On generalized n-derivation in prime near – rings

Abdul Rahman H.Majeed, Enaam F.Adhab

Department of Mathematics, college of science, University of Baghdad. Baghdad, Iraq.

Abstract: The main purpose of this paper is to show that zero symmetric prime left near-rings satisfying certain identities are commutative rings. As a consequence of the results obtained ,we prove several commutativity theorems about generalized n-derivatios for prime near-rings.

I. Introduction

A right near - ring (resp.left near ring) is a set N together with two binary operations (+) and (.) such that (i)(N,+) is a group (not necessarily abelian).(ii)(N,.) is a semi group.(iii)For all a,b,c \in N; we have (a+b).c = a.c + b.c (resp. a.(b+c) = a.b + b.c. Through this paper, N will be a zero symmetric left near - ring (i.e., a left near-ring N satisfying the property 0.x=0 for all $x \in N$), we will denote the product of any two elements x and y in N i.e.; x,y by xy. The symbol Z will denote the multiplicative centre of N, that is $Z = \{x \in N \mid xy = x\}$ yx for all $y \in N$. For any x, y $\in N$ the symbol [x,y]=xy-yx stands for multiplicative commutator of x and y, while the symbol xoy will denote xy+yx. N is called a prime near-ring if $xNy = \{0\}$ implies either x = 0 or y =0. A nonempty subset U of N is called semigroup left ideal (resp. semigroup right ideal) if $NU \subseteq U$ (resp.UN⊆U)and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. A normal subgroup (I,+) of (N,+) is called a right ideal (resp. left ideal) of N if $(x + i)y - xy \in I$ for all $x, y \in N$ and $i \in I$ (resp. $xi \in I$ for all $i \in I$ and $x \in N$). I is called ideal of N if it is both a left ideal as well as a right ideal of N. For terminologies concerning near-rings, we refer to Pilz [11].

An additive endomorphism $d: N \rightarrow N$ is said to be a derivation of N if d(xy) = xd(y) + d(x)y, or equivalently, as noted in [5, lemma 4] that d(xy) = d(x)y + xd(y) for all $x, y \in N$.

A map d: $N \times N \times ... \times N \rightarrow N$ is said to be permuting if the equation $d(x_1, x_2, ..., x_n) = d(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$ n – times

holds for all $x_1, x_2, ..., x_n \in \mathbb{N}$ and for every permutation $\pi \in S_n$ where S_n is the permutation group on $\{1,2,\ldots,n\}$.

Let n be a fixed positive integer . An n-additive(i.e.; additive in each argument) mapping $d: N \times N \times ... \times N \longrightarrow N$

is said to be n-derivation if the relations

 $d(x_1 \ x_1', x_2, ..., x_n) = d(x_1, x_2, ..., x_n)x_1' + x_1 \ d(x_1', x_2, ..., x_n)$ $d(x_1, x_2x_2', ..., x_n) = d(x_1, x_2, ..., x_n)x_2' + x_2 d(x_1, x_2', ..., x_n)$ $d(x_1, x_2, ..., x_n x_n') = d(x_1, x_2, ..., x_n) x_n' + x_n d(x_1, x_2, ..., x_n')$

hold for all $x_1, x_1', x_2, x_2', ..., x_n, x_n' \in \mathbb{N}$. If in addition d is a permuting map then d is called a permuting nderivation of N. For terminologies concerning n-derivation of near-rings, we refer to [4]

An n-additive mapping f: $N \times N \times ... \times N \rightarrow N$ is called a right generalized n-derivation of N with associated nn-times

derivation d if the relations

$$f(x_1 \ x_1', x_2, \dots, x_n) = f(x_1 \ , x_2, \dots, x_n) x_1' + x_1 \ d(x_1', x_2, \dots, x_n) f(x_1 \ , x_2 x_2', \dots, x_n) = f(x_1 \ , x_2, \dots, x_n) x_2' + x_2 \ d(x_1 \ , x_2', \dots, x_n) \vdots$$

 $f(x_1, x_2, ..., x_n x_n') = f(x_1, x_2, ..., x_n) x_n' + x_n d(x_1, x_2, ..., x_n')$ hold for all $x_1, x_1', x_2, x_2', ..., x_n, x_n' \in N$. If in addition both f and d is a permuting maps then f is called a permuting right generalized n-derivation of N associated permuting n-derivation d . An n-additive mapping $f: N \times N \times ... \times N \rightarrow N$ is called a left generalized n-derivation of N with associated n-derivation d if the n – times

relations
$$f(x_1 \ x_1', x_2, ..., x_n) = d(x_1 \ , x_2, ..., x_n) x_1' + x_1 \ f(x_1', x_2, ..., x_n)$$

 $f(x_1 \ , x_2 x_2', ..., x_n) = d(x_1 \ , x_2, ..., x_n) x_2' + x_2 \ f(x_1 \ , x_2', ..., x_n)$
 $\vdots \ f(x_1 \ , x_2, ..., x_n x_n') = d(x_1 \ , x_2, ..., x_n) x_n' + x_n \ f(x_1 \ , x_2, ..., x_n')$

hold for all $x_1, x_1', x_2, x_2', ..., x_n, x_n' \in N$. If in addition both f and d is a permuting maps then f is called a permuting left generalized n-derivation of N with associated permuting n-derivation d . Lastly an n-additive mapping d: $N \times N \times ... \times N \longrightarrow N$ is called a generalized n-derivation of N with associated n-derivation d if it is n-times

both a right generalized n-derivation as well as a left generalized n-derivation of N with associated n-derivation d. If in addition both f and d are permuting maps then f is called a permuting generalized n-derivation of N with

associated permuting n-derivation d . For terminologies concerning generalized n-derivation of near-rings, we refer to [3].

Many authors studied the relationship between structure of near – ring N and the behaviour of special mapping on N. There are several results in the existing literature which assert that prime near-ring with certain constrained derivations have ring like behaviour. Recently several authors (see [2-10] for reference where further references can be found) have investigated commutativity of near-rings satisfying certain identities. Motivated by these results we shall consider generalized n-derivation on a near-ring N and show that prime near-rings satisfying some identities involving generalized n-derivations and semigroup ideals or ideals are commutative rings. In fact, our results generalize some known results proved in [3],[4] and [10].

II. Preliminaries

The following lemmas are essential for developing the proofs of our main results

Lemma 2.1 [6] If U is non-zero semi group right ideal (resp, semi group left ideal) and x is an element of N such that $Ux = \{0\}$ (resp, $xU = \{0\}$) then x = 0.

Lemma 2.2[6] Let N be a prime near-ring and U a nonzero semigroup ideal of N. If $x, y \in N$ and $xUy = \{0\}$ then x = 0 or y = 0.

Lemma 2.3[2] Let N be a prime near-ring . then d is permuting n-derivation of N if and only if

 $d(x_1 x_1', x_2, ..., x_n) = x_1 d(x_1', x_2, ..., x_n) + d(x_1 , x_2, ..., x_n)x_1'$

for all $x_1, x_1', x_2, \dots, x_n \in N$.

Lemma 2.4[2] Let N be a near-ring and is a permuting n-derivation of N. Then for every $x_1, x_1', x_2, \dots, x_n, y \in N$,

(i)
$$(x_1 d(x_1', x_2, ..., x_n) + d(x_1, x_2, ..., x_n)x_1')y =$$

 $x_1 d(x_1', x_2, ..., x_n)y + d(x_1, x_2, ..., x_n)x_1'y$

(ii) $(d(x_1, x_2, ..., x_n)x_1' + x_1 d(x_1', x_2, ..., x_n))y =$

 $d(x_1, x_2, ..., x_n)x_1'y + x_1 d(x_1', x_2, ..., x_n)y.$

Remark 2.1 It can be easily shown that above lemmas 2.3 and 2.4 also hold if d is a nonzero n-derivation of near-ring N.

