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Abstract: This paper presents the implementation of the new iterative method proposed by Daftardar-Gejji and 

Jafari (DGJ method) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving non linear functional 

equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve the linear and nonlinear heat-like and wave-like 

equations  with variable coefficients in one and higher dimensional spaces. The solution is obtained in the series 

form that converge to the exact solution with easily computed components. The DGJ method has many attractive 

features such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to 

handle the nonlinear terms in Adomian Decomposition Method (ADM). No need to calculate the Lagrange 

multiplier as in Variational Iteration Method (VIM) and does not require to construct a homotopy and solve the 

corresponding algebraic equations as in Homotopy Perturbation Method (HPM). Several test examples are 
given to demonstrate the effectiveness of the proposed method. The software used for the calculations in this 

study was MATHEMATICA® 8.0. 
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I. Introduction 
Linear and nonlinear ordinary or partial differential equations are widely used to model many problems 

in physics, chemistry, biology, mechanics and engineering. Many analytic and approximate methods have been 

developed to obtain the solutions for differential equations, especially nonlinear. In physics for example, the 

heat flow and the wave propagation phenomena are well described by partial differential equations. 

Moreover, most physical phenomena of fluid dynamics, quantum mechanics, electricity, plasma 

physics, propagation of shallow water waves, and many other models are formulated by partial differential 

equations [1]. 

Due to these huge applications, there is a demand on the development of accurate and efficient analytic 

or approximate methods able to deal with the PDEs. 
Many fields of science, engineering and physical problems can be described by initial boundary value 

Problems (IBVP) with variable coefficients. These linear and nonlinear models were treated 

numerically and analytically, see [2] with examples and references therein. 

Therefore, seeking the solutions of these equations becomes more and more important. Several analytic 

and approximate methods have been proposed to solve the linear and nonlinear heat-like and wave-like 

equations with variable coefficients, see [2–4,6]. Some difficulties and drawbacks have appeared, for examples, 

evaluating the Adomian polynomials to handle the nonlinear terms in ADM [7], calculating the Lagrange 

multiplier in VIM [3], constructing the homotopy and solve the corresponding algebraic equations in HPM [6]. 

Daftardar-Gejji and Jafari [8] have proposed an efficient technique for solving linear/nonlinear 

functional equations in a similar manner namely DGJ method. The DGJ method has been implemented in 

literature, see [9–12]. 
Recently, AL-Jawary et al. [13–17] have successfully implemented the DGJ method for solving 

different linear and nonlinear ordinary and partial differential equations. 

In this paper, the applications of the DGJ method for the 1D, 2D and 3D linear and nonlinear heat-like 

and wave-like equations with variable coefficients will be presented to obtain exact solutions. 

The results obtained in this paper are compared with those obtained by other iterative methods such as 

ADM [2], VIM[3], HAM[4] and HPM[6]. Comparisons show that the DGJ method is effective and convenient 

to use and overcomes the difficulties arising in others existing techniques. 

The outline of this paper is as follows: In section 2 is devoted to introduce the DGJ method and its 

convergence. In section 3 the heat-like and wave-like equations with variable coefficients are solved by the DGJ 

method. In section 4 some test examples are solved by the DGJ method for linear and nonlinear heat-like and 

wave-like equations with variable coefficients in one and higher dimensional spaces and finally in section 5 the 

conclusion is presented. 
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II. The DGJ Method 
Considering the following general non-linear equation: 

u = N(u) + f                                                                                                                                                        …(1) 

where N is a nonlinear operator from a Banach space B → B and f is a known function [8–12]. We are looking 

for a solution u of equation (1) having the series form: 

0
i

i

u u




                                                                                                                                                             …(2) 

The nonlinear operator N can be decomposed as 
1

0
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                                                                                                    …(3) 

From equations (2) and (3), equation (1) is equivalent to 
1
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                                                                                                      …(4) 

We define the recurrence relation: 

G0 = u0 = f, 
G1 = u1= N(u0), 

Gm = um+1 = N(u0 + … + um) − N(u0 + … + um−1), m = 1, 2, ... 

…(5) 

Then 

(u1 + … + um + 1) = N(u1 + … + um), m = 1, 2, ...  …(6) 

and 

1

( ) i
i

u x f u




                                                                                                                                                  …(7) 

The m-term approximate solution of equation (2) is given by u = u0 + u1 + ... + um−1. 

 

2.1 Convergence of the DGJ method 

        The condition for convergence of the series ui will be presented below. For further details the reader can 
see [18]. 

 

Theorem 2.1.1: [18] 

        If N is C() in a neighbourhood of u0 and ∥ N(n)(u0)∥ ≤ L, for any n and for some real L > 0 and  ∥ui∥ ≤ M < 

1

e
, i = 1, 2, ..., then the series 

n 0
nG





  is absolutely convergent and moreover, ∥Gn∥ ≤ LMnen−1(e − 1), n = 1, 2, ... 

