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Abstract:  A long surface breaking vertical strike slip fault is consider situated in a viscoelastic half space of 

Maxwell type. Tectonic forces due to mantle convection and other associated phenomena are acting on the 

system. The magnitude of the tectonic forces has been assume to be slowly increasing with time. When the 

stresses near the fault exceeds the frictional force across the fault it starts creeping. Expressions for 

displacement, stresses and strain are obtained using suitable numerical techniques involving integral transform, 

Green’s function techniques and Correspondence principle for both before and after the fault movement. It is 

expected that such expression will give us more information on the mechanism of stress accumulation in the 

system during the aseismic period. 
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I. Introduction 
A long strike slip fault is taken to be situated in a viscoelastic half space. Following plate tectonic 

theory it is expected that the tectonic forces generated due to the mantle convection play important roles in 

introducing movement across the faults leading to earthquakes. The nature of the tectonic forces have been 

investigated by many authors such as [1], [2], [3] and [4]. 

From these investigation it may be assumed  that the magnitude of such tectonic forces are likely to be 

slowly increasing with time. In view of this we have developed a model where the tectonic forces are taken to be 

τ∞ t = τ∞ 0  1 + kt ,  where k is a parameter depend on the nature of the mantle convection. 
Stresses are accumulated in the model due to this tectonic forces. When the accumulated stress exceeds 

the frictional and local cohesive forces across the fault, the fault starts moving. Depending upon the geological 

nature of the model material the movement across the fault may be sudden in nature leading to a earthquake or 

alternatively a creeping movement across the fault releasing the accumulated stress near it. 

 

II. Formulation 

We consider a long surface breaking strike-slip fault F situated in a viscoelastic half space of Maxwell 

type of width D. 

We introduce a system of rectangular Cartesian coordinate axes  y1 , y2 , y3  such that the free surface is 

the plane y3 = 0  and the fault is in the plane y2 = 0. 
For long fault the displacement, stresses and strain are in assumed to be independent of y1and 

dependent on y2 , y3 and time t. This separates out the displacements, stresses and strains into two independent 

groups: one group containing u, τ12, τ13 , e12  and e13  associated with strike slip movement. The remaining 

components are associated with a possible dip slip movement of the fault. We consider here the strike slip 

movement across the fault. 

We measure the time t from an instant when the model is in the aseismic state, and there is no 

movement, seismic or aseismic, across any fault. Then for t ≥ 0, the displacement, stresses and strains satisfy 
the following relations: 

 

2.1 Constitutive equations (stress-strain relations) 

For viscoelastic material of the Maxwell type, the displacement component u and the stress components τ12, τ13 

associated with strike slip movements, are connected by the constitutive equations 
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                                                                                                    (1) 

where η is the effective viscosity and μ  is the effective rigidity of the material. 
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2.2 Stress equation of motion 

We consider the aseismic state of model when the medium is in a quasi-static state, and choose our time origin 

t=0 suitably. 
For slow, aseismic, quasi-static displacement we consider, the inertial forces are very small, and can be 

neglected. Hence the stress equation of motion with relevant stress components τ12, τ13 reduces to 

 
∂

∂y2

 τ12 +
∂

∂y3

 τ13 = 0

 −∞ < y2 < ∞,   y3 ≥ 0,   t ≥ 0 

                                                                 (2) 

 

neglecting the inertial term. 

 

2.3 Boundary conditions 
The boundary conditions are 

 
τ13 = 0 on  y3 = 0 ,  −∞ < y2 < ∞,    t ≥ 0 

  
τ13 → 0 as  y3 → ∞ ,  −∞ < y2 < ∞,    t ≥ 0   

                                    (3) 

 

  We assume τ∞ t  , the stress maintained by different tectonic phenomena including mantle convection, a 

slowly linearly increasing function with time, as τ∞ t = τ∞ 0  1 + kt  , where  k > 0, is a small quantity. It is 

the main driving force for any possible strike-slip motion across F. 

 

τ12 → τ∞ t = τ∞ 0  1 + kt ,  k > 0 

as  y2 → ∞, for y3 ≥ 0, t ≥ 0.

τ∞ 0 = The value of τ∞ t  at t = 0.

τ12 0 → τ∞ 0  as  y2 → ∞, for t = 0. 
 

