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Abstract : A study has been made on Couette flow of a generalized second grade fluid through a porous 

medium with suction. The approximate solution of the governing equation has been obtained by Variational 

Iteration Method. The effects of fractional calculus parameter β, porosity parameter 𝜎 and the parameter 𝜂 on 

primary and secondary velocities have been illustrated graphically. It is found that both the primary and the 

secondary velocities decrease against the distance from the lower plate with the increase in the value of the 

fractional calculus parameter β. 
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I. Introduction 

The interest of non-Newtonian fluid flow between two infinite parallel plates has been considerably 

grown because of its wide range of application in engineering fields e.g. petroleum industry, polymer 

technology etc. During the last few decades fractional calculus approach has been successfully applied in 

describing the viscoelastic behavior of the non-Newtonian fluids. In the constitutive equation of the stress field 

of the non-Newtonian fluid, the integer order time derivative has been replaced by Riemann-Liouville fractional 

calculus operator 𝐷𝑡
𝛽
. Many researchers have investigated the flows of non-Newtonian fluids between two 

parallel plates through porous medium. An investigation on unsteady incompressible flow of generalized 

Oldroyd- B fluid between two parallel plates have made by Bose and Basu [1]. In their work they have used the 
constitutive equation with fractional order time derivative representing the stress field related to the motion. He 

in [2-4] established variational Iteration Method (VIM) in (1999) that has been used by many researchers to 

handle linear and non-linear model conveniently. A study on incompressible flow of   generalized Oldroyd-B 

fluid in a rotating system has been made by Bose and Basu [5]. Safari [6] in his paper has explained the 

Variational Iteration Method in finding the analytical solution of space fractional diffusion equation. Tan, Xian 

and Wei [7] investigated  unsteady Couette flow of generalized second grade fluid. Fetecau, Hayat, Fetecau and 

Ali [8] have studied unsteady flow of a second grade fluid between two side walls perpendicular to a plate.  

In present paper an investigation on unsteady Couette flow of generalized second grade fluid through a 

porous medium with suction has been made. The expression for the velocity field for the aforesaid flow has 

been obtained by Variational Iteration Method. The effects of fractional calculus parameter β, porosity 

parameter 𝜎 and parameter 𝜂 have been illustrated graphically.    
 

II. Mathematical Analysis Of The Problem 
We consider unsteady incompressible flow of generalized second grade fluid between two infinite 

parallel porous plates embedded in a porous medium. The upper and lower plates are located at 𝑦 = 0 and 𝑦 = ℎ 

respectively and extended from 𝑥 = −∞  to  𝑥 = +∞ and 𝑧 = −∞  to 𝑧 = +∞. The plates together with the fluid 

were initially at rest. At 𝑡 > 0 the lower plate begins to move with uniform velocity U but the upper plate 

remains fixed. We choose a Cartesian co-ordinate system with x-axis along the lower plate in the direction of 

the flow, y-axis normal to the plates and the z-axis perpendicular to xy-plane. The flow is generated due to the 

motion of the lower plate moving with uniform velocity  parallel to itself in the direction of the flow. Since the 

plates are infinite in length in the x-and z-directions, all the physical quantities are functions of y and t only. The 

velocity vector of the fluid is 𝑉 𝑦, 𝑡 = 𝑢 𝑦, 𝑡 𝑖 + 𝑣(𝑦, 𝑡)𝑗   

The continuity equation gives 

                                                  
𝜕𝑣

𝜕𝑦
= 0                                                                            (2.1) 

 
 
 
 

                                                                               



Unsteady Couette flow of a generalized second grade fluid through a porous medium… 

DOI: 10.9790/5728-11411419                                   www.iosrjournals.org                                               15 | Page 

 
Figure1.  Sketch of the problem 

 

which on integration yields 𝑣 = constant = 𝑣0 where 𝑣0 > 0 for suction and 𝑣0 < 0 for the blowing at 

the plate. 

Using the form of the velocity field as assumed earlier the governing equation can be written as  

 

  
𝜕𝑢

𝜕𝑡
+
𝑣0

𝜌

𝜕𝑢

𝜕𝑦
=  𝜐+ 𝛼𝛽𝐷𝑡

𝛽
 
𝜕2𝑢(𝑦 ,𝑡)

𝜕𝑦2
−

𝜐𝑢

𝐾
                                                 (2.2)           

                                            

𝜐 =
𝜇

𝜌
  is the kinematic viscosity, 𝜌 is the fluid density, 𝛼𝛽 =

𝛼1
𝛽

𝜌
, K  is the permeability of porous medium. 

