# **On – Acyclic Domination – Parameter**

## N. Venkataraman

Gac Ooty 18.4.2015

**Abstract:** Let G be a graph. The cardinality of a minimum acyclic dominating set of G, is called the acyclic domination number of G and is denoted by  $\gamma_a(G)$ . A subset  $E_1$  of E(G) is called an edge-vertex dominating set if for every vertex w in G, their exists an edge in  $E_1$  which dominates w. The minimum cardinality of an edge-vertex dominating set is called the edge-vertex domination number of G and is denoted by  $\gamma_{ev}$ . An edge e = uv dominates a vertex  $w \in V(G)$  if  $w \in N[u] \cup N[v]$ .

### I. Introduction

**Definition:** A subset  $E_1$  of E (G) is called an edge-vertex dominating set if for every vertex w in G, their exists an edge in  $E_1$  which dominates w.

The minimum cardinality of an edge-vertex dominating set is called the edge-vertex domination number of G and is denoted by  $\gamma_{ev}$ .



et G be a graph. The cardinalty of a minimum acyclic dominating set of G, is called the acyclic domination number of G and is denoted by  $\gamma_a(G)$ .



#### Observation

Let  $E_1$  be a minimum evd-set. Then V (<  $E_1$  >) is an acyclic dominating set.

 $\begin{array}{l} Therefore \\ \gamma_{a}(G) \leq |V \ (< E_{1} >)|. \\ (ie)|E_{1}| < |V \ (< E_{1} >)|. \\ (ie)\gamma_{ev}(G) < |V \ (< E_{1} >)|. \end{array}$ 

Observation In tk<sub>2</sub>,  $\gamma_a(G) = t = \gamma_{ev}(G)$ . Remark: P6



 $\{e_2, e_5\}$  is a minimum evd-set and  $\{2, 5\}$  is a minimum acyclic dominat-ing set. Therefore,  $\bigcup_{e \in E(H_i)} \gamma_{ev}(G) = \gamma_a(G) = 2.$ 

**Remark :** In  $P_7, \gamma_{ev}(G) = 2$  and  $\gamma_a(G) = 3$ . Therefore  $\gamma_{ev}(G) < \gamma_a(G)$ .

#### Theorem

Let G be a graph without isolates. Then  $\gamma_{ev}(G) \leq \gamma_a(G)$ .

**Pf**: Let D be a minimum acyclic dominating set. Let  $D = \{u_1, u_2, ..., u_{\gamma a}\}$ . Since

G has no isolates, take edges  $e_1, e_2, \dots, e_{\gamma a}$  incident at  $u_1, u_2, \dots, u_{\gamma a}$  respec-tively. Note that  $e_1, e_2, \dots, e_{\gamma a}$  need not be distinct. clearly the distinct edges from  $e_1, e_2, \dots, e_{\gamma a}$  form a ev-dominating set. Therefore  $\gamma_{ev}(G) \le \gamma_a(G)$ .

Note : Let D be a minimum acyclic dominating set then D is an independent set.

**Observation :** Let  $\gamma_a(G) = \gamma_{ev}(G)$ . Let  $D = \{u_1, u_2, ..., u_{\gamma a}\}$  be a minimum acyclic domi-nating set. Let  $E_1 = \{e_1, e_2, ..., e_{\gamma a}\}$  be a minimum evd-set. Then  $\langle E_1 \rangle$  does not contain  $P_4$ .

**Pf** : For suppose

 $\begin{array}{c}
\text{iii}\\
\text{P}_4\\
\text{e}_1 \quad \text{e}_2 \quad \text{e}_3\\
\frac{r \quad r \quad r \quad r}{1 \quad 2 \quad 3 \quad 4}
\end{array}$ 

is a subgraph of  $\langle E_1 \rangle$ . Then N[e<sub>2</sub>]  $\subseteq$  N[e<sub>1</sub>]  $\cup$  N[e<sub>3</sub>]. Therefore  $E_1 - \{e_2\}$  is a evd-set, a  $\Rightarrow \leftarrow$ . If  $\langle E_1 \rangle$  containsP<sub>3</sub>:

 $\begin{array}{cc} e_1 & e_2 \\ \hline \hline 1 & 2 & 3 \end{array}$ 

Then the vertices, 1 and 3 have private neighbours. If  $E_1$  contains a star, then each of the non-central vertices must have a private neighbour.

