On - Acyclic Domination - Parameter

N. Venkataraman
Gac Ooty 18.4.2015

Abstract

Let G be a graph. The cardinalty of a minimum acyclic dominating set of G, is called the acyclic domination number of G and is denoted by $\gamma_{a}(G)$. A subset E_{l} of $E(G)$ is called an edge-vertex dominating set if for every vertex w in G, their exists an edge in E_{1} which dominates w. The minimum cardinality of an edgevertex dominating set is called the edge-vertex domination number of G and is denoted by $\gamma_{e v}$. An edge $e=u v$ dominates a vertex $w \in V(G)$ if $w \in N[u] \cup N[v]$.

I. Introduction

Definition: A subset E_{1} of $E(G)$ is called an edge-vertex dominating set if for every vertex w in G, their exists an edge in E_{1} which dominates w.
The minimum cardinality of an edge-vertex dominating set is called the edge-vertex domination number of G and is denoted by γ_{ev}.

Example:

$\mathrm{K}_{4} \quad\left\{\mathrm{e}_{1}\right\}$ is an evd-set of $\mathrm{K}_{4}, \gamma_{\mathrm{ev}}\left(\mathrm{K}_{4}\right)=1$.

Definition:

et G be a graph. The cardinalty of a minimum acyclic dominating set of G , is called the acyclic domination number of G and is denoted by $\gamma_{\mathrm{a}}(\mathrm{G})$.

Observation

Let E_{1} be a minimum evd-set.Then $\mathrm{V}\left(\left\langle\mathrm{E}_{1}\right\rangle\right)$ is an acyclic dominating set.
Therefore
$\gamma_{\mathrm{a}}(\mathrm{G}) \leq\left|\mathrm{V}\left(\left\langle\mathrm{E}_{1}\right\rangle\right)\right|$.
(ie) $\left|\mathrm{E}_{1}\right|<\left|\mathrm{V}\left(<\mathrm{E}_{1}>\right)\right|$.
(ie) $\left.\gamma_{\mathrm{ev}}(\mathrm{G})<\mid \mathrm{V}\left(<\mathrm{E}_{1}\right\rangle\right) \mid$.
Observation
In $\mathrm{tk}_{2}, \gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{t}=\gamma_{\mathrm{ev}}(\mathrm{G})$.
ii

$$
\text { Remark: } \quad P_{6}
$$

$\left\{\mathrm{e}_{2}, \mathrm{e}_{5}\right\}$ is a minimum evd-set and $\{2,5\}$ is a minimum acyclic dominat-ing set. Therefore, U $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=2 . \quad \mathrm{e} \in \mathrm{E}\left(\mathrm{H}_{\mathrm{i}}\right)$

Remark : In $\mathrm{P}_{7}, \gamma_{\mathrm{ev}}(\mathrm{G})=2$ and $\gamma_{\mathrm{a}}(\mathrm{G})=3$. Therefore $\gamma_{\mathrm{ev}}(\mathrm{G})<\gamma_{\mathrm{a}}(\mathrm{G})$.

Theorem

Let G be a graph without isolates.Then $\gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G})$.
Pf : Let D be a minimum acyclic dominating set. Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\gamma \mathrm{a}}\right\}$.Since
G has no isolates, take edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots ., \mathrm{e}_{\gamma \mathrm{a}}$ incident at $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\gamma \mathrm{a}}$ respec-tively. Note that $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \ldots, \mathrm{e}_{\gamma \mathrm{a}}$ need not be distinct. clearly the distinct edges from $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\gamma \mathrm{a}}$ form a ev-dominating set. Therefore $\gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G})$.

Note : Let D be a minimum acyclic dominating set then D is an independent set.
Observation : Let $\gamma_{\mathrm{a}}(\mathrm{G})=\gamma_{\mathrm{ev}}(\mathrm{G})$. Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots . ., \mathrm{u}_{\text {ya }}\right.$ be a minimum acyclic domi-nating set. Let $\mathrm{E}_{1}=\left\{\mathrm{e}_{1}\right.$, $\mathrm{e}_{2}, \ldots . ., \mathrm{e}_{\text {rak }}$, be a minimum evd-set. Then $\left\langle\mathrm{E}_{1}\right\rangle$ does not contain P_{4}.

Pf :
For suppose
iii
${ }^{\mathrm{P}} 4$

is a subgraph of $\left\langle\mathrm{E}_{1}\right\rangle$.
Then $N\left[e_{2}\right] \subseteq N\left[e_{1}\right] \cup N\left[e_{3}\right]$. Therefore $E_{1}-\left\{e_{2}\right\}$ is a evd-set, $a \Rightarrow \Leftarrow$. If $<E_{1}>$ containsP P_{3} :

Then the vertices, 1 and 3 have private neighbours.If E_{1} contains a star, then each of the non-central vertices must have a private neighbour.