 
Theorem 2.1.2 : [18] 

        If N is C() and ∥ N(n)(u0)∥ ≤ M ≤ e−1, ∀n, then the series 
n 0

nG




  is absolutely convergent. 

 

III. Solution Of Heat-Like And Wave-Like Equations With Variable Coefficients By Using Dgj 

Method 
In this section the DGJ method will be applied to heat-like and wave-like equations with variable coefficients 

independently. 

 

3.1 Heat-like equations 

The heat-like equation with variable coefficients in three-dimensional is given in the form [2]: 

ut = f(x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz, 0 < x < a, 0 < y < b, 0 < z < c, t > 0                                         …(8) 

with initial condition: 

u(x, y, z, 0) = (x, y, z)                                                                                                                                       
…(9) 

and the Neumann boundary conditions 

ux(0, y, z, t) = f1(y, z, t), ux(a, y, z, t) = f2(y, z, t), 

uy(x, 0, z, t) = g1(x, z, t), uy(x, b, z, t) = g2(x, z, t), 

uz(x, y, 0, t) = h1(x, y, t), uz(x, y, c, t) = h2(x, y, t). 

…(10) 

 

Equation (8) can be written in an operator form as 
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Ltu = f(x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz ,                                                                                                

…(11) 

where Lt = 
t




. Let us assume the inverse operator 1

tL  exists and it can be taken with respect t from 0 to t,            

i.e.  

1

0

(.) (.)
t

tL dt                                                                                                                                                    …(12) 

Then, by taking the inverse operator 1

tL  to both sides of the equation (11) and using the initial condition, leads 

to 

u(x, y, z, t) =  (x, y, z) + 1

tL ( f (x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz)                                                       

…(13) 
 

By applying the DGJ method for equation (13) the following recurrence relation for the determination of the 

components un+1(x, y, z, t) are obtained: 

u0(x, y, z, t) = _(x, y, z),                                                                                                                                   …(14) 

u1(x, y, z, t) = N(u0) = 1

tL ( f (x, y, z)(u0)xx + g(x, y, z)(u0)yy + h(x, y, z)(u0)zz),                                                

…(15) 

u2(x, y, z, t) = N(u1 + u0) − N(u0)=
1

tL ( f (x, y, z)(u1 + u0)xx+ g(x, y, z)(u1 + u0)yy + h(x, y, z)(u1 + u0)zz) − u1, 

…(16) 

u3(x, y, z, t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

tL ( f (x, y, z)(u2 + u1 + u0)xx + g(x, y, z)(u2 + u1 + u0)yy +  h(x, y, 

z)(u2 + u1 + u0)zz) − 1

tL ( f (x, y, z)(u1 + u0)xx + g(x, y, z)(u1 + u0)yy + h(x, y, z) (u1 + u0)zz),               …(17) 

and so on. 

 

Continuing in this manner, the (n + 1)th approximation of the exact solutions for the unknown functions 

u(x, y, z, t) can be achieved as: 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

tL ( f (x, y, z)(u0 + ・ ・ ・ + un)xx + g(x, y, z) (u0 + … + un)yy +  

          h(x, y, z)(u0 + … + un)zz) − 1

tL  ( f (x, y, z)(u0 + …  + un−1)xx + g(x, y, z)(u0 + … + un−1)yy +  

         h(x, y, z)(u0 + … + un−1)zz), n = 1, 2,                                                                                                       ... 
(18) 

 

Based on the DGJ method, we constructed the solution u(x, y, z, t) as: 

0

( , , , ) ( , , , ), n 0
n

k
k

u x y z t u x y z t


                                                                                                              …(19) 

 

3.2 Wave-like equations 

The wave-like equation with variable coefficients in three-dimensional is given in the form [2]: 
utt = f (x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz, 0 < x < a, 0 < y < b, 0 < z < c, t > 0 …(20) 

with initial condition: 

u(x, y, z, 0) = (x, y, z)     ut(x, y, z, 0) = (x, y, z), …(21) 
and the Neumann boundary conditions 

 

ux(0, y, z, t) = f1(y, z, t), ux(a, y, z, t) = f2(y, z, t), 

uy(x, 0, z, t) = g1(x, z, t), uy(x, b, z, t) = g2(x, z, t), 

uz(x, y, 0, t) = h1(x, y, t), uz(x, y, c, t) = h2(x, y, t). 

…(22) 

Equation (20) can be written in an operator form as 

ttL u  = f (x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz , …(23) 

where tt 2
L u =

t




 . Let us assume the inverse operator 1

ttL  exists and it can be taken with respect t from 0 to t, 

i.e. 