 
                                                 (4) 

 

2.4  Initial conditions 

  Let  u 0 ,  τ12 0 ,  τ13 0   and  e12 0 are the values of u, u, τ12 , τ13 , and e12   respectively at time t=0. They are 

functions of y2 , y3  and satisfy the relations (1) to (4). 

  Now differentiating partially equation (1) with respect to y2  and  with respect to y3 and adding them using 

equation (2) we get, 

∇2u y2 , y3 , t = 0                   (5) 
 

III. Displacements, Stresses And Strains In The Absence Of Any Fault Movement 
In the absence of any fault movement the displacement and stresses are continuous through out the 

model. In order to obtain the expressions for displacement, strain and stresses we take Laplace transform of (1) 
to (5) with respect to t. The resulting boundary value problem can be solved by taking integral transforms of the 

constitutive equations and the boundary conditions with respect to t. The solutions obtained are given below.(as 

shown in Appendix)   

 

                                              

u =  u 0 + y2τ∞ 0  
kt

μ
+

t

η
+

kt2

2η
 

                                                

e12 =  e12 0  + τ∞ 0  
kt

μ
+

t

η
+

kt2
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τ12 =  τ12 0e
−
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η + τ∞ 0  1 + kt − e

−
μt
η  

τ13 =  τ13 0e
−
μt
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                                              (6) 

 

From the above result we find that, the initial field for displacement, stresses and strain gradually die 

out. The relevant stress component τ12  is found to increase with time t and tends to τ∞ t  as t → ∞. However 

the rheological behavior of the meterial near the fault F are assumed to be capable of withstanding stress of 

magnitude τc , called critical value of the stress where   τc   is less than  τ∞ t . We assume that when the 

accumulated stress τ12 near the fault exceeds this critical level after a time, T, say, a creeping movement across 

F sets in, and thereby releasing the accumulated stress to a value less than τc . 
  If we assume  τ12 0=50 bar, τ∞ 0 =50 bar, k = 10−9 and  τc=200 bar, it is found that τ12 reaches the value  

τc  in about 96 years (T=96 years). In our subsequent discussions we shall take T to be 96 years. 

  The relevant boundary value problem after commencement of the creeping movement across  F , t ≥ T  has 

been described in Appendix. 



A Vertical Creeping Strike Slip Fault in a Viscoelastic Half Space Under the Action of... 

DOI: 10.9790/5728-1131105114                                    www.iosrjournals.org                                        107 | Page 

IV. Displacements, Stresses And Strains After The Commencement Of The Fault Creep 
We assume that after a time T, the stress component  τ12 which is the main driving force for the strike-

slip motion of the fault, exceeds the critical value τc  and the fault starts creeping characterized by a dislocation 

across the fault as discussed in Appendix. We solved the resulting boundary value problem by modified Green's 

function method following [5], [6] and correspondence principle (as shown in Appendix) and get the solution 

for displacement, strain and stresses as: 

 

u =  u 0 + y2τ∞ 0  
kt

μ
+

t

η
+

kt2

2η
 +

U t − T 

2π
H t − T φ1 y2 , y3 

e12 =  e12 0  + τ∞ 0  
kt

μ
+

t

η
+

kt2

2η
 +

U t − T 

2π
H t − T ψ1 y2 , y3 

τ12 =  τ12 0e
−μt
η + τ∞ 0  1 + kt − e

−μt
η  

+
μ

2π
H t − T ψ1 y2 , y3  v1 τ e

−μ t−T−τ 
η dτ

t−T

0

τ13 =  τ13 0e
−μt
η +

μ

2π
H t − T ψ2 y2 , y3  v1 τ e

−μ t−T−τ 
η dτ

t−T

0  
 
 
 
 
 
 

 
 
 
 
 
 

                 (7) 

 

where φ1 y2 , y3 , ψ1 y2 , y3  and ψ2 y2 , y3  are given in the Appendix. 