The initial and boundary conditions can be written as  

                       𝑢 = 0 for  0 ≤ 𝑦 ≤ ℎ, 𝑡 < 0                                                                    (2.3) 

        𝑢 = 𝑈, 𝑣 = 𝑣0  at 𝑦 = 0, 𝑡 > 0                                                                   (2.4) 

𝑢 = 0, 𝑣 = 𝑣0   at y = h  for t > 0                                                              (2.5) 

 

Introducing non-dimensional variables 𝑢∗ =
𝑢

𝑈
 , 𝑣∗ =

𝑣

𝑣0
 ,𝑦∗ =

𝑦

ℎ
 , 𝑡∗ =

𝜐𝑡

ℎ2
 and dropping the mark * for convenience 

the governing equation can be rewritten as            
𝜕𝑢

𝜕𝑡
= −𝑅𝑒

𝜕𝑢

𝜕𝑦
+  1 + 𝜂𝛽𝐷𝑡

𝛽
 
𝜕2𝑢

𝜕𝑦2
−

𝑢

𝜎2
                                       (2.6) 

Where 𝑅𝑒 =
𝑣0

𝜌𝜐
 is Renolds number and 𝜂𝛽 =

𝛼𝛽

𝜐
 ,𝜎2 =

𝐾

ℎ2
 

In non-dimensional variables the initial and boundary conditions are of the following forms 

𝑢 = 0  for  0 ≤ 𝑦 ≤ 1, 𝑡 ≤ 0                                                                     (2.7) 

            𝑢 = 1, 𝑣 = 1  at 𝑦 = 0, 𝑡 > 0                                                                        (2.8a) 
                     𝑢 = 0, 𝑣 = 1  at y = 1 for t > 0                                                                (2.8b)  

 

III. Fundamental Idea Of He’s Variational Iteration Method 
We consider the differential equation                  𝐿𝑢(𝑦, 𝑡) + 𝑁𝑢(𝑦, 𝑡) = 𝑓 𝑦, 𝑡                                                   (3.1) 

We consider the differential equation Where 𝐿 is the linear operator, 𝑁 is the non-linear operator, 𝑓(𝑦, 𝑡) is the 

source   in-homogeneous term. 

 
According to VIM we can write down a correctional functional as follows 

𝑢𝑛+1 𝑦, 𝑡 = 𝑢𝑛 𝑦, 𝑡 +  𝜆(𝐿𝑢𝑛 𝜉 + 𝑁𝑢𝑛 
𝑡

0
 𝜉 − 𝑓(𝜉))𝑑𝜉 ,𝑛 ≥ 0                                                      (3.2) 

 

Where 𝜆 is the general Lagrangian Multiplier which can identified optimally via variational theory. The second 

term on the right hand side is called the correction and 𝑢𝑛  is considered as a restricted variation i.e.  𝛿𝑢𝑛 = 0. 
 So, we first determine the Lagrangian multiplier that will be identified optimally via integration by parts. The 

successive approximations of the solution will be obtained using the obtained Lagrangian multiplier and using 

initial solution 𝑢0. Consequently the solution is          

 𝑢 𝑦, 𝑡 = lim𝑛→∞ 𝑢𝑛(𝑦, 𝑡)                                                                       (3.3) 

 

IV. Finding The Solution Of The Problem By Variational Iteration Method 
Now we try to solve the governing equation (2.6) by VIM subject to the initial and boundary conditions given 

by equations (2.7) and (2.8) respectively. 
 