1

0 0

(.) (.)
t t

ttL dtdt                                                                                                                                                 …(24) 
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Then, by taking the inverse operator 1

ttL  to both sides of the equation (23) and using the initial conditions in 

equation (21), leads to 

u(x, y, z, t) =  (x, y, z) + t(x, y, z) + 1

ttL ( f (x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz ) …(25) 

 

By applying the DGJ method for equation (25) the following recurrence relation for the determination of the 
components un+1(x, y, z, t) are obtained: 

u0(x, y, z, t) =  (x, y, z) + t(x, y, z), …(26) 

u1(x, y, z, t) = N(u0) = 1

ttL ( f (x, y, z)(u0)xx + g(x, y, z)(u0)yy + h(x, y, z)(u0)zz), …(27) 

u2(x, y, z, t) = N(u1 + u0) − N(u0) = 1

ttL ( f (x, y, z)(u1 + u0)xx + g(x, y, z)(u1 + u0)yy + h(x, y, z)(u1 + u0)zz) − u1, 

(28) 

 

u3(x, y, z, t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

ttL ( f (x, y, z)(u2 + u1 + u0)xx + g(x, y, z)(u2 + u1 + u0)yy + 

                     h(x, y, z)(u2 + u1 + u0)zz) − 1

ttL ( f (x, y, z)(u1 + u0)xx + g(x, y, z)(u1 + u0)yy + h(x, y, z) (u1 + u0)zz), 

(29) 

and so on. 

Continuing in this manner, the (n + 1)th approximation of the exact solutions for the unknown functions u(x, y, 

z, t) can be achieved as: 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

ttL ( f (x, y, z)(u0 + …  + un)xx + g(x, y, z)(u0 + … + un)yy +  

          h(x, y, z)(u0 + … + un)zz) − 1

ttL ( f (x, y, z)(u0 + … + un−1)xx + g(x, y, z)(u0 + … + un−1)yy +  

          h(x, y, z)(u0 + … + un−1)zz), n = 1, 2, ...                                                                                                  

…(30) 

 

where the solution u(x, y, z, t) is given in equation (19). 

It can also be clearly seen that from the DGJ method algorithm for both heat-like and wave-like 
equations with variable coefficients, the exact solutions are obtained by using the initial conditions only, where 

the given boundary conditions can be used for justification only. 

It is worth to mention that the DGJ method’s algorithm above is also valid for nonlinear heat-like and 

wave-like equations in a straightforward without using linearization, perturbation or restrictive assumption or 

calculating Adomian polynomials to handle the nonlinear terms as in ADM. 

 

IV. Test Examples 
In this section, some test examples will be examined to assess the performance of the DGJ method for 

1D, 2D and 3D the linear and nonlinear heat-like and wave-like equations with variable coefficients. To verify 
the convergence of the method, we applied the method to some test problems for which an analytical solution 

are available. 

 

4.1 Linear heat-Like Models 

To assess the efficiency of DGJ method, three linear heat-like equations with variable coefficients will be 

solved. 

 

Example 1: Consider the following one-dimensional linear IBVP [2–5] 

ut = 
1

2
x2uxx, 0 < x < 1, t > 0.                                                                                                                            …(31) 

with initial condition: 

u(x, 0) = x2, 

and boundary conditions: 

u(0, t) = 0, u(1, t) = et. 

By using the DGJ method, we get the recurrence relation: 

u0(x, t) = x2,                                                                                                                                                      …(32) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

tL 1

2
x2(u0 + … + un)xx) − 1

tL 1

2
x2(u0 + … + un−1)xx), n = 1, 2, ... 

 …(33) 

According to the DGJ method, we achieve the following components: 
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u1(x, t) = N(u0) = 1

tL 1

2
x2(u0)xx) = x2t, …(34) 

u2(x, t) = N(u1 + u0) − N(u0) = 1

tL 1

2
x

2
(u1 + u0)xx) − u1 = x

2
 

2

2!

t
, …(35) 

u3(x, t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

tL 1

2
x2(u2 + u1 + u0)xx) − 1

tL 1

2
x2(u1 + u0)xx) =  x2 

3

3!

t
, …(36) 

and so on. 

Therefore, according to equation (19), we get: 
2 3

2( , ) (1 ...)
2! 3!

t t
u x t x t                                                                                                                           …(37) 

This has the closed form 
u(x, t) = x2et.                                                                                                                                                     …(38) 

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3], HAM [4] 

and HPM [5]. 

 

Example 2: Consider the following two-dimensional linear IBVP [2, 3, 5] 

ut = 
1

2
(y2uxx + x2uyy), 0 < x, y < 1, t > 0. …(39) 

 
with initial condition: 

u(x, y, 0) = y2, 

and Neumann boundary conditions: 

ux(0, y, t) = 0, ux(1, y, t) = 2 sinh t, 

uy(x, 0, t) = 0, uy(x, 1, t) = 2 cosh t. 