 
It has been observed, as in [7] that the strains and the stresses will be bounded everywhere in the model 

including the lower edge of the fault, the depth dependence of the creep function f x3  should satisfy the certain 

sufficient conditions: 

I. f y3 ,  f
′ y3   are continuous in 0≤ y3 ≤ D, II) Either (a) f ′′  y3    is continuous in 0≤ y3 ≤ D, 

or (b) f ′′  y3  is continuous in 0≤ y3 ≤ D, except for a finite number of points of finite discontinuity in 

0≤ y3 ≤ D, or (c) 𝑓′′  𝑦3  is continuous in 0≤ 𝑦3 ≤ 𝐷,except possibly for a finite number of points of finite 

discontinuity and for the ends points of (0,D), there exist real constants m<1 and n<1 such that 

𝑦3
𝑚𝑓′′  𝑦3 → 0 or to a finite limit as 𝑦3 → 0 + 0 and (𝐷 − 𝑦3)𝑛𝑓′′  𝑦3 → 0  or to a finite limit as 

𝑦3 → 𝐷 − 0  and 

II. (III) 𝑓 𝐷 = 0 = 𝑓′  𝐷   ,     𝑓′ 0 = 0, 
 

These are sufficient conditions which ensure finite displacements, stresses and strains for all finite  𝑦2,𝑦3 , 𝑡  
including the points at the lower edge of the fault. 

  We can evaluate the integrals in (A), (B) and (C) in closed form  if 𝑓 𝑦3  is any polynomial satisfying (I),(II) 

and (III). One such function is  

𝑓 𝑦3 = 1 −
3𝑦3

2

𝐷2
+

2𝑦3
3

𝐷3
 

III. Numerical Computations 
  

 We consider 𝑓 𝑥3  to be  

𝑓 𝑥3 = 1 −
3𝑥3

2

𝐷2
+

2𝑥3
3

𝐷3
 

which satisfies all the conditions for bounded strain and stresses stated above. 

  Following [8], [9] and the recent studies on rheological behaviour of crust and upper mantle by [10], [11] , the 

values to the model parameters are taken as: 

𝜇 =  3.5𝑥1011𝑑𝑦𝑛𝑒/𝑠𝑞. 𝑐𝑚.              
𝜂 = 5𝑥1020  𝑝𝑜𝑖𝑠𝑒 
 

D=Depth of the fault =  10  km. [ noting that the depth of the major earthquake faults are in between 10-15 km. ] 

𝑡1 = 𝑡 − 𝑇 

𝜏∞ 𝑡 = 𝜏∞ 0  1 + 𝑘𝑡  
𝜏∞ 0 = 50 bar 

 𝜏12 0 = 50 𝑏𝑎𝑟 
 𝜏13 0 = 50 bar 

𝑘 = 10−9 
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IV. Discussion Of The Results 
  We compute the following quantities: 

𝑈 = 𝑢 −  𝑢 0 = 𝑦2𝜏∞ 0  
𝑘𝑡

𝜇
+
𝑡

𝜂
+
𝑘𝑡2

2𝜂
 +

𝑈 𝑡 − 𝑇 

2𝜋
𝐻 𝑡 − 𝑇  𝜑1 𝑦2,𝑦3 

𝐸12 = 𝑒12 −  𝑒12 0 = 𝜏∞ 0  
𝑘𝑡

𝜇
+
𝑡

𝜂
+
𝑘𝑡2

2𝜂
 +

𝑈 𝑡 − 𝑇 

2𝜋
𝐻 𝑡 − 𝑇  𝜓1 𝑦2 ,𝑦3 

𝜏12 =  𝜏12 0𝑒
−𝜇𝑡
𝜂 + 𝜏∞ 0  1 + 𝑘𝑡 − 𝑒

−𝜇𝑡
𝜂  

+
𝜇

2𝜋
𝐻 𝑡 − 𝑇  𝜓1 𝑦2 ,𝑦3  𝑣1 𝜏 𝑒

−𝜇 𝑡−𝑇−𝜏 
𝜂 𝑑𝜏

𝑡−𝑇

0

𝜏13 =  𝜏13 0𝑒
−𝜇𝑡
𝜂 +

𝜇

2𝜋
𝐻 𝑡 − 𝑇  𝜓2 𝑦2 ,𝑦3  𝑣1 𝜏 𝑒

−𝜇 𝑡−𝑇−𝜏 
𝜂 𝑑𝜏

𝑡−𝑇

0

 

where the expression for  u, 𝜏12 ,  𝑒12 are given in expression (7). 

 

6.1. Strain against year 

 Fig. 2 shows Surface share strain before the commencement of the fault movement. It is observed from 

the figure that the share strain increases slowly with time under the action of 𝜏∞ 𝑡  but its magnitude is found to 

be of the order of 10−3 which is in conformity with the observational facts. 

