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Abstract: In this paper, we present the solution of one dimensional advection diffusion equation for initial 

condition in infinite space analytically by transform to heat equation via coordinate transformation. A 

comparison among explicit upwind difference scheme, explicit centered difference scheme and explicit 

downwind difference scheme is projected herein with a variety of numerical results and relative errors. Our 

goal is to investigate the efficient numerical schemes for advection diffusion equation. 
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I. Introduction 
The mathematical model describing the transport and diffusion processes is the one dimensional 

advection-diffusion equation (ADE): 
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  with constant coefficients. Mathematical modeling of 

heat transport, pollutants, and suspended matter in water and soil involves the numerical solution of an 

Advection diffusion equation. Many researchers are involved for solving the model equation (ADE) by using 

the finite difference scheme. Agusto and Bamigbola (2007) studied on the Numerical treatment of the 

mathematical model for water pollution. This study was examined by various mathematical models involving 

water pollutant. The authors used the implicit centered difference scheme in space and a forward difference 

method in time for the evaluation of the generalized transport equation. Kumar et al (2009) presented an 

analytical solution of one dimensional advection diffusion equation with variable coefficients in a finite domain 

using Laplace transformation technique. The authors introduced new independent space and time variables in 

this process. In this study the analytical solution was compared with the numerical solution in case the 

dispersion is proportional to the same linearly interpolated velocity. Kumar et al (2011) made an Analytical 

solution of the advection diffusion equation with temporally dependent Coefficients. Park et al (2008) 

performed an analytical solution of the advection diffusion equation for a ground level finite area source using 

superposition method. Van Genuchten et al studied an Analytical solution of the advection diffusion transport 

equation using a change of variable and integral transform technique. Thongmoon and Mckibbin (2006) 

compared some Numerical Methods for the Advection-Diffusion Equation. The authors reported that the finite 

difference methods (FTCS, Crank Nicolson) give better point-wise solutions than the spline methods. Yuste et al 

(2005) described an explicit finite difference method and a new Von Numann-type stability analysis for 

fractional diffusion equations. Changiun Zhu et al (2010) conducted a study on a Numerical Simulation of 

Hybrid Finite Analytic Method for Ground Water Pollution.  

Therefore, in section II, we present the derivation of advection diffusion equation on the principle of 

conservation law of mass using Fick’s law based on ([1], [2], [3], [7]). In section III, we solve one dimensional 

advection diffusion equation for initial condition in infinite space analytically by transform to heat equation via 

coordinate transformation based on ([1], [5], [11]). Based on the study of the general finite difference method 

for the second order linear partial differential equation ([7], [14], [16], [17]) we develop a explicit finite 

difference scheme for ADE as an IBVP with two sided boundary conditions in section IV. In this section, we 

also establish the stability condition of the explicit centered difference scheme for advection diffusion equation. 

In section V, we present an algorithm for the numerical solution and we implement the numerical scheme in 

order to perform the numerical features of error estimation. Our goal is to investigate the efficient numerical 

schemes for advection diffusion equation. Finally the conclusions of the paper are given in last section. 
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II. Fundamental Conservation Law 
Many partial differential equation models with a physical motivation develop from a conservation law. 

A conservation law is just a mathematical formulation of the basics fact that the rate at which a quantity changes 

in a given domain must equal the rate at which the quantity flows across the boundary plus the rate at which the 

quantity is created or destroyed within the domain. Let  ),( txCC   denote the density of a given quantity 

(energy, mass, Automobiles, etc), density is usually measured in amount per unit volume or some time amount 

per unit length. Further, we let ),( txqq   denote the flux of the quantity crossing the section at x  and at time 

t  and its unit are given in amount per unit area, per unit time. Thus,  ),( txAq  is the actual amount of the 

quantity that is crossing the section at x  at time t . Where A is the cross sectional area of the tube. Finally 

),( txff   denote the given rate at which the quantity is created or destroyed within the section at x  at 

time t . The function  f  is called the source term if it is positive, and a sink if it is negative, it is measured in 

amount per unit volume per unit time. We can derive the law by assuming a fixed time but arbitrary, section  

],[ 21 xx  of the tube and requiring that the rate of change of the total amount of the quantity in the section must 

equal the rate at which it flows in at 1xx  , minus the rate at which it flows out at 2xx  , plus the rate at 

which it is created within ],[ 21 xx .  