Proceeding as before, the recurrence relation 

u0(x, y, t) = y2,                                                                                                                                                  …(40) 

un+1 = N(u0 +…+ un) − N(u0 +…+ un−1)=
1

2

1

tL  (y2(u0 +…+ un)xx + x2(u0 +…+ un)yy) −
1

2

1

tL (y2(u0 +… + un−1)xx 

+  

         x2(u0 + … + un−1)yy), n = 1, 2, ... …(41) 

According to the DGJ method we achieve the following components: 

u1(x, y, t) = N(u0) = 
1

2

1

tL (y2(u0)xx + x2(u0)yy) = x2t, …(42) 

u2(x, y, t) = N(u1 + u0) − N(u0) = 
1

2

1

tL (y2(u1 + u0)xx + x2(u1 + u0)yy) − u1 = y2
2

2!

t
,…(43) 

u3(x, y, t) = N(u2 + u1 + u0) − N(u1 + u0) = 
1

2

1

tL  (y2(u2 + u1 + u0)xx + x2(u2 + u1 + u0)yy) −
1

2

1

tL (y2(u1 + u0)xx + 

                 x2(u1 + u0)yy) = x2 
3

3!

t
,…(44) 

and so on. 

Therefore, according to equation (19) we have: 

u(x, y, t) = x2(t +
3

3!

t
 ...) + y2(t +

2

2!

t
...). …(45) 

This has the closed form 

u(x, t) = x2 sinh t + y2 cosh t. …(46) 

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3] and HPM 

[5]. 

 

Example 3: Consider the following three-dimensional inhomogeneous linear IBVP [2–5] 

ut = x4y4z4 + 
1

36
(x2uxx + y2uyy + z2uzz), 0 < x, y, z < 1, t > 0, …(47) 

with initial condition: 
u(x, y, z, 0) = 0, 

and boundary conditions: 
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u(0, y, z, t) = 0 u(1, y, z, t) = y4z4(et − 1), 

u(x, 0, z, t) = 0      u(x, 1, z, t) = x4z4(et − 1), 

u(x, y, 0, t) = 0     u(x, y, 1, t) = x4y4(et − 1). 
In this example there is inhomogeneous term x4y4z4 which after integrating it with respect t from 0 to t, leads to 

x4y4z4t. 

Therefore, proceeding as before, the recurrence relation 

u0(x, y, z, t) = x4y4z4t,                                                                                                                                    …(48) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 
1

36

1

tL (x2(u0 + … + un)xx + y2(u0 + … + un)yy + z2(u0 + … + un)zz) –  

          
1

2

1

tL (x2(u0 + … + un−1)xx + y2(u0 + … + un−1)yy + z2(u0 + … + un−1)zz), n = 1, 2, ...                             

…(49) 

This gives the following components: 

u1(x, y, z, t) = N(u0) =
1

36

1

tL (x2(u0)xx + y2(u0)yy + z2(u0)zz) = x4y4z4 
2

2!

t
,                                                         

…(50) 

u2(x, y, z, t) = N(u1 + u0) − N(u0) = 
1

36

1

tL (x2(u1+ u0)xx+y2(u1+u0)yy+z2(u1+u0)zz)−u1 = x4y4z4 
3

3!

t
,                 

…(51) 

u3(x, y, z, t) = N(u2 + u1 + u0) − N(u1 + u0) =
1

36

1

tL (x2(u2 + u1 + u0)xx + y2(u2 + u1 + u0)yy + z2(u2 + u1 + u0)zz) –  

                     
1

36

1

tL  (x2(u1 + u0)xx + y2(u1 + u0)yy + z2(u1 + u0)zz) = x4y4z4 
4

4!

t
,                                               

…(52) 

and so on. 

Therefore, according to equation (19) we have: 

u(x, y, z, t) = x4y4z4(t + 
2

2!

t
+ 

3

3!

t
+

4

4!

t
...).…(53) 

This has the closed form 

u(x, t) = x4y4z4(et − 1).                                                                                                                                      …(54) 
which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3] and HPM 

[5]. 

 

4.2 Nonlinear Heat-Like Models 

The DGJ method will be applied for solving three examples of nonlinear heat-like equations with variable 

coefficients. 

 

Example 4: Consider the following one-dimensional inhomogeneous nonlinear IBVP 

ut = xuuxx − 2x3t4 + 2tx2, 0 < x < 1, t > 0. …(55) 

with initial condition: 

u(x, 0) = 0, 

and boundary conditions: 
u(0, t) = 0, u(1, t) = t2. 

In this example there is inhomogeneous term −2x3t4 +2tx2, which after integrating it with respect t from 0 to t, 

leads to −
2

5
x3t5 + t2x2. 

By using the DGJ method, we get the recurrence relation: 

u0(x, t) = −
2

5
x3t5 + t2x2,  …(56) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

tL (x(u0 + … + un)(u0 + … + un)xx) −
1

tL (x(u0 + … + un) 

          (u0 + … + un−1)xx), n = 1, 2, ...                                                                                                                …(57) 

According to the DGJ method, we achieve the following components: 

u1(x, t) = N(u0) = 1

tL (xu(u0)xx) =
2

5
x3t5 −

2

5
t8x4 + …,…(58) 
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u2(x, t) = N(u1 + u0) − N(u0) = 1

tL (xu(u1 + u0)xx) − u1 =
2

5
t8x4 + …, …(59) 

and so on. 