Lemma 2.5 [4] Let d be an n-derivation of a near ring N , then $d(Z,N,...,N) \subseteq Z$.

Lemma 2.6[4] Let N be a prime near ring , d a nonzero n-derivation of N , and $U_1, U_2, ..., U_n$ be anonzero semigroup ideals of N. If $d(U_1, U_2, ..., U_n) \subseteq Z$, then N is a commutative ring.

Lemma 2.7 [4] Let N be a prime near ring ,d a nonzero n-derivation of N .and $U_1, U_2, ..., U_n$ be a nonzero semigroup ideals of N such that $d([x,y], u_2, ..., u_n) = 0$ for all $x, y \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is a commutative ring.

Lemma 2.8[3]. f is aright generalized n-derivation of N with associated n-derivation d if and only if $f(x_1x'_1, x_2, \dots, x_n) = x_1 d(x'_1, x_2, \dots, x_n) + f(x_1, x_2, \dots, x_n) x'_1$

 $f(x_1, x_2x'_2, \dots, x_n) = x_2 d(x_1, x'_2, \dots, x_n) + f(x_1, x_2, \dots, x_n)x'_2$

Lemma 2.9[3]. Let N be a near-ring admitting a right generalized n-derivation f with associated n-derivation d of N. Then

$$(f(x_1, x_2, ..., x_n)x_1' + x_1 d(x_1', x_2, ..., x_n))y = f(x_1, x_2, ..., x_n)x_1'y + x_1 d(x_1', x_2, ..., x_n)y, (f(x_1, x_2, ..., x_n)x_2' + x_2 d(x_1, x_2', ..., x_n))y = f(x_1, x_2, ..., x_n)x_2'y + x_2 d(x_1, x_2', ..., x_n)y, \vdots$$

$$(f(x_1, x_2, ..., x_n)x_n' + x_n d(x_1, x_2, ..., x_n')) = f(x_1, x_2, ..., x_n)x_n' y + x_n d(x_1, x_2, ..., x_n')y,$$

for all x_1 , x_1' , x_2 , x_2', \cdots , x_n , x_n' , y $\in \! \mathbb{N}$

Lemma 2.10[3]. Let N be a near-ring admitting a right generalized n-derivation f with associated n-derivation d of N. Then ,

 $\begin{array}{c} (x_1d(x'_1, x_2, \cdots, x_n) + f(x_1, x_2, \cdots, x_n) \; x'_1)y = \; x_1d(x'_1, x_2, \cdots, x_n)y + f(x_1, x_2, \cdots, x_n) \; x'_1y \\ (x_2d(x_1, x'_2, \cdots, x_n) + f(x_1, x_2, \cdots, x_n)x'_2)y = \; x_2d(x_1, x'_2, \cdots, x_n)y + f(x_1, x_2, \cdots, x_n)x'_2y \\ \vdots \end{array}$

 $\begin{array}{l}(x_nd(x_1,x_2,\cdots,x'_n)+f(x_1,x_2,\cdots,x_n)x'_n\)y=x_nd(x_1,x_2,\cdots,x'_n)y+f(x_1,x_2,\cdots,x_n)x'_n\ yy \\ for\ all\ x_1\ ,x'_1\ ,x_2\ ,\ x'_2,\cdots,x_n\ ,x'_n\ ,\ y\in N\ .\end{array}$

Lemma 2.11[3]. f is a left generalized n-derivation of N with associated n-derivation d if and only if $f(x_1x'_1,x_2,\dots,x_n)=x_1f(x'_1,x_2,\dots,x_n)+d(x_1,x_2,\dots,x_n) x'_1$

(1)

 $f(x_1, x_2x'_2, \dots, x_n) = x_2 f(x_1, x'_2, \dots, x_n) + d(x_1, x_2, \dots, x_n)x'_2$

 $f(x_1, x_2, \dots, x_n x'_n) = x_n f(x_1, x_2, \dots, x'_n) + d(x_1, x_2, \dots, x_n) x'_n$

hold for all $x_1, x'_1, x_2, x'_2, \dots, x_n, x'_n \in \mathbb{N}$.

Lemma 2.12[3]. Let N be a near-ring admitting a left generalized n-derivation f with associated n-derivation d of N . Then

$$(d(x_1, x_2, ..., x_n)x_1 + x_1 f(x_1, x_2, ..., x_n))y = d(x_1, x_2, ..., x_n)x_1 y + x_1 f(x_1, x_2, ..., x_n)x_2 + x_2 f(x_1, x_2, ..., x_n))y = d(x_1, x_2, ..., x_n)x_2 y + x_2 f(x_1, x_2, ..., x_n)y$$

 $\begin{array}{c} \vdots \\ (d(x_1, x_2, \dots, x_n)x_n' + x_n f(x_1, x_2, \dots, x_n') y = d(x_1, x_2, \dots, x_n)x_n' y \\ + x_n f(x_1, x_2, \dots, x_n')y, \end{array}$

for all $x_1, x'_1, x_2, x'_2, \dots, x_n, x'_n, y \in \mathbb{N}$

Lemma 2.13[3]. Let N be a near-ring admitting a left generalized n-derivation f with associated n-derivation d of N. Then ,

 $\begin{array}{l} (x_1f(x_{11},x_2,\cdots,x_n)+d(x_1,x_2,\cdots,x_n) \; x_{11}')y = x_1f(x_{11},x_2,\cdots,x_n)y + d(x_1,x_2,\cdots,x_n) \; x_{11}'y \\ (x_2f(x_1,x_{12}',\cdots,x_n)+d(x_1,x_2,\cdots,x_n)x_{12}')y = x_2f(x_1,x_{12}',\cdots,x_n)y + d(x_1,x_2,\cdots,x_n)x_{12}'y \end{array}$

 $(x_n f(x_1, x_2, \dots, x'_n) + d(x_1, x_2, \dots, x_n)x'_n)y = x_n f(x_1, x_2, \dots, x'_n)y + d(x_1, x_2, \dots, x_n)x'_n yy$ for all $x_1, x'_1, x_2, x'_2, \dots, x_n, x'_n, y \in \mathbb{N}$.

Lemma 2.14 [3]. Let N be prime near-ring admitting a generalized n-derivation f with associated n-derivation of N, then $f(Z,N,...,N) \subseteq Z$.

Lemma 2.15. Let N be a prime near-ring with nonzero generalized n-derivations f associated with nonzero n-derivation d. Let $x \in N$, U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N.

(i) If $f(U_1, U_2, ..., U_n)x = \{0\}$, then x = 0.

(ii) If $xf(U_1, U_2, ..., U_n) = \{0\}$, then x = 0.