Let G_{1} be a component of $\left\langle E_{1}\right\rangle$. Then $\operatorname{diam}\left(G_{1}\right) \leq 2$. For, if $\operatorname{diam}\left(G_{1}\right) \geq 3$, then G_{1} ontains a $P_{4}, a \Rightarrow \Leftarrow$.SinceG G_{1}, is connected and $\operatorname{diam}\left(\mathrm{G}_{1}\right) \geq 2$,
G_{1} is a star.
Therefore, Every component of $\left\langle\mathrm{E}_{1}\right\rangle$ is a star. The non-central vertices of every component of $\left\langle\mathrm{E}_{1}\right\rangle$ must have a private neighbour.

Theorem

Let H be any graph with $V(H)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. Let $u_{i 1}, u_{i 2}, \ldots, u_{i k i}$ be adjacent to $u_{i}, 1 \leq i \leq t . \operatorname{LetG}{ }_{i 1}, G_{i 2}, \ldots . ., G_{i k i}$, be any graphs in which $\mathrm{u}_{\mathrm{i} 1}, \mathrm{u}_{\mathrm{i} 2}, \ldots, \mathrm{u}_{\mathrm{ir}}$, are full degree vertices. Then $\gamma_{\mathrm{a}}(\mathrm{G})=\gamma_{\mathrm{ev}}(\mathrm{G})$.

Pf : Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ be a minimum acyclic dominating set of G , where $\mathrm{t}=\gamma_{\mathrm{a}}(\mathrm{G})$. Let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots ., \mathrm{H}_{\mathrm{k}}(\mathrm{k} \geq$ 1) be the components of $\langle D\rangle$. If H_{i} iv
contains a single-vertex then take any edge passing through that vertex. If H_{i} contains 2 vertices, then take the
edge in H_{i}. If H_{i} contains 3 or more ver- tices then select set of edges $E_{1 i}$ from $E(H i)$ such that $N[E i]=N[e]$. The resulting set of edges is an evd-set of G.

Therefore,

$\gamma_{\mathrm{G}}<\gamma_{\mathrm{a}}(\mathrm{G})$, if \exists atleastone H_{i} which contains two or more vertices.
Since $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$, each component of $\langle\mathrm{D}\rangle$ is k_{1},
Therefore,
$\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$.
Also, every γ_{a}-set of G is independent.
The converse of the above thm is not true.

Example

$\gamma_{\mathrm{a}}(\mathrm{G})=3, \gamma_{\mathrm{ev}}(\mathrm{G})=2$
$D_{1}=\{2,3,4\}, D_{2}=\{2,3,8\}, D_{3}=\{3,6,8\}, D_{4}=\{2,7,8\}$.
$D_{1}, D_{2}, D_{3}, D_{4}$ are the only minimum dominating sets of G.
Therefore $\gamma(G)=i(G)=3$. But $\gamma_{e v}(G)=2$. Since $\left\{\mathrm{e}_{1}, \mathrm{e}_{9}\right\}$ is a minimum v
evd-set.
Therefore even if every γ_{a}-set of a graph is independent, it may not imply that $\gamma_{\mathrm{a}}(\mathrm{G})=\gamma_{\mathrm{ev}}(\mathrm{G})$.(In the above example every $\gamma_{\mathrm{a}}-$ set of G is independent)

Theorem

Let G be a simple graph without isolates. $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$ iff \exists aminimumevd- set E_{1}, satisfying the following, in each component of $\left\langle\mathrm{E}_{1}\right\rangle$, the central ver-tices has no private neighbour in $\mathrm{V}-\mathrm{V}\left(\left\langle\mathrm{E}_{1}\right\rangle\right)$.

Pf :

Suppose G is a simple graph without isolates satisfying $\gamma_{\mathrm{ev}}(G)=\gamma_{\mathrm{a}}(\mathrm{G})$. Since $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$, each component of $\langle\mathrm{D}\rangle$ is k_{1},
Therefore $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$.
Also, every γ_{a}-set of G is independent.
Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2} \ldots ., \mathrm{u}_{\gamma} \mathrm{a}\right\}$ be a γ_{a}-set of G. Let $\mathrm{E}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots . ., \mathrm{e}_{\gamma}\right.$ a $\}$ be a set of edges such that e_{i} is incident with $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \gamma_{\mathrm{a}}$. Let v_{i} be the other end of u_{i}. Note that $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . \mathrm{v}_{\gamma \mathrm{a}}$ need not be distinct. Now, E_{1} is a evd-set ofcardinality γ_{a}. Since $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$. E_{1} is a minimum evd-set. Let H be a component of $\left\langle\mathrm{E}_{1}\right\rangle$. Then \exists some V_{i}, $1 \leq i \leq \gamma_{a}$ such that H is a star with center v_{i}. Since $\left\{u_{1}, u_{2}, \ldots . ., u_{\gamma_{a}}\right\}$ is a γ_{a}-set of G, V_{i} has no private neighbour in $\mathrm{V}-\mathrm{V}\left(\left\langle\mathrm{E}_{1}\right\rangle\right)$. Therefore G satisfies the condition that G has a minimum evd-set with the condition specified in the thm. Conversly,
Suppose G has a minimum evd-set with the condition specified in the thm. Let
$\mathrm{E}_{1} \subset \mathrm{E}(\mathrm{G})$ be a minimum evd-set with the condition specified in he thm. Let
G_{1} be a component of $\left(\left\langle E_{1}\right\rangle\right)$. Then $\operatorname{diam}(G) \leq 2$. For, if diam $\left(G_{1}\right) \geq 3$, then G_{1}, contains a P_{4}, say
vi