Considering the first two components u0 and u1 in above, we observe the appearance of the noise terms −
2

5
x3t5 

in u0 and 
2

5
x3t5 in u1. By canceling the identical terms with opposite signs the remaining term of u0 justifies the 

equation. This called noise phenomena, for more details about necessary and sufficient conditions see [1, 19]. 

Therefore, the exact solution is obtained in the closed form 
u(x, t) = x2t2.                                                                                                                                                     …(60) 

 

Example 5: Consider the following two-dimensional inhomogeneous nonlinear IBVP 

ut = xuuxx + yuuyy − 2t4x3y3(y + x) + 2tx2y2, 0 < x, y < 1, t > 0. …(61) 

with initial condition: 

u(x, y, 0) = 0, 

and Neumann boundary conditions: 

ux(0, y, t) = 0, ux(1, y, t) = 2y2t2, 

uy(x, 0, t) = 0, uy(x, 1, t) = 2x2t2. 

Equation (61) contains inhomogeneous term −2t4x3y3(y+x)+2tx2y2 which after integrating it with respect t from 

0 to t, leads to −
2

5
t5x3y3(y + x) + t2x2y2. 

Proceeding as before, the recurrence relation 

u0(x, y, t) = −
2

5
t5x3y3(y + x) + t2x2y2, …(62) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

tL (x(u0 + … + un)(u0 + … + un)xx + y(u0 + … + un)(u0 + … + un)yy)  

         1

tL (x(u0 + … + un−1)(u0 + … + un−1)xx + y(u0 + … + un−1)(u0 + … + un−1)yy), n = 1, 2, ... …(63) 

We achieve the following components: 

u1(x, y, t) = N(u0) = 1

tL (xu0(u0)xx + yu0(u0)yy) = 
2

5
t5x3y3(y + x) −

2

5
t8x6y4 + …,…(64) 

u2(x, y, t) = N(u1 + u0) − N(u0) = 1

tL (x(u1 + u0)(u1 + u0)xx + y(u1 + u0)(u1 + u0)yy) − u1 =
2

5
t8x6y4 + …, …(65) 

and so on. 

Considering the first two components u0 and u1 in above, we observe the appearance of the noise terms −
2

5
 

t
5
x

3
y

3
(y + x) in u0 and 

2

5
t
5
x

3
y

3
(y + x) in u1. By canceling the identical terms with opposite signs the remaining 

term of u0 justifies the equation, the exact solution is obtained in the closed form 

u(x, y, t) = t2x2y2…(66) 

 

Example 6: Consider the following three-dimensional inhomogeneous nonlinear IBVP 

ut = xuuxx + yuuyy +
1

6
z2uzz, 0 < x, y, z < 1, t > 0…(67) 

with initial condition: 

u(x, y, z, 0) = z3, 
and Neumann boundary conditions: 

ux(0, y, z, t) = 0, ux(1, y, z, t) = 0, 

uy(x, 0, z, t) = 0, uy(x, 1, z, t) = 0, 

uz(x, y, 0, t) = 0, uz(x, y, 1, t) = 3et, 

Proceeding as before, the recurrence relation 

u0(x, y, z, t) = z3, …(68) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

tL (x(u0 + … + un)(u0 + … + un)xx + y(u0 + … + un)(u0 + … + 

un)yy+ 
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1

6
z2(u0 + … + un)zz) − 1

tL  (x(u0 + … + un– 1)(u0 + … + un– 1)xx + y(u0 + … + un– 1)(u0 + … + un– 1)yy + 

        

1

6
z

2
(u0 + … + un– 1)zz), n = 1, 2, ... …(69) 

The following components are achieved: 

u1(x, y, z, t) = N(u0) = 1

tL (xu0(u0)xx + yu0(u0)yy +
1

6
z2(u0)zz) = tz3, …(70) 

u2(x,y,z,t)=N(u1+u0) − N(u0)=
1

tL (x(u1 + u0)(u1 + u0)xx + y(u1 + u0)(u1 + u0)yy +
1

6
z2(u1 + u0)zz) − u1 =

2

2!

t
z3, 

…(71) 

u3(x,y,z,t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

tL (x(u2 + u1 + u0)( u2 + u1 + u0)xx +y(u2 + u1 + u0)( u2 + u1 + u0)yy + 

                 
1

6
z2(u2 + u1 + u0)zz) − 1

tL (x(u1 + u0)( u1 + u0)xx + y(u1 + u0)( u1 + u0)yy +
1

6
z2(u1 + u0)zz) =

3

3!

t
z3, 

…(72) 

and so on. 