Proof. (i) Given that $f(U_1, U_2, ..., U_n)x = \{0\}$, i.e.;

 $f(u_1,\,u_2,\,\ldots,\,u_n)x=0$, for all $u_1\in U_1,\,u_2\in U_2,\,\ldots,\,u_n\in U_n$

Putting r_1u_1 in place of u_1 , where $r_1 \in N$, in relation (1)we get $f(r_1u_1, u_2, \ldots, u_n)x = 0$. This yields that $d(r_1, u_2, \ldots, u_n)u_1x + r_1f(u_1, u_2, \ldots, u_n)x = 0$, by hypothesis we have $d(r_1, u_2, \ldots, u_n)u_1x = 0$. Replacing u_1 again by u_1s , where $s \in N$ in preceding relation we obtain $d(r_1, u_2, \ldots, u_n)u_1sx = 0$, i.e.; $d(r_1, u_2, \ldots, u_n)u_1Nx = \{0\}$. But N is prime near ring ,then either $d(r_1, u_2, \ldots, u_n)u_1 = 0$ or x = 0. Our claim is that $d(r_1, u_2, \ldots, u_n)u_1 \neq 0$, for some $r_1 \in N$, $u_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$. For otherwise if $d(r_1, u_2, \ldots, u_n)u_1 = 0$ for all $r_1 \in N$, $u_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, then $d(r_1, u_2, \ldots, u_n)t_1 = 0$, where $t \in N$, i.e.; $d(r_1, u_2, \ldots, u_n)Nu_1 = \{0\}$. As $U_1 \neq \{0\}$, primeness of N yields $d(r_1, u_2, \ldots, u_n) = 0$ for all $r_1 \in N$, $u_1 \in U_1$, $u_2 \in U_2, \ldots, u_n \in U_n$. (2)

Now putting $u_2r_2 \in U_2$ in place of u_2 , where $r_2 \in N$, in (2) and using it again we get $u_2d(r_1, r_2, \ldots, u_n) = 0$. Now replacing u_2 again by u_2w , where $w \in N$ in preceding relation we obtain $u_2wd(r_1, r_2, \ldots, u_n) = 0$, i.e.; $U_2Nd(r_1, r_2, \ldots, u_n) = 0$. As $U_2 \neq \{0\}$, primeness of N yields $d(r_1, r_2, \ldots, u_n) = 0$ for all $r_1, r_2 \in N, \ldots, u_n \in U_n$. Preceding inductively as before we conclude that $d(r_1, r_2, \ldots, r_n) = 0$ for all $r_1, r_2, \ldots, r_n \in N$. This shows that $d(N, N, \ldots, N) = \{0\}$, leading to a contradiction as d is a nonzero n-derivation. Therefore, our claim is correct and now we conclude that x = 0.

(ii) It can be proved in a similar way.

Lemma 2.15. Let N be a prime near-ring with nonzero n-derivation d. Let $x \in N$, U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N.

(i) If $d(U_1, U_2, ..., U_n)x = \{0\}$, then x = 0.

(ii) If $xd(U_1, U_2, ..., U_n) = \{0\}$, then x = 0.

III. Main Results

Recently Öznur Gölbasi ([7],Theorem2.6) proved that if N is aprime near-ring with a nonzero generalized derivation f such that $f(N) \subseteq Z$ then (N,+) is an abelian group. Moreover if N is 2-torsion free, then N is a commutative ring. Mohammad Ashraf and Mohammad Aslam Siddeeque show that "2-torsion free restriction "in the above resultused by Öznur Gölbasi is superfluous . Mohammad Ashraf and Mohammad Aslam Siddeeque ([3], Theorem 3.1) proved that if N is a prime near-ring with a nonzero generalized n-derivation f with associated n-derivation d of N such that $f(N,N,...,N) \subseteq Z$ then N is a commutative ring. We have extended this result in the setting of generalized n-derivation and semigroup ideals in near rings by proving the following theorem.

Theorem 3.1. Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated nderivation d of N . Let U_1, U_2, \ldots, U_n be nonzero semigroups right ideals of N. If $f(U_1, U_2, \ldots, U_n) \subseteq Z$, then N is a commutative ring.

Proof. For all $u_1, u_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$ we get

 $f(u_1u_1', u_2, \ldots, u_n) = d(u_1, u_2, \ldots, u_n) u_1' + u_1f(u_1', u_2, \ldots, u_n) \in Z$

 $f(u_1u_1', u_2, ..., u_n) = d(u_1, u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) \in Z$ (3) Now commuting equation (3) with the element u_1 we have $(d(u_1, u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n)) u_1 = U(u_1, u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) u_1 = U(u_1, u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) u_1 = U(u_1, u_2, ..., u_n) u_1' + u_1 f(u_1', u_2, ..., u_n) u_n u_n' + u_1 f(u_1', u_2, ..., u_n) u_n' + u_1$ $u_1(d(u_1, u_2, \ldots, u_n) u_1' + u_1f(u_1', u_2, \ldots, u_n))$, by lemma 2.12 we get $d(u_1, u_2, \ldots, u_n) u_1' u_1 + u_1f(u_1', u_2, \ldots, u_n)$ $u_n) u_1 = u_1 d(u_1, u_2, \ldots, u_n) u_1' +$

 $u_1u_1f(u_1', u_2, \ldots, u_n))$, by hypothesis we get $d(u_1, u_2, \ldots, u_n) u_1' u_1 = u_1d(u_1, u_2, \ldots, u_n) u_1'$, replacing u_1' by $u_1' y$, where $y \in \mathbb{N}$, in previous relation and using it again we get $d(u_1, u_2, \ldots, u_n) u_1' (u_1 y - y u_1) = 0$ for all $u_1, u_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, $y \in N$, then we have $d(u_1, u_2, \ldots, u_n)U_1(u_1, y, yu_1) = 0$. By using lemma 2.2 ,we conclude that for each $u_1 \in U1$ either $u_1 \in Z$ or $d(u_1, u_2, ..., u_n) = 0$, but using lemma 2.5 lastly we get $d(u_1, u_2, ..., u_n) \in \mathbb{Z}$ for all $u_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, i.e., $d(U_1, U_2, ..., U_n) \subseteq \mathbb{Z}$. Now by using lemma 2.6 we find that N is commutative ring.

Corollary 3.1 ([3]theorem 3.1) Let N be a prime near-ring admitting a nonzero generalized n-derivation f with associated n-derivation d of N . If $f(N, N, ..., N) \subseteq Z$, then N is a commutative ring.

Corollary 3.2 ([4] , Theorem 3.3) Let N be a prime near-ring , U_1, U_2, \ldots, U_n be nonzero semigroup right ideals of N and let d be a nonzero n-derivation of N. If $d(U_1, U_2, \ldots, U_n) \subseteq Z$, then N is a commutative ring .

Corollary 3.3.([2]theorem 3.2) Let N be a prime near-ring admitting a nonzero permuting n-derivation d. If $d(N, N, ..., N) \subseteq Z$, then N is a commutative ring.

In the year 2014, Mohammad Ashraf and Mohammad Aslam Siddeeque ([4], Theorem 3.1) proved that if N is a prime near-ring with no nonzero divisors of zero and U_1, U_2, \ldots, U_n are nonzero semigroup right ideals of N which admits a nonzero n-derivation d such that $d(u_1 u'_1, u_2, \ldots, u_n) = d(u'_1 u_1, u_2, \ldots, u_n)$ for all $u_1, u'_1 \in U_1$ $u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring. We have extended this result in the setting of left generalized nderivation and u_1, u'_1 belong to different semigroup ideals by proving the following theorem :

theorem 3.2. Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated nderivation d of N . Let U, V, U_2, \ldots, U_n be nonzero semigroup left ideals of N. If $f(uv, u_2, \ldots, u_n) = f(vu, u_2, \ldots, u_n)$., u_n) for all $u \in U$, $v \in V$, $u_2 \in U_2$,..., $u_n \in U_n$, then N is commutative ring.

