x_n) = 0 \text{ for all } x, x_2,...,x_n \square N,$

 $0=d((d(x^{2},x_{2},...,x_{n}),x_{2},...,x_{n})=d(xd(x,x_{2},...,x_{n}),x_{2},...,x_{n})+d(d(x,x_{2},...,x_{n})x,x_{2},...,x_{n})$

 $= d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + xd(d(x, x_2, ..., x_n), x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + d(d(x, x_2, ..., x_n), x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2, ..., x_n)d(x, x_2, ..., x_n) + d(x, x_2, ..., x_n)d(x, x_2$

If $0 \neq y \square Z$, we have $x \circ y \square Z$, that is $x \circ y = y(x+x) \square Z$, it follows that y(x+x)r = r y(x+x) for all $r \square N$ and. it follows that y[x+x,r] = 0, so we get yN[x+x,r] = 0, since N is prime and $y \neq 0$ then we conclude that $x+x \square Z$ for all $x \square N$, since $x \circ y \square Z$ then $x \circ x \square Z$, hence $x^2+x^2 \square Z$ for all $x \square N$.

Thus $(x+x)tx = tx(x+x) = t(x^2+x^2) = (x^2+x^2)t = x(x+x)t = (x+x)xt$ for all $x,t \square N$ and therefore (x+x)N[x,t] = 0 for all $x,t \square N$, primeness of N yields $x \square Z$ or 2x = 0, since N is 2-torsion free consequently, in both case we arrive at $x \square Z$ for all $x \square N$. Hence $d(N,N,...,N) \subseteq Z$ and lemma 2.3 assures that N is a commutative ring.

Corollary (2.15)([2] **Theorem 5**) Let N be a 2-torsion free prime near ring which admits a nonzero derivation d, then the following assertions are equivalent

(i) $d(x \circ y) \in Z$ for all $x, y \square N$.

(ii) N is a commutative ring .

Theorem (2.16) Let N be 2-torsion free a prime near ring which admits a nonzero n-derivation , then the following assertions are equivalent

(i) $d(x_1,x_2,...,x_n) \circ y \in Z$ for all $x_1,x_2,...,x_n,y \square N$.

(ii) N is a commutative ring .

Proof. It is clear that (ii) \Rightarrow (i). (i) \Rightarrow (ii).Assume that $d(x_1, x_2, ..., x_n) \circ y \in Z$ for all $x_1, x_2, ..., x_n, y \Box N$. (1) If $Z = \{0\}$, then equation (22) reduced to

(22)

 $yd(x_1, x_2, ..., x_n) = -d(x_1, x_2, ..., x_n)y$ for all $x_1, x_2, ..., x_n, y \Box N$ Replacing y by zy in(23) we obtain

(23)

 $zyd(x_1,x_2,...,x_n) = -d(x_1,x_2,...,x_n)zy = (-d(x_1,x_2,...,x_n)z)y = zd(x_1,x_2,...,x_n)y$ for all $x_1,x_2,...,x_n,y,z \square N$, hence $z[d(x_1,x_2,...,x_n),y] = 0$ for all $x_1,x_2,...,x_n,y,z \square N$, primeness of N yields $[d(x_1,x_2,...,x_n),y] = 0$, thus we have $d(N,N,..,N) \subseteq Z$ and from lemma 2.3 it follows that N is commutative .

(2) Suppose that $Z \neq \{0\}$, if $0 \neq z \square Z$, since $d(x_1, x_2, ..., x_n) \circ y \in Z$ for all $x_1, x_2, ..., x_n, y \square N$ then $d(x_1, x_2, ..., x_n) \circ z$ $\in Z$, hence we get $d(x_1, x_2, ..., x_n)z + zd(x_1, x_2, ..., x_n) \in Z$, hence $z(d(x_1, x_2, ..., x_n) + d(x_1, x_2, ..., x_n)) \in Z$, by lemma (1.18) we find that (24)

 $d(x_1, x_2, ..., x_n) + d(x_1, x_2, ..., x_n) \in Z$ for all $x_1, x_2, ..., x_n \square N$.

Moreover from (22) it follows that

 $d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n))y + yd((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)) \in \mathbb{Z}$ for all $x_1, x_2, ..., x_n$, $y \square N$, and by (23) we obtain $(d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)) + d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n))) \in \mathbb{Z}$ for all $x_1, x_2, ..., x_n, y \square N$ and therefore we have

 $(d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n))+d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n)))t = y(d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n)))$ $+d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n)))t = (d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n))+ d((x_1,x_2,...,x_n)+(x_1,x_2,...,x_n)))yt$ for all x_1 $,x_2,...,x_n,y,t \square N$. So that

 $(d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)) + d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)))N[t, y] = \{0\} \text{ for all } x_1, x_2, ..., x_n, y, t \Box N.$

In view of the primeness of N, the previous equation yields

either $d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)) + d((x_1, x_2, ..., x_n) + (x_1, x_2, ..., x_n)) = 0$ and thus d = 0, a contradiction or $N \subseteq Z$ in which case $d(N,N,...,N) \subseteq Z$, hence by lemma 2.3 we conclude that N is a commutative ring.

Theorem (2.17) Let N be a 2-torsion free prime near-ring .Then there exists no nonzero n- derivation d of N satisfying one of the following conditions

(i) $d(x \circ y, x_2, ..., x_n) = [x, y]$

(ii) $d([x,y],x_2,...,x_n) = x \circ y$

Proof.(i) We have $d(x \circ y, x_2, ..., x_n) = [x, y]$.