Therefore, according to equation (19) we have: 

u(x,y,z,t) = z3(1 + t +
2

2!

t
+

3

3!

t
+

4

4!

t
…)…(73) 

This has the closed form 

u(x, t) = z3et                                                                                                                                                      …(74) 

which is the exact solution of the problem. 

 
It can also be clearly seen that from solving examples 1-6, the exact solutions are obtained by using the initial 

conditions only. Also, the obtained solutions can be used to justify the given boundary conditions. 

Moreover, the DGJ method is overcomes the difficulty arising in calculating Adomian polynomials to handle 

the nonlinear terms in ADM. 

 

4.3 Linear wave-like models 

To assess the efficiency of DGJ method, three linear wave-like equations with variable coefficients will be 

solved. 

 

Example 1: Consider the following one-dimensional linear IBVP [2–5] 

utt =
1

2
x2uxx, 0 < x < 1, t > 0…(75) 

with initial conditions: 

u(x, 0) = x, ut(x, 0) = x2. 

and boundary conditions: 

u(0, t) = 0, u(1, t) = 1 + sinh t. 

By using the same procedure given in equations (26)-(30), we get the recurrence relation: 

u0(x, t) = x + x2t,  …(76) 

un+1 = N(u0 + … + un) − N(u0 + … + un−1) = 1

ttL 1

2
x2(u0 + … + un)xx) −

1

ttL 1

2
x2(u0 + … + un−1)xx), n = 1, 2, ...  

…(77) 

The following components are obtained: 

u1(x, t) = N(u0) = 1

ttL 1

2
x2(u0)xx) = x2 

3

3!

t
, …(78) 

u2(x, t) = N(u1 + u0) − N(u0) = 1

ttL 1

2
x2(u1 + u0)xx) − u1 = x2 

5

5!

t
, …(79) 

u3(x, t) = N(u2 + u1 + u0) − N(u1 + u0) = 
1

ttL 1

2
x

2
(u2 + u1 + u0)xx) − 

1

ttL 1

2
x

2
(u1 + u0)xx) = x

2
 

7

7!

t
, …(80) 

and so on. 

Therefore, according to equation (19), we get: 
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u(x, t) = x + x2(t +
3

3!

t
+

5

5!

t
+ …), …(81) 

 
This has the closed form 

u(x, t) = x + x2sinh t …(82) 

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3], HAM [4] 

and HPM [5]. 

 

Example 2: Consider the following two-dimensional linear IBVP [2, 3, 5] 

utt =
1

12
 (x2uxx + y2uyy), 0 < x, y < 1, t > 0…(83) 

with initial conditions: 

u(x, y, 0) = x4, ut(x, y, 0) = y4, 

and Neumann boundary conditions: 

ux(0, y, t) = 0, ux(1, y, t) = 4 cosh t, 

uy(x, 0, t) = 0, uy(x, 1, t) = 4 sinh t. 

Proceeding as before, the recurrence relation 

u0(x, y, t) = x
4
 + y

4
t, …(84) 

un+1 = N(u0 + … + un) − N(u0 + … + un – 1) = 
1

12

1

ttL (x2(u0 + … + un)xx + y2(u0 + … + un)yy) – 

 

        

1

12

1

ttL (x2(u0 + … + un – 1)xx + y2(u0 + … + un – 1)yy), n = 1, 2, ... …(85) 

The first few components of u(x, y, t) are given by: 

u1(x, y, t) = N(u0) =
1

12

1

ttL  (x2(u0)xx + y2(u0)yy) = x4 
2

2!

t
+ y4 

3

3!

t
, …(86) 

u2(x, y, t) = N(u1 + u0) − N(u0) =
1

12

1

ttL (x2(u1 + u0)xx + y2(u1 + u0)yy) − u1 = x4 
4

4!

t
+ y4 

5

5!

t
,…(87) 

u3(x, y, t) = N(u2 + u1 + u0) − N(u1 + u0) =
1

12

1

ttL (x2 (u2 + u1 + u0)xx + y2(u2 + u1 + u0)yy) −
1

12

1

ttL (x2 (u1 + u0)xx 

+ 

                 y2(u1 + u0)yy) = x4 
6

6!

t
+ y4 

7

7!

t
,…(88) 

and so on. 

Therefore, according to equation (19) we have: 

u(x, y, t) = x4(1 + t +
2

2!

t
+

4

4!

t
...) + y4(t + 

3

3!

t
+

5

5!

t
...)…(89) 

This has the closed form 

u(x, t) = x4 cosh t + y4 sinh t …(90) 

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3] and HPM 

[5]. 

 

Example 3: Consider the following three-dimensional inhomogeneous linear IBVP [2–5] 

utt = (x2 + y2 + z2) +
1

2
(x2uxx + y2uyy + z2uzz), 0 < x, y, z < 1, t > 0, …(91) 

with initial conditions: 

u(x, y, z, 0) = 0 ut(x, y, z, 0) = x2 + y2 − z2, 

and boundary conditions: 

u(0, y, z, t) = y2(et − 1) + z2(et − 1), u(1, y, z, t) = (1 + y2)( et − 1) + z2(et − 1), 

u(x, 0, z, t) = x2(et − 1) + z2(et − 1), u(x, 1, z, t) = (1 + x2)( et − 1) + z2(et − 1), 

u(x, y, 0, t) = (x2 + y2)(et − 1), u(x, y, 1, t) = (x2 + y2)( et − 1) + (et − 1). 