Let  $G_1$  be a component of  $\langle E_1 \rangle$ . Then diam $(G_1) \leq 2$ . For, if diam $(G_1) \geq 3$ , then  $G_1$  ontains a  $P_4$ , a  $\Rightarrow \Leftarrow$ . Since  $G_1$ , is connected and diam $(G_1) \geq 2$ ,  $G_1$  is a star.

Therefore, Every component of  $\langle E_1 \rangle$  is a star. The non-central vertices of every component of  $\langle E_1 \rangle$  must have a private neighbour.

#### Theorem

Let H be any graph with V (H) = { $u_1, u_2, ..., u_t$ }. Let  $u_{i1}, u_{i2}, ..., u_{iki}$  be adjacent to  $u_i, 1 \le i \le t$ . Let  $G_{i1}, G_{i2}, ..., G_{iki}$ , be any graphs in which  $u_{i1}, u_{i2}, ..., u_{iri}$ , are full degree vertices. Then  $\gamma_a(G) = \gamma_{ev}(G)$ .

**Pf**: Let  $D = \{u_1, u_2, ..., u_k\}$  be a minimum acyclic dominating set of G, where  $t = \gamma_a(G)$ . Let  $H_1, H_2, ..., H_k$  ( $k \ge 1$ ) be the components of  $\langle D \rangle$ . If  $H_i$  iv

contains a single-vertex then take any edge passing through that vertex. If H<sub>i</sub> contains 2 vertices, then take the

edge in H<sub>i</sub>. If H<sub>i</sub> contains 3 or more ver- tices then select set of edges  $E_{1i}$  from E(Hi) such that N[Ei]= N[e]. The resulting set of edges is an evd-set of G.

#### Therefore,

 $\gamma_G < \gamma_a(G)$ , if  $\exists$  at least one  $H_i$  which contains two or more vertices.

Since  $\gamma_{ev}(G) = \gamma_a(G)$ , each component of  $\langle D \rangle$  is k<sub>1</sub>,

Therefore,  $\gamma_{ev}(G) = \gamma_a(G) = i(G).$ 

Also, every  $\gamma_a$ -set of G is independent.

The converse of the above thm is not true.

#### Example



 $\gamma_{a}(G) = 3, \gamma_{ev}(G) = 2$ 

 $D_1 = \{2, 3, 4\}, D_2 = \{2, 3, 8\}, D_3 = \{3, 6, 8\}, D_4 = \{2, 7, 8\}.$  $D_1$ ,  $D_2$ ,  $D_3$ ,  $D_4$  are the only minimum dominating sets of G. Therefore  $\gamma(G) = i(G) = 3$ . But  $\gamma_{ev}(G) = 2$ . Since  $\{e_1, e_9\}$  is a minimum v

evd-set.

Therefore even if every  $\gamma_a$ -set of a graph is independent, it may not imply that  $\gamma_a(G) = \gamma_{ev}(G)$ .(In the above example every  $\gamma_a$  – set of G is independent)

#### Theorem

Let G be a simple graph without isolates.  $\gamma_{ev}(G) = \gamma_a(G)$  iff  $\exists$  aminimumevd- setE<sub>1</sub>, satisfying the following, in each component of  $\langle E_1 \rangle$ , the central vertices has no private neighbour in V – V ( $\langle E_1 \rangle$ ). Pf:

Suppose G is a simple graph without isolates satisfying  $\gamma_{ev}(G) = \gamma_a(G)$ . Since  $\gamma_{ev}(G) = \gamma_a(G)$ , each component of  $\langle D \rangle$  is k<sub>1</sub>, Therefore  $\gamma_{ev}(G) = \gamma_a(G) = i(G)$ .

Also, every  $\gamma_a$ -set of G is independent.