 

6.2. Displacement against 𝒚𝟐 

Fig. 3 shows surface displacement against 𝑦2, the distance from the fault, just before and after 
commencement of the fault movement. 

  It is observed from the figure that the displacement increases at a constant rate as expected for t=95 

years  (just before the commencement of the fault movement). The curve in the red colour shows the 

displacement against 𝑦2 for t=98 years just after commencement of the fault movement. Comparing this two 

curve it is found that the magnitude of the displacement is always greater in the latter case. The displacement 

increases but with a gradually decreasing rate. 

 

6.3. Stress near the midpoint on the fault ( 𝒚𝟐=0.5 km. and  𝒚𝟑= 5.0 km.) against time for different creep 

velocities 

From Fig. 4 and Fig. 5, we compare the result obtained here for stress accumulation near the mid point 

of the fault with the case when 𝜏∞ is suppose to be constant. Fig. 5 shows the accumulation of stress near the 

mid point of the fault as obtained by [12]. Although the numerical values of the parameters are slightly different 

(near the mid point of the fault) there are some qualitative and quantitative difference. After the commencement 

of the creep the rate of increase of stresses get released initially for a few years and start increasing after a few 

years due to the increasing value of  𝜏∞(𝑡). The velocity of the creep also found to be much higher in the present 

case. On the other hand, when 𝜏∞(𝑡) is constant, the stress  𝜏12  is found to get released when 𝑣 ≥ 2.0 cm/year. 

 

6.4. Stress against depth 

  In Fig. 6 the stress 𝑇12  along the fault due to the movement across F  where, 

𝑇12 =
𝜇

2𝜋
𝐻 𝑡 − 𝑇 𝜓1 𝑦2 ,𝑦3  𝑣1 𝜏 𝑒

−𝜇 𝑡−𝑇−𝜏 
𝜂 𝑑𝜏

𝑡−𝑇

0

 

 

The magnitude of  𝑇12  has been computed very close to the fault line with 𝑦2=0.5 km. and 𝑦3varies 

from 0 to 50 km. The figure shows that initially the stress is negative and its magnitude increases up to a depth 

of 2 km. from the upper edge of the fault. Thereafter its magnitude decreases up to the lower edge of the fault, 

where its attends its maximum positive value at 𝑦3=10 km.. As we move downwards the accumulated stress 

gradually die out and tends to zero. 

 

6.5. Stress against depth and 𝒚𝟐 

Fig. 7 shows Identification of the region of stress accumulation and stress reduction due to the creeping 

movement across F. 

We computed 𝑇12  for a set of values of 𝑦2 from -50 km. to 50 km. and for a set of values of 𝑦3 ranging 

from 0 km. to 50 km..It is found that, there is a clear demarcation of the zones where stress is increased due to 
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the fault movement marked by (A: Blue in the graph) and a stress reduction zone (R: Red in the graph). This 

implies that if a second fault be situated in region A the rate of accumulation of stress near it will be increased 

due to the fault movement across F and thereby enhance the time of possible movement across the second fault. 
On the other hand if a second fault be situated in the region R the rate of stress accumulation near it will be 

reduced due to the fault movement across F and thereby delayed any possible movement across the second fault. 

This will give some idea about the interaction among neighbouring faults in a seismic fault system. The 

interacting effects depends upon the relative positions of the faults. Similar results are obtained by [13]. 

 

6.6. Contour map 

Fig. 8 shows contour map for stress accumulation/release in the medium due to the fault creep across 

F  (with fault F is shown in black colour). 

 

V. Appendix 

7.1. Displacements, stresses, and strains before the commencement of the fault creep 

  We take Laplace Transform of all constitutive equations and boundary conditions 

 𝜏12    =
𝑝

 
𝑝
𝜇 +

1
𝜂
 

  
𝜕𝑢 

𝜕𝑦2

+

 𝜏12 0

𝜇 −  
𝜕𝑢
𝜕𝑦2

 
0

 
𝑝
𝜇 +

1
𝜂
 

 
 

 
                                       8  

 

where  𝜏12    =  𝜏12𝑒
−𝑝𝑡∞

0
𝑑𝑡 ,  p being the Laplace transform variable. 