Then $\mathrm{E}_{1}-\mathrm{e}$ is also an evd-set, $\mathrm{a} \Rightarrow \Leftarrow$ totheminimalityof E_{1}.
Therefore, $\operatorname{diam}\left(G_{1}\right) \leq 2$. Since G_{1} is a tree and $\left|V\left(G_{1}\right)\right| \geq 2, G_{1}$ is a star. Let D be the set of all non-central vertices from the components of ($\left\langle\mathrm{E}_{1}\right\rangle$). Then D is an acyclic dominating set of cardinalty $\gamma_{\mathrm{ev}}(\mathrm{G})$.

Therefore
$\gamma_{\mathrm{a}}(\mathrm{G}) \leq \gamma_{\mathrm{ev}}(\mathrm{G})$
But
$\gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G})$
Therefore
$\gamma_{\mathrm{a}}(\mathrm{G})=\gamma_{\mathrm{ev}}(\mathrm{G})$

Remark :

Since $\gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma(\mathrm{G}) \leq \gamma_{\mathrm{G}}$, if $\operatorname{gamma}_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$ then $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$.

Preposition: - 1

For any graph G without isolates $\gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G}) \leq \mathrm{i}(\mathrm{G})$. If $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$, then $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$. Therefore if $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$ then $\gamma_{\mathrm{ev}}(\mathrm{G})=$
$\gamma(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$.
There are graphs in which $\gamma_{\mathrm{ev}}(\mathrm{G})<\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$.
For consider G:
vii

$\gamma_{\mathrm{a}}(\mathrm{G})=3, \gamma_{\mathrm{ev}}(\mathrm{G})=2$.
$D_{1}=\{2,3,4\}, D_{2}=\{2,3,8\}, D_{3}=\{3,6,8\}, D_{4}=\{2,7,8\} . D_{1}$,
D_{2}, D_{3}, D_{4} are the only minimum dominating sets of G. Therefore $\gamma(G)=i(G)=\gamma_{a}(G)=3$. But $\gamma_{\mathrm{ev}}(G)=2$. Since $\left\{e_{1}, e_{9}\right\}$ is a minimum evd-set. Therefore, even if every γ_{a}-set of a graph is independent, it may not imply that $\gamma_{\mathrm{a}}(\mathrm{G})=\gamma_{\mathrm{ev}}(\mathrm{G})$.(In the above examples every γ_{a}-set of G is indepen-dent). Observe that the above graph contains $\mathrm{k}_{1,3}$ as an induced subgraph and still $\gamma=\gamma_{\mathrm{a}}=\mathrm{i}$.

Preposition-2 :

If $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})$, then $\gamma_{\mathrm{ev}}(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{i}(\mathrm{G})$ and every γ_{a}-set of G is independent. But the converse is not true.
(ie)
\exists graphsinwhichevery γ_{a}-set is independent, but $\gamma_{\mathrm{ev}}(\mathrm{G})<\gamma_{\mathrm{a}}(\mathrm{G})$.
The graph considered
For Preposition-1 is such a graph.

Example: 1
There are graphs in which $\gamma_{\mathrm{ev}}(\mathrm{G})<\gamma_{\mathrm{a}}(\mathrm{G})<\mathrm{i}(\mathrm{G})$.
For ,let
G:
viii

$\gamma \quad(\mathrm{G})=2, \gamma_{\mathrm{a}}(\mathrm{G})=2, \gamma_{\mathrm{ev}}(\mathrm{G})=1, \mathrm{i}(\mathrm{G})=3$
Therefore,
$\gamma_{\mathrm{ev}}(\mathrm{G})<\gamma(\mathrm{G})=\gamma_{\mathrm{a}}(\mathrm{G})<\mathrm{i}(\mathrm{G})$.