Let  $D = \{u_1, u_2, \dots, u_n\}$  be a  $\gamma_a$ -set of G. Let  $E_1 = \{e_1, e_2, \dots, e_n\}$  be a set of edges such that  $e_i$  is incident with  $u_i$ ,  $1 \le i \le \gamma_a$ . Let  $v_i$  be the other end of  $u_i$ . Note that  $v_1, v_2, \dots, v_{\gamma_a}$  need not be distinct. Now,  $E_1$  is a evd-set of cardinality  $\gamma_a$ . Since  $\gamma_{ev}(G) = \gamma_a(G)$ .  $E_1$  is a minimum evd-set. Let H be a component of  $\langle E_1 \rangle$ . Then  $\exists$  some  $V_i$ ,  $1 \le i \le \gamma_a$  such that H is a star with center  $v_i$ . Since  $\{u_1, u_2, ..., u_{\gamma a}\}$  is a  $\gamma_a$ -set of G,  $V_i$  has no private neighbour in V - V ( $\langle E_1 \rangle$ ). Therefore G satisfies the condition that G has a minimum evd-set with the condition specified in the thm. Conversly,

Suppose G has a minimum evd-set with the condition specified in the thm. Let  $E_1 \subset E(G)$  be a minimum evd-set with the condition specified in he thm. Let

 $G_1$  be a component of  $(\langle E_1 \rangle)$ . Then diam $(G) \leq 2$ . For, if diam $(G_1) \geq 3$ , then  $G_1$ , contains a  $P_4$ , say

vi 
$$P_4$$
  
 $u_1 \quad u_2 \quad u_3 \quad u_4$   
 $t \quad s \quad s \quad t$   
 $e_1 \quad e_2 \quad e_3$ .

Then  $E_1 - e$  is also an evd-set,  $a \Rightarrow \leftarrow$  totheminimalityof $E_1$ . Therefore, diam $(G_1) \le 2$ . Since  $G_1$  is a tree and  $|V(G_1)| \ge 2$ ,  $G_1$  is a star. Let D be the set of all non-central vertices from the components of  $(\langle E_1 \rangle)$ . Then D is an acyclic dominating set of cardinalty  $\gamma_{ev}(G)$ .

Therefore  $\gamma_a(G) \leq \gamma_{ev}(G)$ 

But  $\gamma_{ev}(G) \leq \gamma_a(G)$ 

Therefore  $\gamma_a(G) = \gamma_{ev}(G)$ 

#### Remark :

Since  $\gamma_{ev}(G) \le \gamma(G) \le \gamma_G$ , if  $gamma_{ev}(G) = \gamma_a(G)$  then  $\gamma_{ev}(G) = \gamma(G) = \gamma_a(G)$ .

Preposition : -1

For any graph G without isolates  $\gamma_{ev}(G) \le \gamma_a(G) \le i(G)$ . If  $\gamma_{ev}(G) = \gamma_a(G)$ , then  $\gamma_{ev}(G) = \gamma_a(G) = i(G)$ . Therefore if  $\gamma_{ev}(G) = \gamma_a(G)$  then  $\gamma_{ev}(G) = \gamma_a(G) = i(G)$ .

There are graphs in which  $\gamma_{ev}(G) < \gamma_a(G) = i(G)$ . For consider G:

vii



 $\gamma_{a}(G) = 3, \gamma_{ev}(G) = 2.$ 

 $D_1 = \{2, 3, 4\}$ ,  $D_2 = \{2, 3, 8\}$ ,  $D_3 = \{3, 6, 8\}$ ,  $D_4 = \{2, 7, 8\}$ .  $D_1$ ,

D<sub>2</sub>, D<sub>3</sub>, D<sub>4</sub> are the only minimum dominating sets of G. Therefore  $\gamma(G) = i(G) = \gamma_a(G) = 3$ . But  $\gamma_{ev}(G) = 2$ . Since  $\{e_1, e_9\}$  is a minimum evd-set. Therefore, even if every  $\gamma_a$ -set of a graph is independent, it may not imply that  $\gamma_a(G) = \gamma_{ev}(G)$ .(In the above examples every  $\gamma_a$ -set of G is independent). Observe that the above graph contains  $k_{1,3}$  as an induced subgraph and still  $\gamma = \gamma_a = i$ .