Proof. We have $f(uv, u_2, ..., u_n) = f(vu, u_2, ..., u_n)$ for all $u \in U$, $v \in V$, $u_2 \in U_2$,..., $u_n \in U_n$, hence we have $f(uv - vu, u_2, ..., u_n) = 0$. (4)

Putting vu for u in (4) we get $f(v(uv - vu), u_2, ..., u_n) = 0$, hence we get

 $d(v, u_2, ..., u_n)(uv - vu) + vf(uv - vu, u_2, ..., u_n) = 0$, using (4) again we find

 $d(v, u_2, ..., u_n)(uv - vu) = 0$, i.e.; $d(v, u_2, ..., u_n)uv = d(v, u_2, ..., u_n)vu$ Replacing u by ur, where $r \in N$ we get $d(v,\,u_2,\,\ldots,\,u_n)\,urv=d(v,\,u_2,\,\ldots,\,u_n)vur=d(v,\,u_2,\,\ldots,\,u_n)uvr \ \ , \ hence \ we \ have \ d(v,\,u_2,\,\ldots,\,u_n)u[v,\,r]=0 \ \ . \ i.e \ ;$ $d(v, u_2, ..., u_n)U[v, r]=\{0\}$. By lemma 2.2, we conclude that for each $v \in V$ either $d(v, u_2, ..., u_n) = 0$ or $v \in Z$ but using lemma 2.5 lastly we get $d(v,u_2,...,u_n) \in Z$ for all $v \in V, u_2 \in U_2,...,u_n \in U_n$, i.e., $d(V,U_2,...,U_n) \subseteq Z$. Now by using lemma 2.6 we find that N is commutative ring.

Corolary 3.4. Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated nderivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup left ideals of N. If $f(u_1, u'_1, u_2, \ldots, u_n) = f(u'_1, u_1, u_2, \ldots, u_n)$..., u_n) for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Corollary 3.5 Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated nderivation d of N . If $f(x_1 x'_1, x_2, ..., x_n) = f(x'_1 x_1, x_2, ..., x_n)$ for all $x_1, x'_1, x_2, ..., x_n \in N$, then N is commutative ring .

Corollary 3.6 Let N be a prime near-ring admitting a nonzero left generalized derivation f with associated derivation d of N. Let U be nonzero left semigroup ideal of N. If $f(x_1 x'_1) = f(x'_1 x_1)$ for all $x_1, x'_1 \in U$, then N is commutative ring.

Corollary 3.7 Let N be a prime near-ring admitting a nonzero left generalized derivation f with associated derivation d of N. Let U and V be nonzero semigroup left ideals of N. If f(u v) = f(vu) for all $u \in U$ and $v \in V$, then N is commutative ring.

Corollary 3.8 Let N be a prime near-ring admitting a nonzero left generalized derivation f with associated derivation d of N.If $f(x_1 x'_1) = f(x'_1 x_1)$ for all $x_1, x'_1 \in N$, then N is commutative ring.

Recently Ahmed A.M.Kamal and Khalid H.AL-Shaalan([10], proposition 4.2) proved that if a prime near-ring N admitting a nonzero generalized derivation f associated with the zero derivation and generalized n-derivation g such that f(u)g(v) = g(v)f(u) for all $u \in U$ and $v \in V$, where U and V are nonzero semigroup ideals of N. Then N is commutative ring. We have extended this result in the setting of generalized n-derivation and semigroup ideals in near rings by proving the following theorem

Theorem 3.3 Let N be a prime near-ring with a nonzero generalized n-derivation associated with the zero nderivation and generalized n-derivation g. Let U, V, U_2, \ldots, U_n be nonzero semigroup ideals of N. If [f(U, U₂, ... (U_n) , $g(V, U_2, \dots, U_n) = 0$, then N is commutative ring.

 $\begin{array}{l} \textbf{Proof} . \mbox{ For all } v \in V, \ u_1, u \in U, \ u_2 \in U_2, ..., u_n \in U_n \ , \ we \ have \ f(u \ u_1, u_2, \ldots, u_n) \ g(v, u_2, \ldots, u_n) \ = \ g(v, u_2, \ldots, u_n) f(uu_1, u_2, \ldots, u_n) . \ It \ follows \ that \ f(u, u_2, \ldots, u_n) \ u_1g(v, u_2, \ldots, u_n) \ = \ g(v, u_2, \ldots, u_n) f(u, u_2, \ldots, u_n) u_1 = \ f(u, u_2, \ldots, u_n) \ g(v, u_2, \ldots, u_n) u_1 x \ = \ f(u, u_2, \ldots, u_n) u_1 g(v, u_2, \ldots, u_n) x \ , \ thus \ f(u, u_2, \ldots, u_n) u_1 (xg(v, u_2, \ldots, u_n) \ _ \ g(v, u_2, \ldots, u_n) u_1 x \ g(v, u_2, \ldots, u_n) \ _ \ g(v, u_2, \ldots, u_n) x \) = \ 0 \ , \ by \ lemma \ 2.2 \ we \ get \ either \ f(u, u_2, \ldots, u_n) = 0 \ or \ (xg(v, u_2, \ldots, u_n) \ g(v, u_2, \ldots, u_n) x) = 0 \ . \end{array}$

Assume $f(u, u_2, ..., u_n) = 0$ for all $u \in U, u_2 \in U_2, ..., u_n \in U_n$.

(5)

Putting r_1u for u, where $r_1 \in N$, in (5) we get $f(r_1, u_2, \ldots, u_n)u = 0$. Now replacing u by tu, where $t \in N$, in previous relation we get $f(r_1, u_2, \ldots, u_n)tu = 0$, i.e.; $f(r_1, u_2, \ldots, u_n)NU = \{0\}$. But $U \neq \{0\}$ and N is prime near ring, we conclude that

 $f(r_1, u_2, \ldots, u_n) = 0$

(6)

Now putting $r_2 u_2 \in U_2$ in place of u_2 , where $r_2 \in N$, in (5) and proceeding as above we get $f(r_1, r_2, \ldots, u_n) = 0$. Proceeding inductively as before we conclude that $f(r_1, r_2, \ldots, r_n) = 0$ for all $r_1, r_2, \ldots, r_n \in N$, this shows that $f(N, N, \ldots, N) = \{0\}$, leading to a contradiction as f is a nonzero generalized derivation.

Now we conclude that $(xg(v, u_2, \ldots, u_n) _ g(v, u_2, \ldots, u_n)x) = 0$, i.e; $g(v, u_2, \ldots, u_n) \in Z$ for all $v \in V, u_2 \in U_2, \ldots, u_n \in U_n$, therefore $g(V, U_2, \ldots, U_n) \subseteq Z$, by theorem 3.1 we find that N is commutative ring.

Corollary 3.9. Let N be a prime near-ring with a nonzero generalized n-derivation f associated with the zero n-derivation and generalized n-derivation g. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $[f(U_1, U_2, \ldots, U_n), g(U_1, U_2, \ldots, U_n)] = 0$, then N is commutative ring.

Corollary 3.10. ([10]Proposition 4.2) Let N be a prime near-ring with a nonzero generalized derivation f associated with the zero derivation and generalized n-derivation g such that f(u)g(v) = g(v)f(u) for all $u \in U$ and $v \in V$, where U and V are nonzero semigroup ideals of N. Then N is commutative ring.

