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 ABSTRACT : This work investigates the existence of a T periodic solution of the problem  

 
Where T is a positive constant,  is an n- vector of t, F(t, x) is a T periodic in t and continuous in X. Here,  

 means the derivative of with respect to t. The linear and non-linear cases are covered and examples 

are given to illustrate the concept of a limit cycle. Furthermore, Bendixson theorem and Floquet theorem were 

treated. 
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I. Introduction 
In this paper, we study the existence of a periodic solution of a boundary value problem for a linear 

system. Before we investigate the existence of such periodic solution we give definitions of some basic concepts 

with examples and theorem that will be important in the sequel. 

Definition I 

A first order linear system simply referred to as a linear system of the form  

 
Where A(t) is an nxn matrix function of t, continuous for (+, ε R), a≤ t ≤ b. 

Consider the homogenous linear periodic system, where A is a periodic matrix, that is  

 
For some fixed T, the period of A. the 

question now is whether such a system has solutions of period T, or perhaps of mT, m=1,2,…..  This is not 

always the case. Even in the scalar case, as shown below, the system  has no non-trival 2π 

periodic solution since 

                                  1.2 

 
Gives 

 
Applying the 2π periodic condition we get 

 

 

 
⇒  

So, u(x) =0 is the solution of 1.2 

Definition 1.2 

Let  X1(t),...,Xn(t) be n solutions of (1.1) 

If X1,…, Xn are linearly independent, then X is a fundamental matrix. Also, if X(t) is a fundamental 

matrix solution of (1.1), then so is X(t)C for non- singular constant matrix C. 

Considering the homogenous equation (1.1), since the coefficient matrix A is now a constant matrix, it is 
defined for all t and hence the solution procedure is to substitute 
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In (1.1), where U is a constant vector. This will be a solution if 

 
Hence, λ is an eigenvalue of A, where U is the corresponding eigenvector. There are n-eigenvalue λ1,…,λn 

which are zeros of 

 =0                                  (1.3) 

and we let U1 ,…, Un be the corresponding eigenvectors. Thus we have obtained the solutions to (1.1) 

 
Where U1,…,Un are linearly independent eigenvectors, these n solutions are linearly independent and can be 

used to form a fundamental matrix of (1.1) 

LEMMA 

Let  be two fundamental matrices for the system 

 
Then there exists a non-singular nxn constant matrix c such that 

 
Proof: 

Fix  and set   It suffices to show that  is independent of t. 

using equation (1.1) for both  we have immediately 

 
But [  

Substituting, we have 

 

 

 

 
This completes the proof. 

Given a fundamental matrix for a periodic system, the existence of a periodic solution is checked by the 

following theorem 

 

THEOREM 1.4 (FLOQUET THEOREM) 

Let  be a fundamental matrix for a periodic system. Then there exists a matrix P of period T and a 

constant matrix R such that 

 
Proof: 

Set  is non singular for all t and satisfies 

 

 

 

So,  is another fundamental matrix. By lemma (1.6), we have  for some constant 

non-singular matrix . 

 Determine =  and P by P= . To show that P is periodic with period T, we have that 
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And this completes the proof. 

 

II. Second Order Autonomous Differential Equations 
The second order equation is of general type 

 

 
And the associated autonomous equation 

 
In what follows, we shall be concerned with autonomous equations. 

DEFINITION 
LIMIT CYCLE: A limit cycle is an isolated periodic solution represented in the phase plane by an isolated 
path. The neighboring path are, by definition, not closed but spiral into or away from the limit ɣ as shown 

below. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Suppose that the phase diagram for a differential equation contains a single, unstable equilibrium point and a 

limit cycle surrounding it as in the case of the Van-der-pol equation 

 
In such cases, the limit cycle is the principal features of the system and it is desirable to be able to decide with 

certainty whether it is there or not. 

We now state, without proof, a theorem on which the result of this chapter is based. 

 

THEOREM 2.2 (THE POINCARE-BENDIXSON THEOREM) 

Let R be a closed bounded region consisting of non-singular points of a 2x2 system  such that some 

positive half-path  of the system lies entirely within R. then either  is itself a closed path or it approaches a 

closed path or it terminates at the equilibrium point. 

The theorem implies, in particular, that if R contains no equilibrium points and some  remain in R, then R 

must contain a periodic solution. The theorem can be used in the following way. Suppose that  and  with 

 inside , such that all paths, crossing point toward its interior and all paths crossing  points 

outwards from it. Then no path which enters the annular region between them can even escape again. The 

annulus is therefore a region R for the theorem (see fig 2.2). If further, we can arrange that R has no equilibrium 

points in it. Then the theorem predicts at least one closed path  somewhere in R. 
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The practical difficulty is in finding for a given system, a suitable  and  to substantiate a brief in the 

existence of a limit cycle. An example can be taken to show that a given system has a periodic solution. 

EXAMPLE 2.3 
Show that the system 

 

 
Has a periodic solution 

SOLUTION: 

We shall try to find two circles centered on the origin with the required properties 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

In fig 2.3, is a normal pointing outward at P from the circle of radius r and  is in 

direction of the path through P. Also 

 
And therefore  is positive or negative according to whether X is pointing outwards or inwards. We have 
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But  

 

 

 

 

 
Changing to polar coordinates 

 

 

 
Substituting, we have 

 

 

 

 

 

 

 

 

 

 

 
Substituting, we have 
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When, for example, , this is positive for all θ and so all paths are directed outwards on the circle and 

when , it is negative, with all paths directed inwards. Therefore, somewhere between  and 

 there is at least a periodic solution. 

 

III. The Existence Of A Periodic Solution Of A General System 
The Bendixson principle can be employed to obtain theorems covering broad types of differential 

equation, of which the following is an example. 