Example: 2

H:

$$
\begin{array}{ll}
& \gamma \quad(\mathrm{H})=3, \gamma_{\mathrm{a}}(\mathrm{H})=4, \gamma_{\mathrm{ev}}(\mathrm{H})=2, \mathrm{i}(\mathrm{H})=5 \text {. Therefore } \\
{ }^{\mathrm{v}} 2 \mathrm{k}-1 & \gamma_{\mathrm{ev}}(\mathrm{H})=2<\gamma(\mathrm{H})<\gamma_{\mathrm{a}}(\mathrm{H})<\mathrm{i}(\mathrm{H}) .
\end{array}
$$

Observation

Let G be a graph without isolates. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . ., \mathrm{u}_{\mathrm{n}}\right\}, \mathrm{E}(\mathrm{G})=$
$\left\{\mathrm{e}_{1}, \mathrm{e}_{2} \ldots ., \mathrm{e}_{\mathrm{n}}\right\}$. Let H be the graph constructed as follows $\mathrm{V}(H)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2} \ldots \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{e}_{1}, \mathrm{e}_{2} \ldots ., \mathrm{e}_{\mathrm{n}}\right\} . \mathrm{e}_{\mathrm{i}}$ is adjacent with v_{j} if $v_{j} \in N[e i]$,then H is a bi-paratite graph whose parti-
tions are $X=\left\{u_{1}, u_{2} \ldots ., u_{n}\right\}$ and $Y=\left\{e_{1}, e_{2} \ldots ., e_{n}\right\}$. A subset E_{1} of $E(G)$ is an evd-set iff $E_{1} \subseteq Y$ dominates X. ix

Observation

We have the following chain:
(i) $\operatorname{ir}(\mathrm{G}) \leq \gamma_{\mathrm{ev}}(\mathrm{G}) \leq \gamma(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G}) \leq \mathrm{i}(\mathrm{G}) \leq \beta_{0}(\mathrm{G}) \leq{ }_{\mathrm{a}}(\mathrm{G}) \leq(\mathrm{G}) \leq$

IR(G).
(ii) $\quad{ }_{\mathrm{a}}(\mathrm{G}) \leq \mathrm{IR}_{\mathrm{a}}(\mathrm{G}) \leq \beta_{\mathrm{a}}(\mathrm{G})$.
(iii) $\quad \mathrm{ir}_{\mathrm{a}}(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G}) \leq \mathrm{i}_{\mathrm{a}}(\mathrm{G})$.

Preposition :

Given a positive integer $\mathrm{k} \geq 3$ and a positive integer $\mathrm{m} \geq \mathrm{k}-2$ ヨaconnected graphGsuchthat $\gamma_{\mathrm{ev}}=\gamma=\mathrm{k}$ and $\gamma_{\mathrm{a}}=\mathrm{k}$ +m .

Pf :
Consider $\mathrm{K}_{2 \mathrm{k}}$ with vertex set $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . ., \mathrm{v}_{2 \mathrm{k}}\right\}$. Attach 2 pendant edges at each of the k vertices, $\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{7}, \ldots \ldots, \mathrm{v}_{2 \mathrm{k}-3}$ and $\mathrm{m}+4-\mathrm{k}$ pendant edges at Let G be the resulting graph. Then $\gamma_{\mathrm{ev}}(\mathrm{G})=\mathrm{k}=\gamma(\mathrm{G})$. $\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{k}+\mathrm{m}$.

References

[1]. A note on acyclic domination number in graphs of diameter two T.C. Edwin Chenga, , Yaojun Chena, b, C.T. Nga RECEIVED 11 December 2003, Revised 27 April 2005, Accepted 12 September 2005, Available on-line 28 November 2005
[2]. E. J. Cockayne, R.M.Dawes, and S.T,Hedetniemi, Totl domination in graphs, Networks 10(1980), 211-219.
[3]. Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.
[4]. T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Fundamentals of Dom- ination in Graphs, Marcel Dekker, Inc, New York, 1998.
[5]. T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Domination in Graphs:Advanced Topics, Marcel Dekker, Inc, New York, 1998.
[6]. O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ, Vol.38, Amer- ican Mathematical Society, Providence RI,
[7]. J.A.Bondy U.S.R Murthy, Graph theory with Applications, The Macmil-lan Press Ltd, (1976).
[8]. Haynes T.W., Hedetneimi S.T. and Slater P.J. (eds.), Fundamentals ofDominations in Graphs,, Marcel Dekker, New York,1998.
[9]. Kulli V.R, Janakiram B., The non split domination number of a graph.,Indian J. Pure Appl. Math., vol. 31(5) (2000), 545-550.
[10]. Laskar R., Peters K., Vertex and edge dominating parameters in Graphs.,Congr. Numer. vol. 48 (1985), 291-305
[11]. Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Prov-idence (1962).
[12]. Sampathkumar E., Walikar H.B., The connected domination number of a graph. J. Math. Phy. Sci., 13(6), (1979), 607-613.