Corollary 3.11. Let N be a prime near-ring with a nonzero generalized n-derivation f associated with the zero n-derivation and generalized n-derivation g. If [f(N, N, ..., N), g(N, N, ..., N)] = 0, then N is commutative ring .

Corollary 3.12. Let N be a prime near-ring with a nonzero generalized derivation f associated with the zero derivation and generalized n-derivation g such that [f(N),g(N)] = 0. Then N is commutative ring.

Theorem 3.4. Let N be a prime near-ring admitting a generalized n-derivation f with associated n-derivation d of N, and $U_1, U_2, ..., U_n$ be a nonzero semigroup left ideals of N, such that $d(Z, U_2, ..., U_n) \neq \{0\}$ and $t \in N$. If $[f(U_1, U_2, ..., U_n), t] = 0$, then $t \in Z$.

Proof . Since $d(Z, U_2, \dots, U_n) \neq \{0\}$, then there exist $z \in Z, u_2 \in U_2, \dots, u_n \in U_n$ all being nonzero such that $d(z, u_2, \dots, u_n) \neq 0$. Furthermore, by lemma 2.5 we get $d(z, u_2, \dots, u_n) \in Z$. By hypothesis we get $f(zu_1, u_2, \dots, u_n)t = t f(zu_1, u_2, \dots, u_n)$ for all $u_1 \in U_1$, using lemma 2.12 we get $d(z, u_2, \dots, u_n) u_1 t + zf(u_1, u_2, \dots, u_n)t = td(z, u_2, \dots, u_n) u_1 + tzf(u_1, u_2, \dots, u_n)$. Since both $d(z, u_2, \dots, u_n)$ and z are element of Z, using hypothesis in previous equation takes the form $d(z, u_2, \dots, u_n)[u_1, t] = 0$ i.e.; $d(z, u_2, \dots, u_n)N[u_1, t] = 0$ primeness of N and $d(z, u_2, \dots, u_n) \neq 0$ yields $[u_1, t] = 0$, we conclude that $tu_{1=} u_1 t$ Now replacing u_1 by $u_1 r$, where $r \in N$, in preceding relation and using it again we get $u_1[t, r] = 0$, i.e.; $U_1[t, r] = 0$, by lemma 2.1 we conclude [t, r] = 0 for all $r \in N$, i.e.; $t \in Z$.

Corollary 3.13.([4] theorem 3.12) Let N be a prime near-ring admitting a generalized n-derivation f with associated n-derivation d of N such that $d(Z,N,\dots,N) \neq \{0\}$ and $t \in N$. If $[f(N, N, \dots, N), t] = 0$, then $t \in Z$.

Corollary 3.14. Let N be a prime near-ring admitting a generalized derivation f with associated derivation d of N such that $d(Z) \neq \{0\}$, let U be a nonzero semigroup ideal of N and t \in N. If [f(U), t] = 0, then $t \in Z$.

Corollary 3.15.([8] Theorem 3.5). Let N be a prime near-ring admitting a generalized derivation f with associated derivation d of N such that $d(Z) \neq \{0\}$ and $t \in N$. If [f(N), t] = 0, then $t \in Z$.

Theorem 3.5. Let N be a prime near-ring admitting a generalized n-derivation f with associated n-derivation d of N and $U_1, U_2, ..., U_n$ be a nonzero semigroup left ideals such that $d(Z, U_2, ..., U_n) \neq \{0\}$. If $g: \underbrace{N \times N \times ... \times N}_{n-times} \rightarrow N$ is a map such that $[f(U_1, U_2, ..., U_n), g(U_1, U_2, ..., U_n)] = \{0\}$ then $g(U_1, U_2, ..., U_n) \subseteq \mathbb{Z}$

Z.

Proof. Taking $g(U_1, U_2, \ldots, U_n)$ instead of t in Theorem 3.4, we get required result.

Theorem 3.6. Let N be a prime near-ring admitting a generalized n-derivation f with associated n-derivation d of N and $U_1, U_2, ..., U_n$ be a nonzero semigroup left ideals such that $d(Z, U_2, ..., U_n) \neq \{0\}$. If g is a nonzero generalized n-derivation of N such that $[f(U_1, U_2, ..., U_n), g(U_1, U_2, ..., U_n)] = \{0\}$, then N is a commutative ring.

Proof. By Theorem 3.5 , we get $g(U_1, U_2, ..., U_n) \subseteq Z$, by theorem 3.1 we conclude that N is commutative ring .

Theorem 3.7. Let f and g be generalized n-derivations of prime near-ring N with associated nonzero n-derivations d and h of N respectively such that $f(x_1, x_2, \dots, x_n)h(y_1, y_2, \dots, y_n) = -g(x_1, x_2, \dots, x_n)d(y_1, y_2, \dots, y_n)$ for all

 $x_1,y_1 \in U_1, x_2$, $y_2 \in U_2, \ldots, x_n$, $y_n \in Un$, where U_1, U_2, \ldots, U_n be a nonzero ideals. Then (N,+) is an abelian group.

Proof. For all $x_1, y_1 \in U_1, x_2$, $y_2 \in U_2, \ldots, x_n$, $y_n \in Un$ we have ,

 $f(x_1,x_2,\cdots,x_n)h(y_1,y_2,\cdots,y_n) = -g(x_1,x_2,\cdots,x_n)d(y_1,y_2,\cdots,y_n).$ We substitute $y_1+y'_1$ for y_1 , where $y_1' \in U_1$, in preceding relation thereby obtaining,

 $f(x_1, x_2, \dots, x_n)h(y_1 + y'_1, y_2, \dots, y_n) + g(x_1, x_2, \dots, x_n)d(y_1 + y'_1, y_2, \dots, y_n) = 0 \text{ ; hence we get}$

 $\begin{array}{l} f(x_1, x_2, \cdots, x_n)h(y_1, y_2, \cdots, y_n) + f(x_1, x_2, \cdots, x_n)h(y_1', y_2, \cdots, y_n) \ - \ f(x_1, x_2, \cdots, x_n)h(y_1, y_2, \cdots, y_n) \ - \ f(x_1, x_2, \cdots, x_n)h(y_1', y_2, \cdots, y_n) \\ = 0 \ ; \ \ thus \ we \ get \end{array}$

 $\begin{array}{l} f(x_1, x_2, \cdots, x_n)(h(y_1, y_2, \cdots, y_n) + h(y_1', y_2, \cdots, y_n) - h(y_1, y_2, \cdots, y_n) - h(y_1', y_2, \cdots, y_n)) = 0 \ , \ hence \ f(x_1, x_2, \cdots, x_n)h(y_1 + y_1' - y_1' + y_1', y_2, \cdots, y_n) = 0 \ . \ hence \ f(x_1, x_2, \cdots, x_n)h(y_1 + y_1' - y_1' + y_1', y_2, \cdots, y_n) = 0 \ . \ hence \ f(x_1, x_2, \cdots, x_n)h(y_1 + y_1' - y_1' + y_1', y_2, \cdots, y_n) = 0 \ . \ hence \ f(x_1, x_2, \cdots, x_n)h(y_1 + y_1' - y_1' + y_1', y_2, \cdots, y_n) = 0 \ . \ hence \ f(x_1, x_2, \cdots, x_n)h(y_1 + y_1' - y_1' + y_1'$