We first construct the correctional functional in y and t for 𝑢(𝑦, 𝑡) as 

𝑢𝑛+1 𝑦, 𝑡 = 𝑢𝑛  𝑦, 𝑡 −   
𝜕𝑢 (𝑦 ,𝜏)

𝜕𝜏
+ 𝑅𝑒

𝜕𝑢

𝜕𝑦
−
𝜕2𝑢(𝑦 ,𝜏)

𝜕𝑦 2 − 𝜂𝛽
𝜕2+𝛽𝑢(𝑦 ,𝜏)

𝜕𝜏 𝛽 𝜕𝑦 2 +
𝑢(𝑦 ,𝜏)

𝜎2
 

𝑡

0
𝑑𝜏                              (4.1) 

 

Here we have taken the Lagrangian multiplier 𝜆 = −1 
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We start with the initial approximation              𝑢 𝑥, 0 = 𝑢0 = (1− 𝑦)2                                                        (4.2)  
Taking 𝛽 = 0.2  and using the iteration formula (3.2) we get the successive approximations as  

𝑢0(𝑦, 𝑡) = (1− 𝑦)2                                                                                    (4.3) 
 

𝑢1 𝑦, 𝑡 =  
1

exp 
𝑡
𝜎2 

− 1  𝑦 − 1 2 +  𝑦 − 1 2 − 2𝜎2  
1

exp  
𝑡
𝜎2 

− 1 − 2𝜂0.2𝜎2  
1

exp  
𝑡
𝜎2 

− 1 + 2𝑅𝑒𝜎
2  

1

exp  
𝑡
𝜎2 

− 1  𝑦 − 1                             (4.4) 

 

𝑢2 𝑦, 𝑡 =  
1

exp 
𝑡
𝜎2 

− 1  𝑦 − 1 2 +  𝑦 − 1 2 − 2𝜎2  
1

exp 
𝑡
𝜎2 

− 1 − 2𝜂0.2𝜎2  
1

exp 
𝑡
𝜎2 

− 1  

−  exp 
𝑡

𝜎2
 − 1  2𝜎2 exp 

𝑡

𝜎2
 + 2𝜂0.2𝜎2 exp 

𝑡

𝜎2
 + 2𝑅𝑒𝜎

2 exp 
𝑡

𝜎2
 − 2𝑅𝑒𝜎

2𝑦 exp 
𝑡

𝜎2
   

1

𝑒𝑥𝑝  
2𝑡

𝜎2 
  

+  2𝜎2  𝑒𝑥𝑝  
𝑡

𝜎2
 − 1  

1

𝑒𝑥𝑝  
2𝑡

𝜎2 
+  2𝜂0.2𝜎2  𝑒𝑥𝑝  

𝑡

𝜎2
 − 1  

1

𝑒𝑥𝑝  
2𝑡

𝜎2 
+ 2𝑅𝑒𝜎

2  
1

exp  
𝑡

𝜎2 
− 1  𝑦 − 1   

− 2𝑅𝑒𝜎
2  exp 

𝑡

𝜎2
 − 1  𝑦+ 𝑅𝑒𝜎

2 −𝑅𝑒𝜎
2𝑒𝑥𝑝 

𝑡

𝜎2
 − 1  

1

𝑒𝑥𝑝  
2𝑡

𝜎2 
                (4.5)  

 

Substituting the expression of 𝑢2(𝑦, 𝑡) for 𝑢 from the Equation (4.5) into the stress equation 

𝜏𝑥𝑦 =  µ + 𝛼1
𝛽
𝐷𝑡
𝛽 
𝜕𝑢

𝜕𝑦
                                                                            4.6  

 

and putting 𝑦 = 0 we obtain the stress field at the moving plate as follows  

                   𝜏𝑥𝑦 = −2µ exp −
𝑡

𝜎2
 − 2𝑅𝑒𝜎

2𝛼𝛽
𝑡−𝛽

𝛤 1−𝛽 
− 2𝛼𝛽  −

1

𝜎2
 
𝛽

exp −
𝑡

𝜎2
                                                  (4.7)      

                                          
 

V. Conclusion And Numerical Results 
The unsteady Couette flow of a generalized second grade fluid through a porous medium has been 

investigated. The approximate solution for the velocity field is obtained by Variational Iteration Method (VIM). 