Replacing y by xy in(25) we get $d(x \circ xy, x_2, ..., x_n) = [x, xy]$, so we have

 $d(x(x \circ y), x_2, ..., x_n) = x [x, y]$, hence by def of d we obtain $d(x, x_2, ..., x_n) (x \circ y) + xd((x \circ y), x_2, ..., x_n) = x [x, y]$,

using (25) in previous equation yields $d(x,x_2,...,x_n)(x \circ y) + x[x,y] = x[x,y]$ and we obtain $d(\mathbf{x}, \mathbf{x}_2, \dots, \mathbf{x}_n) \ (\mathbf{x} \circ \mathbf{y}) = 0 \text{ for all } \mathbf{x}, \mathbf{y}, \mathbf{x}_2, \dots, \mathbf{x}_n \ \Box \ \mathbf{N} \ .$ (26)

Replacing y by yz in (26) we get $d(x,x_2,...,x_n) (xyz + yzx) = 0$, hence $0 = d(x,x_2,...,x_n) xyz + d(x,x_2,...,x_n) yzx = 0$ $- d(x, x_2, ..., x_n)yxz + d(x, x_2, ..., x_n) yzx$, so we have

 $d(x,x_2,...,x_n)y((-x)z + xz) = 0$, but N is prime so we obtain for any fixed $x \square$ N either $d(x,x_2,...,x_n) = 0$ or $x \square Z$ (27)

But $x \in Z$ also implies that $d(x,x_2,...,x_n) \in Z(N)$ and (24) forces $d(x,x_2,...,x_n) \in Z$ for all $x \in N$, hence d(N,N,...,N) \subset Z and using Lemma 2.3, we conclude that N is a commutative ring. In this case (25) and 2-torsion freeness implies that

 $d(xy,x_2,...,x_n) = 0$ for all $x,y,x_2,...,x_n \Box N$

This mean $d(x,x_2,...,x_n) y + xd(y,x_2,...,x_n) = 0$, replacing x by zx in previous theorem yields $d(zx,x_2,...,x_n) y + xd(y,x_2,...,x_n) = 0$ $zxd(y,x_2,...,x_n) = 0$, using (28) implies $zxd(y,x_2,...,x_n) = 0$ for all $x, y, x_2,...,x_n$, $z \square N$. that is mean $xNd(y,x_2,...,x_n) = 0$ for all $x, y, x_2,...,x_n \square N$. Since N is prime and $d \neq 0$, we conclude that x = 0 for all $x \square N$, a contradiction .

(ii) If N satisfies $d([x,y],x_2,...,x_n) = x \circ y$ for all $x, y, x_2,..., x_n \in \mathbb{N}$, then again using the same arguments we get the required result .

The following example proves that the hypothesis of primness in various theorems is not superfluous.

$$N = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}, x, y, z, 0 \in S \right\}$$
 is zero symmetric near-ring with regard to matrix addition and matrix

multiplication . Define d: $N \times N \times ... \times N \rightarrow N$ such that n-times

$$d\left(\begin{pmatrix} 0 & x_1 & y_1 \\ 0 & 0 & 0 \\ 0 & 0 & z_1 \end{pmatrix}, \begin{pmatrix} 0 & x_2 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & z_2 \end{pmatrix}, \dots, \begin{pmatrix} 0 & x_n & y_n \\ 0 & 0 & 0 \\ 0 & 0 & z_n \end{pmatrix}\right) = \begin{pmatrix} 0 & x_1 x_2 \dots x_n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

It is easy to verify that d is a nonzero derivation of N satisfying the following conditions for all $A,B,A_1,A_2,\ldots,A_n \in \mathbb{N}$,

(i) $d([A,B],A_2,...,A_n) = [d(A,A_2,...,A_n),B]$ (ii) $[d(A,A_2,...,A_n),B]=[A,B]$

(25)

(28)

(iii) $d([A, B], A_{2,\dots}A_n) \in \mathbb{Z}$ (iv) $[d(A_1, A_2, ..., A_n), B] \square Z$ for all $A_1, A_2, ..., A_n, B \square N$. (v) $d(A_1, A_2, \dots, A_n) \circ B = A_1 \circ B$ (vi) $d(A \circ B, A_2, ..., A_n) \in Z$ (vii) $d(A_1, A_2, \dots, A_n) \circ B \in Z$ $(viii)d(A \circ B, A_2, \dots, A_n) = [A, B]$ (iX) $d([A,B],A_2,...,A_n) = A \circ B$ However, N is not a commutative ring.

Reference

- ArgaÇ.N. "On Prime And Semiprime Near-Rings With Derivations. Int .J. & Math .J.Sci.Vol.20 , No. 4 (1997)737-740 . [1].
- Ashraf.M., Bouab .A. and Raji .A " On derivations and commutativity in prime near-rings" Science Direct Journal of Taibah [2]. University for Science ,V.8 ,(2014) 301-306
- [3].
- Asraf.M. and Siddeeque.M.A, "On permuting n-derivations in near-rings, Commun. Kor. Math. Soc. 28 (4) (2013)697–707. Ashraf.M., Sideeque.M.A and Parveen.N " On semigroup ideals and n-derivations in near-rings " Science Direct Journal of [4]. Taibah University for Science, V. 9 (2015) 126-132.
- [5]. Bell.H.E., "On Derivations in Near-Rings II", vol. 426, Kluwer Aca-demic Publishers, Dordrecht, 1997, pp. 191-197.
- Bell.H.E . and mason. G. "on derivations in near-rings, near-rings and near fields". (G.Betsch, ed.) North Holland, Amsterdam [6]. (1987), 31 – 35
- Boua.A. and Oukhtite.L., "Derivations on prime near-rings", Int. J. Open Problems Comput. Math. 4 (2) (2011) 162-167. [7].
- [8]. Pilz. G. "Near-Rings". North Holland Publishing Company Amsterdam .New York, Oxford. (1983).