Theorem 3.1 

The differential equation 

 
(The Li nard equation), or the equivalent system 

 
Or  

 
Where  

 
F and g are continuous, has at least one periodic solution under the following conditions: 

(i)  

(ii)  

(iii)  

(iv)  

Proof: 

By   it implies that there is a single equilibrium point at the origin.  

Consider the function 

 
i.e   

 

 

 

 
And  

 
 represents the energy of the system, G(0)=0, G(x) 0 when x  and G is monotonic increasing (by (iv); 

and is continuous). Therefore 

 for x  or y  (ε is positive definite). 

Also ε is continuous and increases monotonically. 

Let                                           

consists of simple closed curves encircling the origin. As C tends to zero, they approach the origin and 

as C to infinity, they become infinitely “remote” (the principal consequence of (iv)).  
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We can choose C, C =C1 small enough for the corresponding contour , to be entirely within the neighborhood 

of the origin where, by (ii), f(x, y) . Examining a half path  starting at a point on  we consider  on 

 

 

 

 

 

 
This is positive except at y=0, on  choose  to start at a point other than y=0 on . Then it leaves  

in the outward direction and it can never reappear inside  since to do so, it must cross same interior contours 

in the outward direction, which are impossible since by (3.4);  on all contour near  as well as on . 

Considering a contour  for large C, C=C2, say,  can be chosen by (iv) to lie entirely outside the 

circle , so that by (i), f(x, y)  on . By (3.4), with f(x, y) , all paths crossing  cross 

inwardly or are tangential (at y=0) and by a similar argument to the above, no positive half-path once inside , 

can escape. 

Therefore  remains in the region bounded by  and  and by theorem (2.1), here is a periodic 

solution in this region. 

Example 3.2 

Show that the equation  

 
Has a limit cycle and locate it, between two curves =0 constant. 

Solution 

From the theorem, 

 

 

 

 

 
Therefore (3.2) gives the contours of  

 
 The periodic solution located by the theorem lies between two such contours, one inside, the other 

outside, of the curve f(x, y)=0 or  and is most closely fixed by finding the smallest contour lying 
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outside this circle and the largest lying inside. We require respectively minimum/maximum of  subject 

to  being then chosen so that the minimum/maximum is equal to 1. 

Minimum/Maximum    

Subject to                       

Calculating by mean of a Lagrange multiplier, we have 

H(x, y, λ) =I(x, y) + λ (I(x, y)-C) 

H(x, y, λ) =  

 

 

 
Form (2) 

       

        

Substituting for λ=-2 in equation (1) 

      

       

        

Since C is chosen so that the minimum/maximum is equal to ! it implies that if x=0, y+1 and if x=1, y=0 

substituting in (3) we have 

(a)  

(b)  

    (See fig 3.1B) 

 

 

 

 

 

 

 

 

 
 

 

 

An existence result of a limit cycle 

We consider the equation 

 
Where, broadly speaking, f(x) is positive when  is large, and negative when  is small and where g is such 

that in the absence of damping term, F(x) , we expect periodic solutions for small x. Example is the Van-der 

Pol’s equation. 

 
It will provide for us the simplest form of equation having this pattern of positive and negative damping which 

gives rise to a limit cycle. 

Effective, the theorem demonstrates a pattern of expanding and contracting spirals about a limit cycle. Paths far 

from the origin spend part of their time in regions of energy input and part in regions of energy loss. 

The proof is carried out using the equivalent system 

 
(the Li nard plane) where 

 

REGION FOR PERIODIC 

SOLUTIONS 
x2 + y2 

= 1 
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The use of this plane enables the shape of the paths to be simplified (under the conditions of theorem 

(3.1) y=0 only on x=0) without losing symmetry, and , additionally, allows the burden of the conditions to rest 

on F rather than on f, f being thereby less restricted. We now state without proof a proof a theorem on which the 
result of this section is based. 

Theorem 3.3 

The equation 

 
Has a unique periodic solution if f and g are continuous, and  

(i) F(x) is an odd function 

(ii) F(x) is zero only at x=0, x=a, x=-a, for some a  

(iii) F(x)  as x   monotonically for ax  

(iv) g(x) is an odd function and g(x)  for x  

(These conditions imply that f(x) is even, f(0)  and f(x)  for x ) 

The general shape of f(x) and F(x) is shown in (fig 3.2) below 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

The general pattern of the paths can be obtained from the following considerations. 

(a) If x(t), y(t) is a solution, so is –x(t), -y(t) (since F and g are odd); therefore the phase diagram is 

symmetrical about the origin (but not necessary the individual phase paths). 

(b) The slope of a path is given by 

 
So the paths are horizontal only on x=0 (from (iv)) and are vertical only on the curve y=F(x). above 

y=F(x),  and below,  

(c)   for  and  for  by (iv) 

 

Illustration of the existence of a limit cycle 

The Van-der-pol equation 

 
Has a unique limit cycle 

Here,   

 

  

i.e                                                 
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Proof: 
(i) F(x) is an odd function since 

       

 
 is satisfied 

(ii)   

 

 

 

 

 
Here,  

⇒ (ii) is satisfied with a=  

(iii) Is satisfied also since for x , f(x)  as x  

                    For example, 

                     X = 3 ⇒ f(x) = 6 

                    X = 4 ⇒ f(x) =  

(iv) Is also satisfied since 

g(-x) =  -x  = -g(x) 

Since all the four axioms are satisfied, if follows therefore that a limit cycle exists, its x- extremities 

must be beyond x=  

 

IV. Conclusion 
We have thus obtained explicitly the method of calculation of fundamental matrices, floquent 

multipliers and floquent exponents. Also, the poincar -Bendixson theorem was discussed as regards to the 

existence of periodic solutions and limit cycles. Some application were also given. 
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