   Also the stress equation of motion in Laplace transform domain as: 

 𝜕

𝜕𝑦2

 𝜏12     +
𝜕

𝜕𝑦3

 𝜏13     = 0                                                                      (9) 

 

and the boundary conditions are (after transformation) 

 𝜏13    = 0 𝑜𝑛  𝑦3 = 0 ,  −∞ < 𝑦2 < ∞,    𝑡 ≥ 0 

𝜏13    → 0 𝑎𝑠  𝑦3 → ∞ ,  −∞ < 𝑦2 < ∞,    𝑡 ≥ 0 
                                 (10) 

 

 𝜏12    → 𝜏∞     𝑝 = 𝜏∞ 0  1 + 𝑘𝑡 ,  𝑘 > 0 

𝑎𝑠   𝑦2 → ∞,𝑓𝑜𝑟 𝑦3 ≥ 0, 𝑡 ≥ 0.
                                                        (11) 

 

  Using (8) and other similar equation assuming the initial fields to be zero, we get from (9) 

     𝛻2𝑢 = 0                                                                                                                                                                                  
(12) 

   Thus we are to solve the boundary value problem (12) with the boundary conditions (10) and (11) 

Let,   

𝑢 =
 𝑢 0

𝑝
+ 𝐴𝑦2 + 𝐵𝑦3 

be the solution of (12) 

  Using the boundary conditions  (10) and (11) and the initial conditions we get, 

𝐴 = 𝜏∞ 0  
𝑘

𝑝2𝜇
+

1

𝜂𝑝2
+

𝑘

𝜂𝑝3
  

𝐵 = 0 
  On taking inverse Laplace transform, we get                                               

𝑢 =  𝑢 0 + 𝑦2𝜏∞ 0  
𝑘𝑡

𝜇
+
𝑡

𝜂
+
𝑘𝑡2

2𝜂
 

                                                

𝑒12 =  𝑒12 0  + 𝜏∞ 0  
𝑘𝑡

𝜇
+
𝑡

𝜂
+
𝑘𝑡2

2𝜂
 

𝜏12 =  𝜏12 0𝑒
−
𝜇𝑡
𝜂 + 𝜏∞ 0  1 + 𝑘𝑡 − 𝑒

−
𝜇𝑡
𝜂  

𝜏13 =  𝜏13 0𝑒
−
𝜇𝑡
𝜂
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7.2. Displacements, stresses and strains after the commencement of the fault creep 

We assume that after a time T the stress component 𝜏12 , which is the main driving force for the strike-slip 

motion of the fault, exceeds the critical value 𝜏𝑐 , the fault F starts creeping then (8) to (11)  are satisfied with the 

following conditions of creep across F: 
 𝑢 = 𝑈 𝑡1 𝑓 𝑦3 𝐻 𝑡1                                                                                                                                                                          
(13) 

where  𝑢  is the discontinuity in u across F, and 𝐻 𝑡1  is Heaviside unit step function. 

That is  

 𝑢 = 𝑙𝑖𝑚𝑦2→0+0
𝑢 − 𝑙𝑖𝑚𝑦2→0−0

𝑢 ,

0 ≤ 𝑦3 ≤ 𝐷                                                                                                                                                     (14) 

The creep velocity 
𝜕

𝜕𝑡
 𝑢 = 𝑣 𝑡1 𝑓 𝑦3 𝐻 𝑡1  

where  

𝑣 𝑡1 =
𝜕

𝜕𝑡
𝑈 𝑡1 =

𝜕

𝜕𝑡1

𝑈 𝑡1  

and 𝑣 𝑡1 ,𝑈 𝑡1   vanish for 𝑡1 ≤ 0. 
Taking Laplace transform in (13) with respect to 𝑡1, we get 

 𝑢  = 𝑈  𝑝1 𝑓 𝑦3                                                                                                                                                                              
(15) 

The fault creep commence across F after time T, we take 

𝑈 𝑡1 = 0 for  𝑡1 ≤ 0 that is 𝑡 ≤ 𝑇 

So that    𝑢 = 0  for  𝑡 ≤ 𝑇. 
We try to find the solution as: 

 

𝑢 =  𝑢 1 +  𝑢 2

𝑒12 =  𝑒12 1 +  𝑒12 2

𝜏12 =  𝜏12 1 +  𝜏12 2

𝜏13 =  𝜏13 1 +  𝜏13 2 
 

 
                                                                           (16) 

 

where  𝑢 1 ,  𝑒12 1 ,  𝜏12 1   𝑎𝑛𝑑  𝜏13 1   are continuous everywhere in the model satisfying equations (1) to (5). 