#### **Preposition – 2 :**

If  $\gamma_{ev}(G) = \gamma_a(G)$ , then  $\gamma_{ev}(G) = \gamma_a(G) = i(G)$  and every  $\gamma_a$ -set of G is independent. But the converse is not true. (ie)

 $\exists$ graphsinwhichevery $\gamma_a$ -set is independent, but  $\gamma_{ev}(G) < \gamma_a(G)$ . The graph considered

For Preposition-1 is such a graph.

Example : 1 There are graphs in which  $\gamma_{ev}(G) < \gamma_a(G) < i(G)$ .

For ,let G:

viii

# Example: 2

H:



### Observation

Let G be a graph without isolates. Let V (G) =  $\{u_1, u_2, ..., u_n\}$ , E(G) =  $\{e_1, e_2, ..., e_n\}$ . Let H be the graph constructed as follows V (H) =  $\{u_1, u_2, ..., u_n, e_1, e_2, ..., e_n\}$ .  $e_i$  is adjacent with  $v_i$  if  $v_i \in N[ei]$ ,then H is a bi-paratite graph whose parti-

tions are  $X = \{u_1, u_2, ..., u_n\}$  and  $Y = \{e_1, e_2, ..., e_n\}$ . A subset  $E_1$  of E(G) is an evd-set iff  $E_1 \subseteq Y$  dominates X.

#### ix Ob-

**Observation** 

We have the following chain:

 $\begin{array}{ll} (i) \ ir(G) \leq \gamma_{ev}(G) \leq \gamma(G) \leq \gamma_a(G) \leq i(G) \leq \beta_0(G) \leq \ _a(G) \leq \ (G) \leq \\ IR(G). \\ (ii) & \ _a(G) \leq IR_a(G) \leq \beta_a(G). \\ (iii) & \ ir_a(G) \leq \gamma_a(G) \leq i_a(G). \end{array}$ 

### **Preposition :**

Given a positive integer  $k \ge 3$  and a positive integer  $m \ge k - 2$   $\exists$  aconnected graphGsuchthat $\gamma_{ev} = \gamma = k$  and  $\gamma_a = k + m$ .

# Pf :

Consider  $K_{2k}$  with vertex set  $V = \{v_1, v_2, ..., v_{2k}\}$ . Attach 2 pendant edges at each of the k vertices,  $v_1, v_3, v_7, ..., v_{2k-3}$  and m + 4 - k pendant edges at Let G be the resulting graph. Then  $\gamma_{ev}(G) = k = \gamma(G)$ .  $\gamma_a(G) = k + m$ .

#### References

- A note on acyclic domination number in graphs of diameter two T.C. Edwin Chenga, , Yaojun Chena, b, C.T. Nga RECEIVED 11 December 2003, Revised 27 April 2005, Accepted 12 September 2005, Available on-line 28 November 2005
- [2]. E. J. Cockayne, R.M.Dawes, and S.T, Hedetniemi, Totl domination in graphs, Networks 10(1980), 211-219.
- [3]. Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.
- [4]. T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Fundamentals of Dom- ination in Graphs, Marcel Dekker, Inc, New York, 1998.
- [5]. T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc, New York, 1998.
- [6]. O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ, Vol.38, Amer-ican Mathematical Society, Providence RI,
- [7]. J.A.Bondy U.S.R Murthy, Graph theory with Applications, The Macmil-lan Press Ltd, (1976).
- [8]. Haynes T.W., Hedetneimi S.T. and Slater P.J. (eds.), Fundamentals of Dominations in Graphs, Marcel Dekker, New York, 1998.
- [9]. Kulli V.R, Janakiram B., The non split domination number of a graph., Indian J. Pure Appl. Math., vol. 31(5) (2000), 545 550.
- [10]. Laskar R., Peters K., Vertex and edge dominating parameters in Graphs., Congr. Numer. vol. 48 (1985), 291-305
- [11]. Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Prov-idence (1962).
- [12]. Sampathkumar E., Walikar H.B., The connected domination number of a graph. J. Math. Phy. Sci., 13(6), (1979), 607-613.