The effect of the fractional calculus parameter β, porosity parameter 𝜎 and 𝜂 on the velocity field has been 

discussed graphically.The unsteady Couette flow of a generalized second grade fluid through a porous medium 

with uniform suction and injection has been investigated. Fig 2 shows that the velocity field 𝑢 of fluid decreases 

with time t for higher values of fractional calculus parameter β near the moving plate. In Fig 3 it can be seen that 

as β increases the velocity field decreases against y, the distance from the lower plate. The velocity field 𝑢 

increases for increasing values of the porosity parameter 𝜎 for small values of time t in Fig 4 near the moving 

plate. Fig 5 shows that the velocity field 𝑢 increases with time t for higher values of the parameter 𝜂. In Fig 6 

the velocity 𝑢 increases for higher values of parameter 𝜂 with the distance y from the lower moving plate. From 

Fig7 it is evident that the velocity field decreases with the increase in the Reynolds number 𝑅𝑒 . From Fig 8 it is 

evident that as Reynolds number 𝑅𝑒  takes higher values the velocity field decreases against the time t. Fig 9 

shows the stress fields against time t for different values of the parameter β.        

 

                                 
Fig 2. The velocity field u is depicted against t for different values of β.   𝛈 = 𝟏.𝟎, 𝛔 = 𝟏.𝟎,   𝐲 =

𝟎.𝟑,𝐑𝐞 = 𝟐.𝟎 
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Fig 3. The velocity field u is depicted against the distance y from the lower plate.  𝛈 = 𝟏.𝟎, 𝛔 = 𝟏.𝟎,   𝐭 =

𝟎.𝟏, 𝐑𝐞 = 𝟐. 
 

 
Fig 4.  The velocity field u is depicted against time for different value of 𝜎.   

  𝛈 = 𝟏, 𝛃 = 𝟎.𝟐,   𝐲 = 𝟎.𝟑, 𝐑𝐞 = 𝟐.𝟎 

 
Fig 5.  The velocity field u is depicted against time t for different values of 𝜂.   

  𝛔 = 𝟏.𝟎, 𝛃 = 𝟎.𝟐,   𝐲 = 𝟎.𝟐,𝐑𝐞 = 𝟐.𝟎 
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Fig 6. The velocity field u is depicted against the distance from the lower plate for different values of 𝜂.   

𝛃 = 𝟎.𝟐, 𝛔 = 𝟏.𝟎,   𝐭 = 𝟎.𝟏,𝐑𝐞 = 𝟐.𝟎 

 
Fig 7.  The velocity field u is depicted against y for different values of the Reynolds  number Re. 

𝛈 = 𝟏.𝟎, 𝛔 = 𝟏.𝟎,   𝐭 = 𝟎.𝟏,      𝛃 = 𝟎.𝟐 

 

 
Fig 8.  The velocity field u is depicted against t for different values of the Reynolds number   Re.   

𝛈 = 𝟏.𝟎, 𝛔 = 𝟏.𝟎, 𝐭 = 𝟎.𝟏,𝛃 = 𝟎.𝟐 
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Fig 9. The stress field is depicted against time t for different values of the parameter β.   𝛈 = 𝟏.𝟎, 𝛔 =

𝟏.𝟎, 𝐑𝐞 = 𝟐.𝟎 

 

Table 1.  Shear stress 𝛕𝐱𝐲 due to flow field when 𝛔 = 𝟏.𝟎, µ = 𝟏.𝟎,𝐑𝐞 = 𝟏.𝟎,𝛂 = 𝟎.𝟐 

General Solution                                                                   Solution for small times 
    β\t      1      2      3    0.01    0.02     0.03 

    0.2 -7.3935  -6.2153 -5.4616 -15.6008 -13.9737 -13.1177 

    0.3  -5.9945  -4.7957 -4.0644 -17.9465 -15.0971 -13.6817 

    0.4  -4.8495 -3.7177 -3.0482 -20.4023 -16.0844 -14.0576 

    0.5 -3.9244 -2.9116 -2.3214 -22.6262 -16.7080 -14.0828 

    
Table 2.  Shear stress 𝛕𝐱𝐲 due to flow field when 𝛔 = 𝟏.𝟎, µ = 𝟏.𝟎, ,𝛂 = 𝟎.𝟐,𝛃 = 𝟎.𝟓 

General Solution                                                          Solution for small times 
   𝐑𝐞\t        1      2      3     0.01     0.02     0.03 

   2.0 -5.9429   -4.3389  -3.4868   -42.8112 -30.9810 -25.7366 

   3.0   -7.9614   -5.7662 -4.6521 -62.9963 -45.2540  -37.3905 

   4.0    -9.9799 -7.1935 -5.8175  -83.1813 -59.5270 -49.0443 

   5.0   -11.9984 -8.6208 -6.9829 -103.3664 -73.8000 -60.6982 
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