The solution for  𝑢 1 ,  𝑒12 1 ,  𝜏12 1   𝑎𝑛𝑑  𝜏13 1are similar to equation (6). 

For the second part  𝑢 2 ,  𝑒12 2 ,  𝜏12 2   𝑎𝑛𝑑  𝜏13 2  boundary value problem can be stated as: 

𝛻2 𝑢  2 = 0                                                                                                                                                                                    
(17) 

  where   𝑢  2    is the Laplace transformation of  𝑢 2 with respect to t, give 

 𝑢  2 =  𝑒−𝑝𝑡𝑢 𝑡 𝑑𝑡

∞

0

 

The modified boundary condition: 

 𝜏12 2
        → 0  as  𝑦2 → ∞, 

for 𝑦3 ≥ 0, 𝑡1 ≥ 0.                                                                                                                                                (18) 

  and the other boundary conditions are same as (10) and (11). 

  Now we solve the boundary value problem by using a modified Green's function technique developed by [1], 

[2] and the Correspondence Principle. 

  Let, 𝑄 𝑦1 ,𝑦2 ,𝑦3   is any point in the medium and 𝑃 𝑥1 ,𝑥2 ,𝑥3   is any point on the fault, then we have 

 𝑢  2 𝑄 =    𝑢  2 𝑃  𝐺 𝑃,𝑄 𝑑𝑥3 

Therefore ,     𝑢  2 𝑃  = 𝑈1
    𝑃 𝑓 𝑥 3 

  where G is the Green's function satisfying the above boundary value problem and 

𝐺 𝑃,𝑄 = 𝜇
𝜕

𝜕𝑥2

𝐺1 𝑃,𝑄  

where 

𝐺1 𝑃,𝑄 = −
1

4𝜋𝜇
 𝑙𝑜𝑔  𝑥2 − 𝑦2 

2 +  𝑥3 − 𝑦3 
2 + 𝑙𝑜𝑔  𝑥2 − 𝑦2 

2 +  𝑥3 + 𝑦3 
2   

 𝑢  2 𝑄 =  𝑓 𝑥3 
𝑈   𝑃 

2𝜋
 

𝑦2

 𝑥3 + 𝑦3 
2 + 𝑦2

2
+

𝑦2

 𝑥3 − 𝑦3 
2 + 𝑦2

2
 𝑑𝑥3

𝐷

0

 

Now,  
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 𝜏12     2 = 𝜇 
𝜕 𝑢  2

𝜕𝑦2

 

where  

𝜇 =
𝑝

 
𝑝
𝜇 +

1
𝜂
 
 

  We assume that 𝑓 𝑦3   is continuous everywhere on the fault 0 ≤ 𝑦3 ≤ 𝐷. 
  Now, taking inverse Laplace transformation 

 𝑢 2 𝑄 =
1

2𝜋
𝑈 𝑡 − 𝑇 𝐻(𝑡 − 𝑇)𝜑1 𝑦2,𝑦3  

  where  𝐻(𝑡 − 𝑇) is Heaviside unit step function, and 

𝜑1 𝑦2,𝑦3 =  𝑓 𝑥3  
𝑦2

 𝑥3 + 𝑦3 
2 + 𝑦2

2
+

𝑦3

 𝑥3 − 𝑦3 
2 + 𝑦2

2
 𝑑𝑥3

𝐷

0

 

where 𝑓 𝑥3  is the depth-dependence of the creeping function across F. 

We also have, 

 𝜏12     2 =
𝑝

 
𝑝
𝜇

+
1
𝜂
 

  
𝜕 𝑢  2

𝜕𝑦2

 

and similar other equations. 

  Now, taking inverse Laplace transformation we get 

 𝜏12 2 =
𝜇

2𝜋
𝐻(𝑡 − 𝑇)𝜓1 𝑦2 ,𝑦3  𝑣1 𝜏 𝑒

−𝜇 𝑡−𝑇−𝜏 
𝜂 𝑑𝜏

𝑡−𝑇

0

 

where     

𝜓1 𝑦2 ,𝑦3 =
𝜕

𝜕𝑦2

 𝜑1 𝑦2 ,𝑦3   

=  𝑓 𝑥3  
 𝑥3 + 𝑦3 

2 − 𝑦2
2

  𝑥3 + 𝑦3 
2 + 𝑦2

2 2
+

 𝑥3 − 𝑦3 
2 − 𝑦2

2

  𝑥3 − 𝑦3 
2 + 𝑦2

2 2
 𝑑𝑥3

𝐷

0

 