In mathematically, we can define the conservation law. 
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This is one integral form of conservation law. Here A is constant, it may be cancelled from the formula. 

However, if the function C and q  are sufficiently smooth, then it may reformulated as a PDE model.        
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We conclude that the integrand must be identically zero. 

                  0),(),(),(  txftxqtxC xt            

                   ),(),(),( txftxqtxC xt                                                                   (2) 

 

The equation (2) is the fundamental conservation law. 

 

2.1 advection diffusion equation 

Consider the flux of the chemical past some point x  in the tube or steam. In addition to the advective 

flux uCq    there is also a net flux due to diffusion whenever the concentration profile is not flat at point x . 

The flux is determine by fourier’s law of heat conduction (heat diffuses in much the same way as the chemical 

concentration), which says that the diffusive flux is simply proportional to the gradient of concentration. 

                     Diffusive flux, 
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Combining this flux with the advective flux uCq   gives the net flux function  
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c
Duc
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
  

 We substitute this quantity at the conservation law (2) in the absence of source. And the conservation law 

becomes 
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 The advection diffusion equation is a parabolic type partial differential equation. 

 

2.2 Derivation of the Mathematical model (ADE) 

The derivation of the advection diffusion equation relies on the principle of superposition; advection 

and diffusion can be added together if they are linearly independent. Diffusion is a random process due to 

molecular motion. Due to diffusion, each molecule in time t will move.  

  

 
Figure 2.1: Schematic of a control volume with cross flow 

 

Either one step to the left or one step to the right (i.e. x ). Due to advection, each molecule will also 

move tu  in the cross-flow direction. These processes are clearly additive and independent; the presence of the 

cross flow does not bias the probability that the molecule will take a diffusive step to the right or the left; it just 

adds something to that step. The net movement of the molecule is xtu   , and thus, the total flux in the x -

direction 
xJ (above shown in graph), including the advection transport and a Fickian diffusion term, must be 

                                                      JucJ directionx 
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Where, uc  the correct form of the advection term. 

We now use this flux law and the conservation of mass to derive the advection diffusion equation. 

Consider a cross flow velocity, ),,( wvuu   as shown in Figure 2.1 .From the conservation of mass, the net flux 

through the control volume is      
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Thus, for the x -direction 
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The  y  and z -directions are similar, but with v  and w  for the velocity components, giving 
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 Substituting these results into (3) and recalling that  
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  This is the desired advection diffusion equation (ADE). 

In the one-dimensional case, )0,0,(uu   and there are no concentration gradients in the y -direction or 

z -direction, leaving us with 
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 It is well known Advection diffusion equation 

      

2.3 Formulation of Diffusion Equation from Advection diffusion equation by transform technique  

Without loss of generality, we will consider one dimensional problem where the advection  takes 

place in the direction 0x . Again, the initial concentration along the domain is assumed to be zero 

everywhere at the initial time 0t . 

i.e. we consider advection diffusion equation as the following  
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             with initial condition  )(),0( 0 xcxc  , for  x       

We need to solve the above IVP. To solve this equation, we will employ the logic that if we imagine 

ourselves as observers travelling along with the fluid at the fluid velocityu , we then observe the diffusion 

process only. 

After the coordinate transformation, we show that the advection diffusion equation become exactly the 

same as the diffusion equation. 

 

Coordinate transformation 

If this logic is correct, then we can apply the solution of the diffusion equation that we obtained earlier 

to this situation. As a consequence we define a new coordinate system,  (convective coordinate or Lagrangian 

coordinate) utx  .           
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This coordinate system, essence, translates any given fixed location x , to the distance between fixed 

location and observer’s location, which is described byut . In addition, we will let t and then ),( txC  

becomes ),( C . Using the chain rule, we have  
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 Similarly, the time derivative term can be expressed as  
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Substituting of the above expression to the advection diffusion equation leads to the following expression 
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           Which is known as the diffusion equation 

Therefore, solutions for advection diffusion equation are the same as those for diffusion equation of 

various initial and boundary conditions with the exception that we must replace    by utx .  