Proceeding as before, the recurrence relation 

u0(x, y, z, t) = (x2 + y2)(t +
2

2!

t
) + z2(−t +

2

2!

t
),…(92) 
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un+1 = N(u0 + … + un) − N(u0 + … + un – 1) =
1

2

1

ttL (x2(u0 + … + un)xx + y2(u0 + … + un)yy + z2(u0 + … + un)zz) – 

          
1

2

1

ttL (x
2
(u0 + … + un – 1)xx + y

2
(u0 + … + un – 1)yy +z

2
(u0 + … + un – 1)zz), n = 1, 2, ......(93) 

This gives the following components: 

u1(x, y, z, t) = N(u0) =
1

2

1

ttL (x2(u0)xx+ y2(u0)yy + z2(u0)zz) = (x2+y2)(

 

3

3!

t
+

4

4!

t
) + z2(−

3

3!

t
+

4

4!

t
),…(94) 

u2(x, y, z, t) = N(u1 + u0) − N(u0)  =
1

2

1

ttL (x2(u1 + u0)xx + y2(u1 + u0)yy + z2(u1 + u0)zz) − u1 = (x2 + y2)(

 

5

5!

t
+

6

6!

t
) 

+ 

                     z2(−
5

5!

t
+

6

6!

t
),…(95) 

u3(x, y, z, t) = N(u2 + u1 + u0) − N(u1 + u0) =
1

2

1

ttL (x2(u2 + u1 + u0)xx + y2(u2 + u1 + u0)yy + z2(u2 + u1 + u0)zz) – 

                 

1

2

1

ttL (x2(u1 + u0)xx + y2(u1 + u0)yy + z2(u1 + u0)zz) =(x2 + y2)(

 

7

7!

t
+

8

8!

t
) + z2(−

7

7!

t
+

8

8!

t
),  …(96) 

and so on. 

Therefore, according to equation (19) we have: 

u(x, y, z, t) = (x2 + y2)(t +
2

2!

t
+

3

3!

t
+

4

4!

t
...) + z2( − t + 

2

2!

t
+

3

3!

t
+

4

4!

t
...),…(97) 

This has the closed form 

u(x, t) = (x2 + y2)et + z2e−t − (x2 + y2 + z2) …(98) 

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM [3] and HPM 

[5]. 

 

4.4 Nonlinear wave-like models 
The DGJ method will be applied for solving three examples of nonlinear wave-like equations with variable 

coefficients. 

 

Example 4: Consider the following one-dimensional inhomogeneous nonlinear IBVP 

utt = xuuxx − 2x3t4 + 2x2, 0 < x < 1, t > 0  …(99) 

with initial condition: 

u(x, 0) = 0, 

and boundary conditions: 

u(0, t) = 0, u(1, t) = t2. 

In this example there is inhomogeneous term −2x3t4 + 2x2, which after integrating it with respect t from 0 to t 

twice, leads to 
6 3

15

t x
 + t2x2. 

By using the DGJ method, we get the recurrence relation: 

u0(x, t) = 
6 3

15

t x
 + t2x2,                                                                                                                                  …(100) 

un+1 = N(u0 + … + un) − N(u0 + … + un – 1) = 1

ttL (x(u0 + … + un)( u0 + … + un)xx) −
1

ttL (x(u0 + … + un – 1) 

         ( u0 + … + un – 1)xx), n = 1, 2, ...                                                                                                            …(101) 

The following components are obtained: 

u1(x, t) = N(u0) = 1

ttL (xu(u0)xx) = 
6 3 10 44

...
15 675

t x t x
   , …(102) 

u2(x, t) = N(u1 + u0) − N(u0) = 1

ttL (xu(u1 + u0)xx) − u1 = 
10 4 1 54 37 4

...
675 61425

t x t x
   , …(103) 

and so on. 
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Considering the first two components u0 and u1 in above, we observe the appearance of the noise terms 
6 3

15

t x
  

in u0 and 
6 3

15

t x
in u1. By canceling the identical terms with opposite signs the remaining term of u0 justifies the 

equation, the exact solution is obtained in the closed form 

u(x, t) = x2t2                                                                                                                                                    …(104) 

 