 $\begin{array}{l} h(y_1+y_1'-y_1+y_1',y_2,\cdots,y_n)=0 \text{ ,that is } h((y_1,y_1'),y_2,\cdots,y_n)=0 \text{ , replacing } (y_1,y_1') \text{ by } y_1'(y_1,y_1') \text{ in previous relation and used it again we get } h(y_{1,}'y_2,\cdots,y_n)(y_1,y_1')=0 \text{ , by lemma } 2.16 \text{ we conclude that } (y_1,y_1')=0 \text{ ,i.e.; } y_1+y_1'=y_1'+y_1 \text{ for all } y_1,y_1'\in U_1 \text{ . Now let } x,y\in N \text{ then } ux \text{ , } uy\in U_1 \text{ for all } u\in U_1 \text{ , so we have } ux+uy=uy+ux \text{ , hence } ux+uy=0 \text{ , i.e.; } u(x+y-x-y)=0 \text{ for all } u\in U_1 \text{ , that is } U_1(x+y-x-y)=0 \text{ ,by lemma } 2.1 \text{ we conclude } x+y-x-y=0 \text{ , then } (N,+) \text{ is an abelain group .} \end{array}$

Corollary 3.16([3]Theorem 3.15). Let f and g be generalized n-derivations of prime near-ring N with associated nonzero n-derivations d and h of N respectively such that $f(x_1, x_2, \dots, x_n)h(y_1, y_2, \dots, y_n) = -g(x_1, x_2, \dots, x_n)d(y_1, y_2, \dots, y_n)$ for all $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in N$. Then (N, +) is an abelian group.

Corollary 3.17([2]**Theorem 3.4**). Let d and h be apermutting n-derivations of prime near-ring N such that $d(x_1, x_2, \dots, x_n)h(y_1, y_2, \dots, y_n) = -h(x_1, x_2, \dots, x_n)d(y_1, y_2, \dots, y_n)$ for all $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in N$. Then (N, +) is an abelian group.

Recently Öznur Gölbasi ([8],Theorem 3.2) showed that if f is a generalized derivation of a prime near-ring N with associated nonzero derivation d such that $f([x, y]) = \pm [x, y]$ for all $x, y \in N$, then N is a commutative ring Mohammad Ashraf and Mohammad Asham Siddeeque ([3],Theorem 3.3) extended this result in the setting of left generalized n-derivations in prime near-rings by proving that if N is a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N such that $f([x_1, x'_1], x_2, \ldots, x_n) = \pm [x_1, x'_1]$, for all $x'_1, x_1, x_2, \ldots, x_n \in N$, then N is commutative ring. We have extended these results in the setting of left generalized n-derivations and semigroup ideals in prime near-rings by establishing the following theorem.

Theorem 3.8 Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $f([u_1, u'_1], u_2, \ldots, u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Proof. Since $f([u_1, u'_1], u_2, ..., u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$. Replacing u'_1 by $u_1u'_1$ in preceding relation and using it again we get $d(u_1, u_2, ..., u_n) [u_1, u'_1] = 0$, i.e.;

 $d(u_1, u_2, \ldots, u_n)u_1u'_1 = d(u_1, u_2, \ldots, u_n)u'_1u_1$

(7)

Replacing u'_1 by u'_1r , where $r\in N$, in relation (7) and using it again we get $d(u_1, u_2, \ldots, u_n)$ u'_1 $[u_1, r] = 0$, i.e.; $d(u_1, u_2, \ldots, u_n)$ U_1 $[u_1, r] = \{0\}$, By using lemma 2.1, we conclude that for each $u_1 \in U_1$ either $u_1 \in Z$ or $d(u_1, u_2, \ldots, u_n) = 0$, but using lemma 2.5 lastly we get $d(u_1, u_2, \ldots, u_n) \in Z$ for all $u_1 \in U_1$, $u_2 \in U_2, \ldots, u_n \in U_n$, i.e., $d(U_1, U_2, \ldots, U_n) \subseteq Z$. Now by using lemma 2.6 we find that N is commutative ring.

Corollary 3.18 ([3] Theorem 3.3.). Let N be a prime near-ring admitting a nonzero left generalized nderivation f with associated n-derivation d of N. If $f([x_1, x'_1], x_2, ..., x_n) = \pm [x_1, x'_1]$, for all $x'_1, x_1, x_2, ..., x_n \in N$, then N is commutative ring.

Theorem 3.9 Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $f(u_1 \circ u'_1, u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Proof. We have $f(u_1 \circ u'_1, u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$. Substituting $u_1 u'_1$ for u'_1 we obtain $f(u_1(u_1 \circ u'_1), u_2, \ldots, u_n) = 0$, i.e.; $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) + u_1 f((u_1 \circ u'_1), u_2, \ldots, u_n) = 0$. By hypothesis we get $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) = 0$, i.e.; $d(u_1, u_2, \ldots, u_n) u_1 u'_1 = -d(u_1, u_2, \ldots, u_n) u'_1 u_1$ (8)

Putting $u'_{1}z$ for u'_{1} , where $z \in N$, in (8) we have $d(u_{1}, u_{2}, \ldots, u_{n}) u_{1}u'_{1}z = -d(u_{1}, u_{2}, \ldots, u_{n}) u'_{1}zu_{1}$, and using (8) again we get($-d(u_{1}, u_{2}, \ldots, u_{n}) u'_{1}u_{1})z = -d(u_{1}, u_{2}, \ldots, u_{n}) u'_{1}zu_{1}$ that is $d(u_{1}, u_{2}, \ldots, u_{n}) u'_{1}(-u_{1})z + d(u_{1}, u_{2}, \ldots, u_{n}) u'_{1}zu_{1} = 0$. Now replacing u_{1} by $-u_{1}$ in preceding relation we have $d(-u_{1}, u_{2}, \ldots, u_{n}) u'_{1}u_{1}z + d(-u_{1}, u_{2}, \ldots, u_{n}) u'_{1}z(-u_{1}) = 0$, i.e.; $d(-u_{1}, u_{2}, \ldots, u_{n}) u'_{1}[u_{1}z, z u_{1}] = 0$, that is $d(-u_{1}, u_{2}, \ldots, u_{n}) U_{1}[u_{1}z, z u_{1}] = 0$. For each fixed $u_{1} \in U_{1}$ lemma 2.2 yields either $u_{1} \in Z$ or $d(-u_{1}, u_{2}, \ldots, u_{n}) = 0$. If the first case holds then by lemma 2.5 we conclude that $d(u_{1}, u_{2}, \ldots, u_{n}) \in Z$ and second case implies $-d(u_{1}, u_{2}, \ldots, u_{n}) = 0$ that is $0 = d(u_{1}, u_{2}, \ldots, u_{n}) \in Z$. Combining the both case we get $d(u_{1}, u_{2}, \ldots, u_{n}) \in Z$ for all $u_{1} \in U_{1}, u_{2} \in U_{2}, ..., u_{n} \in U_{n}$, i.e.; $d(U_{1}, U_{2}, \ldots, U_{n}) \subseteq Z$, thus by lemma 2.6 we find that N is commutative ring.

Corollary 3.18([3] Theorem 3.4). Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of . If $f(x \circ y, r_2, ..., r_n) = 0$, for all x, y, $r_2, ..., r_n \in N$, then N is commutative ring.

The conclusion of Theorem 3.8 remain valid if we replace the product $[u_1, u'_1]$ by

 $u_1 \circ u'_1$. In fact , we obtain the following results .

theorem 3.10 Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $f(u_1 \circ u'_1, u_2, \ldots, u_n) = \pm (u_1 \circ u'_1)$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is a commutative ring.