 

III. Analytic Solution Of The Heat Equation (Diffusion) As A Cauchy Problem 
The diffusion equation is  
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Driving the solution of (7)-(8) is accomplished in two steps. First we will solve the problem for a 

special step function )(0 c , and then we will construct the solution to (7)-(8) using the special solution 

So firstly we consider the problem  
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Where we have taken the initial condition to be a step function with jump 0c  

                        

3.1 The fundamental Solution of the Heat Equation 

We persuade our approach to the solution (9)-(10) with a simple idea from the subject of dimensional 

analysis. Dimensional analysis deals with the study of units (seconds, meters, kilogram, and so forth) and 

dimensions (time, length, mass and so forth) of the quantities in a problem and how relate to each other. 

Equations must be dimensionally consistent (one cannot add apples or oranges), and important conclusions can 

be drawn from this fact. The cornerstone result in dimensional analysis is called the pi theorem. The pi theorem 

guarantees that whenever there is a physical law dimensionless quantities mqqqq ...,,.........,, 321  then there is 

an equivalence physical law relating the independent dimensionless quantities that can be formed 

from mqqqq ...,,.........,, 321 . By a dimensional quantity we mean one in which all the dimensions (time, length, 

mass and so forth) cancel out. As an example take the law 
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                                             utgth  2
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That gives the height h  of an object at time t when something is thrown upwind with initial 

velocityu ; the constant g is the acceleration due to gravity. Here the dimensioned quantities are uth ,, and g  , 

having dimensions length, time, length per time, and length per time squared. This law can be rearranged and 

written equivalently as                
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Substituting these quantities into (9) then gives, 
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 The function is called the fundamental solution to the heat equation.     

 

 

3.1.1 The Fundamental solution of Advection Diffusion equation 
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is called the fundamental solution to the advection diffusion equation. 
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IV. Finite Difference Scheme 
In this section, the study investigates a finite difference scheme for the water pollution model as  

a parabolic second order partial differential equation. This chapter contains the analysis of the condition 

of stability of the explicit finite difference scheme.  

 

4.1 Explicit Upwind difference schemes for Advection Diffusion Equation 

We consider our second order water pollution model  
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The simplest numerical discretization of (12) is   
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Which is the explicit upwind difference scheme and it is also known as FTBSCS techniques. The 

stability condition is controlled by  
x
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4.2 Explicit centered difference scheme for Advection Diffusion Equation 

              We consider our second order water pollution model  
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Let the solution ),( ni txc be denoted by n

iC  and its approximate value by n

ic . 

Simple approximations to the first derivative in the time direction can be obtained from 

                                           )(
1

tO
t

CC

t

c
n

i

n

i 










 

Centered difference discretization in spatial derivative:      
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The simplest numerical discretization of (14) is   
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This is the explicit centered difference scheme of 1 D advection diffusion equation and it is also known as 

FTCSCS 

 

4.3 Explicit downwind difference scheme for Advection Diffusion Equation 

We consider our second order water pollution model  
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The simplest numerical discretization of (16) is   
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Which is the explicit downwind difference scheme and it is also known as FTFSCS techniques. The stability 

condition is controlled by  
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Now we can write the general form of an explicit finite difference scheme of advection diffusion equation as      
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Values of Coefficients of three different schemes at a glance 

 
 

Lemma 4.3-1: Stability of the explicit centered difference scheme (15) of Advection Diffusion equation is 

given by the conditions 
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Proof:  The explicit centered difference scheme for (14) is given  
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      where 
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The equation (18) implies that for 
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The new solution is a convex combination of the two previous solutions. That is the solution at new 

time-step )1( n  at a spatial node i is an average of the solutions at the previous time-step at the spatial-

nodes 1i , i  and 1i . This means that the extreme value of the new solution is the average of the extreme 

values of the previous two solutions at the three consecutive nodes.  

In our model the characteristics speed u is assumed to positive. 

                             Then we have
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From equation (ii), 1210  
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 And from (i),   
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It is clear that 1      

We can conclude that the explicit centered difference scheme (18) is stable for  
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V. Algorithm For The Numerical Solution 
To find out the numerical solution of the model, we have to accumulate some variables which are 

offered in the following algorithm. 