Example 5: Consider the following two-dimensional inhomogeneous nonlinear IBVP 

utt = 
2

6

x
 uxx + yuuyy, 0 < x, y < 1, t > 0 …(105) 

with initial conditions: 

u(x, y, 0) = x3, ut(x, y, 0) = 0, 

and Neumann boundary conditions: 

ux(0, y, t) = 0, ux(1, y, t) = 3 cos t, 

uy(x, 0, t) = 0, uy(x, 1, t) = 0. 
Proceeding as before, the recurrence relation 

u0(x, y, t) = x
3
,                                                                                                                                                …(106) 

un+1 = N(u0 + … + un) − N(u0 + … + un – 1) = 1

ttL (
2

6

x
 (u0 + … + un)xx + y(u0 + … + un)(u0 + … + un)yy) – 

        1

ttL (
2

6

x
 (u0 + … + un – 1)xx + y(u0 + … + un – 1) u0 + … + un – 1)yy), n = 1, 2, ...                                …(107) 

The first few components of u(x, y, t) are given by: 

u1(x, y, t) = N(u0) = 1

ttL (
2

6

x
 (u0)xx + yu0(u0)yy) = − x3 

2

2!

t
,…(108) 

u2(x, y, t) = N(u1 + u0) − N(u0) = 1

ttL (
2

6

x
 (u1 + u0)xx + y(u1 + u0)( u1 + u0)yy) − u1 = x3 

4

4!

t
,                    …(109) 

 

u3(x, y, t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

ttL (
2

6

x
 (u2 + u1 + u0)xx + y(u2 + u1 + u0)(u2 + u1 + u0)yy) – 

                1

ttL (
2

6

x
 (u1 + u0)xx + y(u1 + u0)( u1 + u0)yy) = −x3 

6

6!

t
, …(110) 

and so on. 
Therefore, according to equation (19) we have: 

u(x, y, t) = x3(1 − 
2

2!

t
+

4

4!

t
−

6

6!

t
...)…(111) 

This has the closed form 
u(x, t) = x3 cos t                                                                                                                                         …(112) 

 

Example 6: Consider the following three-dimensional inhomogeneous nonlinear lBVP 

utt = xuuxx −
2

2

y
uyy + zuuzz, 0 < x, y, z < 1, t > 0, …(113) 

with initial conditions: 

u(x, y, z, 0) = y2, ut(x, y, z, 0) = 0, 

and boundary conditions: 

u(0, y, z, t) = 0, u(1, y, z, t) = 0, 
u(x, 0, z, t) = 0, u(x, 1, z, t) = cos t, 

u(x, y, 0, t) = 0, u(x, y, 1, t) = 0. 

Proceeding as before, the recurrence relation 

u0(x, y, z, t) = y
2
,  …(114) 

un+1 = N(u0 + … + un) − N(u0 + … + un – 1) = 1

ttL (x(u0 + … + un)( u0 + … + un)xx −
2

2

y
( u0 + … + un)yy + 

         z(u0 + … + un)( u0 + … + un)zz) − 1

ttL (x(u0 + … + un – 1)xx −
2

2

y
( u0 + … + un – 1)yy + z(u0 + … + un – 1) 
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         ( u0 + … + un – 1)zz), n = 1, 2, ... …(115) 

This gives the following components: 

u1(x, y, z, t) = N(u0) = 1

ttL (x(u0)(u0)xx −
2

2

y
(u0)yy + z(u0)(u0)zz) = −y2 

2

2!

t
, …(116) 

u2(x, y, z, t) = N(u1 + u0) − N(u0) = 1

ttL (x(u1 + u0)( u1 + u0)xx −
2

2

y
(u1 + u0)yy + z(u1 + u0)( u1 + u0)zz) − u1= y2 

4

4!

t
,  

…(117) 

u3(x, y, z, t) = N(u2 + u1 + u0) − N(u1 + u0) = 1

ttL (x(u2 + u1 + u0)( u2 + u1 + u0)xx −
2

2

y
(u2 + u1 + u0)yy + 

                     z(u2 + u1 + u0)( u2 + u1 + u0)zz) −
11

2
ttL (x2(u1 + u0)xx + y2(u1 + u0)yy + z2(u1 + u0)zz) = −y2 

6

6!

t
, 

…(118) 

and so on. 

Therefore, according to equation (19) we have: 

u(x, y, z, t) = y2(1 −
2

2!

t
+

4

4!

t
−

6

6!

t
...), …(119) 

This has the closed form 

u(x, t) = y2 cos t                                                                                                                                              …(120) 

 

V. Conclusion 
In this paper, an efficient iterative method namely DGJ method is implemented to obtain the exact 

solution for solving linear and nonlinear heat-like and wave-like equations with variable coefficients in one and 

higher dimensional spaces using the initial condition only. In DGJ method, it is possible to derive the exact 

solution for both linear and nonlinear problems by using few iterations only. The obtained exact solution of 

applying the DGJ method is in full agreement with the results obtained with those methods available in the 

literature such as ADM [2], VIM [3], HAM [4] and HPM [5]. The method simple, easy does not required any 

restrictive assumptions and can be easily comprehended with only a basic knowledge of Calculus. This confirms 

that the DGJ method is reliable and promising when compared with some existing methods. 
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