Proof. We have $f(u_1 \circ u'_1, u_2, \ldots, u_n) = \pm u_1 \circ u'_1$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$. Substituting $u_1 u'_1$ for u'_1 we obtain $f(u_1(u_1 \circ u'_1), u_2, \ldots, u_n) = \pm u_1(u_1 \circ u'_1)$, i.e.; $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) + u_1 f((u_1 \circ u'_1), u_2, \ldots, u_n) = \pm u_1(u_1 \circ u'_1)$. By hypothesis we get $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) = 0$, i.e.; $d(u_1, u_2, \ldots, u_n) u_1 u'_1 = -d(u_1, u_2, \ldots, u_n) u'_1 u_1$ which is identical with the relation (8) in theorem 3.9. Now arguing in the same way in the theorem we conclude that N is a commutative ring.

Corollary 3.19 ([3] Theorem 3.5) Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N.. If $f(x \circ y, r_2, ..., r_n) = \pm (x \circ y)$, for all x, y, $r_2, ..., r_n \in N$, then N is a commutative ring.

Theorem 3.11 Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $f([u_1, u'_1], u_2, \ldots, u_n) = \pm (u_1 \circ u'_1)$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Proof. we have $f([u_1, u'_1], u_2, ..., u_n) = \pm (u_1 \circ u'_1)$. Substituting $u_1 u'_1$ for u'_1 we obtain $f(u_1 [u_1, u'_1], u_2, ..., u_n) = \pm u_1(u_1 \circ u'_1)$, i.e.; $d(u_1, u_2, ..., u_n) [u_1, u'_1] + u_1f([u_1, u'_1], u_2, ..., u_n) = \pm u_1(u_1 \circ u'_1)$. By hypothesis we get $d(u_1, u_2, ..., u_n) [u_1, u'_1] = 0$, i.e.; $d(u_1, u_2, ..., u_n) u_1 u'_1 = d(u_1, u_2, ..., u_n) u'_1u_1$ which is identical with the relation (7). Now arguing in the same way in the Theorem 3.8 we conclude that N is a commutative ring.

Corollary 3.20([3] Theorem 3.6) Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N.. If $f([x, y], r_2, ..., r_n) = \pm (x \circ y)$, for all $x, y, r_2, ..., r_n \in N$, then N is a commutative ring.

Theorem 3.12. Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $f((u_1 \circ u'_1), u_2, \ldots, u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Proof. We have $f(u_1 \circ u'_1, u_2, ..., u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$. Substituting $u_1 u'_1$ for u'_1 we obtain $f(u_1(u_1 \circ u'_1), u_2, ..., u_n) = \pm u_1[u_1, u'_1]$, i.e.; $d(u_1, u_2, ..., u_n) (u_1 \circ u'_1) + u_1f((u_1 \circ u'_1), u_2, ..., u_n) = \pm u_1[u_1, u'_1]$. By hypothesis we get $d(u_1, u_2, ..., u_n) (u_1 \circ u'_1) = 0$, i.e.; $d(u_1, u_2, ..., u_n) u_1 u'_1 = -d(u_1, u_2, ..., u_n) u'_1 u_1$ which is identical with (8) .Now arguing in the same way in the theorem 8.9 we conclude that N is a commutative ring.

Corollary 3.21([3] Theorem 3.7) Let N be a prime near-ring admitting a nonzero left generalized n-derivation f with associated n-derivation d of N. If $f((x \circ y), r_2, ..., r_n) = \pm [x, y]$, for all x, y, $r_2, ..., r_n \in N$, then N is a commutative ring.

Theorem 3.13 Let N be a prime near-ring admitting a nonzero generalized n-derivation f with associated n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero ideals of N. If f($[u_1, u'_1], u_2, \ldots, u_n$) $\in \mathbb{Z}$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, then N is commutative ring.

Proof . We have

 $f([u_1, u'_1], u_2, ..., u_n) \in Z \text{ for all } u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n.$ (9)

(1) If $Z = \{0\}$ then $d([u_1, u'_1], u_2, ..., u_n) = 0$ for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$.

By lemma 2.7 , we conclude that N is a commutative ring .

(2) If $Z \neq \{0\}$, replacing u_1' by zu_1' in (9) where $z \in Z$, we get $f([u_1, z u_1'], u_2, ..., u_n) = f(z[u_1, u'_1], u_2, ..., u_n) \in Z$ for all u_1 , $u'_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$, $z \in Z$. That is mean $f(z[u_1, u'_1], u_2, ..., u_n)$ $r = rf(z[u_1, u'_1], u_2, ..., u_n)$ for all u_1 , $u'_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$, $z \in Z$, $r \in N$. By using lemma 2.12 we get

 $d(z, u_2, ..., u_n)[u_1, u'_1]r + zf([u_1, u'_1], u_2, ..., u_n)r = rd(z, u_2, ..., u_n)[u_1, u'_1] + rzf([u_1, u'_1], u_2, ..., u_n)$

Using (9) the previous equation implies

 $[\ d(z, u_2, ..., u_n)[\ u_1 \ , \ u_1'] \ , r] = 0 \ for \ all \ u_1 \ , \ u_1' \in U_1 \ , u \ _2 \in \ U_2, ..., u_n \ \in U_n \ \ , z \ \in \ Z \ , \ r \ \in \ N \ \ .$

Accordingly, $0 = [d(z,u_2,...,u_n)[u_1, u'_1], r] = d(z,u_2,...,u_n)[[u_1, u'_1], r]$ for all $r \in N$. Then we get $td(z,u_2,...,u_n)[[u_1, u'_1], r] = 0$ for all $t \in N$, so by lemma 2.5 we get

for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n, z \in Z, r \in N$

 $d(z,u_2,...,u_n)N[[u_1, u'_1],r] = 0$

Primeness of N yields either $d(Z, U_2, ..., U_n)=0$ or $[[u_1, u'_1], r] = 0$ for all $u_1, u'_1 \in U_1, r \in N$.

Assume that $[[u_1, u'_1], r] = 0$ for all $u_1, u'_1 \in U_1, r \in N$

Replacing u'_1 by $u_1 u'_1$ in (10) yields

 $[[u_1, u_1u'_1], r] = 0$ and therefore $[u_1[u_1, u'_1], r] = 0$, hence $[u_1, u'_1][u_1, r] = 0$ for all $u_1, u'_1 \in U_1, r \in N$, so we get

(9)

(10)

 $[u_1, u'_1]N[u_1, r] = 0$ for all $u_1, u'_1 \in U_1, r \in N$.

(11)

Primeness of N implies that either $[u_1, u'_1] = 0$ for all $u_1, u'_1 \in U_1$, or $u_1 \in Z$ for all $u_1 \in U_1$. If $[u_1, u'_1] = 0$ for all $u_1, u'_1 \in U_1$, ue the vertex of $([u_1, u'_1], u_2, ..., u_n) = 0$ for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$ and by lemma 2.7 we get the required result, now assume that $u_1 \in Z$ for all $u_1 \in U_1$, then by lemma 2.5 we obtain that $d(U_1, U_2, ..., U_n) \subseteq Z$. Now by using lemma 2.6 we find that N is commutative ring.