Similarly,  

 𝜏13 2 =
𝜇

2𝜋
𝐻(𝑡 − 𝑇)𝜓2 𝑦2,𝑦3  𝑣1 𝜏 𝑒

−𝜇 𝑡−𝑇−𝜏 
𝜂 𝑑𝜏

𝑡−𝑇

0

 

where     

𝜓2 𝑦2 ,𝑦3 =
𝜕

𝜕𝑦3

 𝜑1 𝑦2 ,𝑦3   

                                                                  =  2f x3  
(x3 − y3)y2

  x3 − y3 
2 + y2

2 2
−

(x3 + y3)y2

  x3 + y3 
2 + y2

2 2
 dx3

D

0

 

 

 
Figure 1. The section of the model by the plane y1 = 0. 
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Figure 2. Surface share strain before the fault movement. 

 

 
Figure 3. Surface displacement against y2,  just before and after commencement of the fault movement. 

 

 
Figure 4. Stress near the mid point on the fault (y2=0.5 km. and  y3= 5.0 km.) against time for different creep 

velocities (τ∞ is slowly increasing with time) 
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Figure 5. Stress near the mid point on the fault (y2=0.5 km. and  y3= 5.0 km.) against time for different creep 

velocities (τ∞ is suppose to be constant) 
 

 
Figure 6. Stress T12 due to the movement across the F (closed to the fault line) 

 

 
Figure 7. Region of stress accumulation/reduction due to the creeping movement across F. 
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Figure. 8. Contour map for stress accumulation/release in the medium due to the fault slip across F 

 

Acknowledgements 
One of the authors (Papiya Debnath) thanks the Principal and Head of the Department of Basic Science 

and Humanities, Techno India College of Technology, a unit of Techno India Group (INDIA), for allowing me 

to pursue the research, and also thanks the Geological Survey of India; Department of Applied Mathematics, 

University of Calcutta for providing the library facilities. 

 

References 
[1]. A.C. Fowler. On the Thermal State of the Earth’s Mantle, J. Geophysics. 53, 1983,42-51. 

[2]. L.  Moresi  et. al., Mantle convection modelling with viscoelastic/ brittle lithosphere : Numerical methodology and plate tectonic 

modelling,  Pure and Applied    Geophysics, 159, 2002, 2335-2356. 

[3]. V.P.Trubitsyn, E.V. Kharybin, Rheological models of mantle convection reproducing the fragmentation of lithosphere in plates, 

Physics of the solid earth, Vol. 46, No. 4, , 2010, pp 275-280. 

[4]. F. Fanucci et. al., A numerical study for convection in a cylindrical model with continuously varying viscosity, Annali Di Geofisica, 

Vol. xxxix, N. 3 May 1996. 

[5]. T. Maruyama, On two dimensional dislocation in an infinite and semi-infinite medium, Bull. earthquake res. inst., tokyo univ., 44, 

part 3, 1966, pp. 811-871. 

[6]. K. Rybicki, Static deformation of a multilayered half-space by a very long strike-slip fault, Pure and Applied Geophysics, 110, 

1973, p-1955-1966. 

[7]. A. Mukhopadhyay, et.al. On stress accumulation near a continuously slipping fault in a two layer model of lithosphere, Bull. Soc. 

Earthq. Tech., vol.4, 1980b.17, pp. 29-38.  

[8]. L.M. Catlhes III, The viscoelasticity of the Earths mantle (Princeton University Press, Princeton, N.J, 1975.15) 

[9]. K. Aki, P.G. Richards, Quantitive Seismology (University Science Books, Second Ed.,1980) 

[10]. P. Chift, J. Lin, U. Barcktiausen, Marine and Petroleum Geology (19, 2002, 951-970) 

[11]. S.I. Karato, Rheology of the Earth's mantle, A historical review Gondwana Research,vol-18, issue-1, July,2010, pp-17-45.  

[12]. S. Sen, Some problems of theoretical seismology, doctoral diss., Calcutta University, 1987. 

[13]. P.,Debnath, S. Sen, Two neighbouring strike-slip faults and their interaction, IOSR Journal of Applied Geology and Geophysics, 

vol-2, issue-6 , 2014, pp-44-56.  