On the other hand, if $d(Z, U_2, ..., U_n) = 0$, then $d(d([u_1, u'_1], u_2, ..., u_n), u_2, ..., u_n) = 0$ for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, replace u_1 by $u_1 u'_1$ in the previous equation we get

 $\begin{array}{l} 0 \ = \ d(d([u_1,u_1u'_1],u_2,...,u_n),u_2,...,u_n) \ = \ d(d(u_1[u_1,u'_1],u_2,...,u_n),u_2,...,u_n) \ = \ d(d(u_1,u_2,...,u_n)[\ u_1 \ , u'_1] \ + \ u_1d([u_1 \ , u'_1],u_2,...,u_n),u_2,...,u_n) \ = \ d(d(u_1,u_2,...,u_n)[\ u_1 \ , u'_1],u_2,...,u_n) \ + \ d(u_1d([u_1 \ , u'_1] \ , u_2,...,u_n),u_2,...,u_n) \ = \ d(d(u_1,u_2,...,u_n),u_2,...,u_n) \ = \ d(u_1,u_2,...,u_n) \ = \ d(u_1,u_2,...,$

 $d(d(u_1, u_2, ..., u_n), u_2, ..., u_n)[u_1, u'_1] + 2d(u_1, u_2, ..., u_n)d([u_1, u'_1], u_2, ..., u_n) = 0$ (12)

Replace u_1 by $[x_1,y_1]$ in (12), where $x_1,y_1 \in U_1$, we get $2d([x_1,y_1],u_2,...,u_n)d([[x_1,y_1],u_1'], u_2,...,u_n) = 0$ for all x_1,y_1 , $u_1' \in U_1, u_2 \in U_2,..., u_n \in U_n$, but N is 2-torsion free so we obtain $d([x_1,y_1],u_2,...,u_n)d([[x_1,y_1], u_1'], u_2,...,u_n) = 0$ for all x_1,y_1 , $u_1' \in U_1, u_2 \in U_2,..., u_n \in U_n$.

From(9) we get $d([x_1,y_1],u_2,...,u_n)Nd([[x_1,y_1], u_1'], u_2,...,u_n) = 0$, primeness of N yields

either $d([x_1,y_1],u_2,...,u_n) = 0$ for all $x_1,y_1 \in U_1$, $u_2 \in U_2,...,u_n \in U_n$ and by lemma 2.7 we conclude that N is commutative ring.

or $d([[x_1,y_1], u_1'], u_2,..., u_n) = 0$ for all $x_1, y_1, u_1' \in U_1, u_2 \in U_2, ..., u_n \in U_n$, hence $0 = d(([x_1,y_1], u_1' - u_1' [x_1,y_1]), u_2,..., u_n) = d([x_1,y_1], u_1', u_2,..., u_n) - d(u_1' [x_1,y_1], u_2,..., u_n) = [x_1,y_1]d(u_1', u_2,..., u_n) + d([x_1,y_1], u_2,..., u_n) u_1' - (u_1'd([x_1,y_1], u_2,..., u_n) + d(u_1', u_2,..., u_n) (x_1,y_1])$, using(9) in the last equation yields for all $x_1, y_1, u_1' \in U_1, u_2 \in U_2, ..., u_n \in U_n$. $[x_1,y_1]d(u_1', u_2,..., u_n) = d(u_1', u_2,..., u_n) [x_1,y_1]$ (13)

Let $x_2, y_2, t \in U_1$, then $t[x_2, y_2] \in U_1$, hence we can taking $t[x_2, y_2]$ instead of u_1' in (13) to get $[x_1, y_1]d(t[x_2, y_2], u_2, ..., u_n) = d(t[x_2, y_2], u_2, ..., u_n) [x_1, y_1]$, hence $[x_2, y_2]d(t[x_2, y_2], u_2, ..., u_n) = d(t[x_2, y_2], u_2, ..., u_n) [x_2, y_2]$, therefore

 $[x_2,y_2](d(t,u_2,...,u_n)[x_2,y_2] + [x_2,y_2]td([x_2,y_2], u_2,...,u_n) = d(t,u_2,...,u_n)[x_2,y_2]^2 + td([x_2,y_2], u_2,...,u_n) [x_2,y_2]$, using (12)and(8) implies

 $d([x_2,y_2],u_2,...,u_n) [x_2,y_2]t = d([x_2,y_2],u_2,...,u_n)t[x_2,y_2]$, so we have

 $d([x_2,y_2],u_2,...,u_n)$ $[[x_2,y_2],t] = 0$. i.e ; $d([x_2,y_2],u_2,...,u_n)N[[x_2,y_2],t] = \{0\}$ for all $t \in U_1$. Primeness of N yields that $d([x_2,y_2],u_2,...,u_n)=0$ or $[[x_2,y_2],t] = 0$ for all $t \in U_1$, if $d([x_2,y_2],u_2,...,u_n) = 0$ then by lemma 2.7 we conclude that N is commutative ring.

Now, when $[[x_2,y_2],t]=0$ for all $t \in U_1$, Replacing y_2 by x_2y_2 in previous equation yields

 $[[x_2, x_2y_2], t] = 0$ and therefore $[x_2[x_2, y_2], t] = 0$, hence $[x_2, y_2][x_2, t] = 0$ for all $x_2, y_2, t \in U_1$, so we get $[x_2, y_2] \cup U_1[x_2, t] = 0$, by lemma 2.1 we get $[x_2, y_2] = 0$ for all $x_2, y_2 \in U_1$ so we have $d([x_2, y_2], u_2, ..., u_n) = 0$ then by lemma 2.7 we find that N is commutative ring.

Corollary 3.22([3] Theorem 3.8) Let N be a prime near-ring admitting n-derivation f with associated n-derivation d of N. If $f([x, y], r_2, \ldots, r_n) \in Z$, for all x, y, $r_2, \ldots, r_n \in N$, then N is a commutative ring or $d(Z,N,..,N) = \{0\}$.

References

- [1]. Ashraf, M., Ali, A. and Rani, R., On generalized derivations of prime rings, South east Asian Bull .Math., 29 (2005), 669–675.
- [2]. Ashraf, M. and Siddeeque, M. A., On permuting n-derivations in near-rings, Commun.Korean.Math.Soc.,28(2013),No.4,pp.697–707.
- [3]. Asraf.M. and Siddeeque.M.A, "On generalized n-derivations in near-rings, Palestine journal of mathematics, V.3 (2014) 468 -480.
- [4]. Ashraf.M., Sideeque.M.A and Parveen.N " On semigroup ideals and n-derivations in near-rings " Science Direct Journal of Taibah University for Science, V. 9 (2015) 126 –132.
- [5]. Bell ,H.E. and Mason, G., On derivations in near-rings, Near-rings and Near-fields (G.Betsch editor), North-Holland /American Elsevier, Amsterdam 137, (1987), 31 – 35.
- [6]. Bell, H.E., On derivations in near-rings II, Kluwer Academic Publishers Dordrecht, Vol.426,(1997),191–197.
- [7]. Gölbasi,Öznur., Notes on prime near-rings with generalized derivation ,South east Asian Bulletin of Mathematics , 30 (2006) , 49–54.
- [8]. Gölbasi ,Öznur.,On generalized derivations of prime near-rings , Hacettepe Journal of Mathematics and Statistics ,Vol 35(2) , (2006) , <u>173–180</u>.
- [9]. Gölbasi,Öznur., On prime and semiprime near-rings with generalized derivations, Quaestiones Mathematicae ,Vol.33,(2010),387–390.
- [10]. Kamal, A.M and Al-Shaalan, Commutativity of rings and near-rings with generalized derivations, Indian J.Pure Appl.Math., 44(4)(2013):473-496.
- [11]. Pilz, G., Near-rings ,2nded.,North Holland/ American Elsevier, Amsterdam , (1983).