 

Input: nx
 
and nt

 
the number of spatial and temporal mesh points respectively. 

             
ft  , the right end point of  ),0( T  

            )( dx , the right end point of  ),0( b  

              
0C , the initial concentration density, apply as a initial condition 

             
aC , Left hand boundary condition 

             
bC , Right hand boundary condition 

              D , Diffusion rate 

              u , velocity 

 

Output: ),( txc  the solution matrix 

 

Initialization: 
nt

T
dt

0
 , the temporal grid size 

                       
nx

b
dx

0
 , the spatial grid size 

                       
dx

dt
ugm * , the courant number 

                         
2)(

*
dx

dt
Dld    

                         

Step1. Calculation for numerical solution of ADE by explicit centered difference scheme 

For  1n  to nt  

        For  2i  to nx  

 )1,(*)2/(),(*)*21()1,(*)2/(),1(  inCinCinCinC   

         end 

end 

Step2; Output  ),( txc  

Step3: Figure Presentation 

Step4: Stop 

 

 

5.1 Relative Error Estimation of the Numerical Scheme 

In this section we compute the relative error between analytic solution and different types of explicit finite 

difference scheme to determine which scheme is best.  

 

We compute the relative error in  
1L  -norm defined by 
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for all time where 
eC  is the exact solution and 

NC  is the Numerical solution computed by the explicit finite 

difference scheme. 

 

 

 
Figure 5: Analytic solution for Advection diffusion equation at different time 

 

5.1.1 Relative error for explicit upwind difference scheme 

We present explicit upwind difference scheme for 5.0u and 05.0D
 
up to time  60t  in 

temporal grid size 06.0t  in spatial domain [0, 50] with spatial grid size 1.0x    

 

 
Figure 5.1: Relative errors of explicit upwind difference scheme 

 

5.1.2 Relative error for explicit centered difference scheme 

we perform explicit centered difference scheme for 5.0u and 05.0D
 
up to time  60t  in 

temporal grid size 06.0t  in spatial domain [0, 50] with spatial grid size 1.0x which guarantees the 

stability condition , 10   , 
2

1
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Figure 5.2: Relative errors of explicit centered difference scheme 

 

5.1.3 Relative error for explicit downwind difference scheme 

We execute explicit downwind difference scheme for 5.0u and 05.0D
 
up to time  60t  in temporal 

grid size 06.0t  in spatial domain [0, 50] with spatial grid size 1.0x .  

 

 
Figure 5.3: Relative error for explicit downwind difference scheme 

 

5.1.4 Comparison of explicit upwind difference scheme, explicit centered difference scheme and explicit 

downwind difference scheme 

 

 
Figure 5.4: Comparison of Relative errors between explicit upwind difference scheme and explicit 

centered difference scheme 
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Figure 5.5: Comparison of Relative errors between explicit centered difference scheme and explicit 

downwind difference scheme 

 

5.1.5 Comparison of explicit upwind difference scheme, explicit centered difference scheme and explicit 

downwind difference scheme 

 

 
Figure 5.6: Comparison of Relative errors among explicit upwind difference scheme, explicit centered 

difference scheme and explicit downwind difference scheme 

 

Figure (Figure 5.1-5.6) shows the relative error of three different schemes for advection diffusion 

equation. Figure 5.1 shows the relative error for EUDS, which remains below 0.0212. Figure 5.2 shows the 

relative error for ECDS which remains below 0.0110. Figure 5.3 shows the relative error for EDDS scheme 

which remains below 0.0401. ECDS provides accurate results than the EUDS and EDDS scheme with respect to 

discretization parameter x . 

 

VI. Conclusion 
The study has presented the numerical and analytical solution of Advection Diffusion equation. We 

have studied three explicit differences schemes for the numerical solutions of Advection Diffusion Equation. It 

has also compared among the three different schemes; EUDS, ECDS and EDDS scheme for estimating the 

relative error in advection diffusion equation. The explicit centered difference scheme is more efficient 

numerical scheme for ADE. The explicit centered difference scheme can be extended for two dimensional 

advection diffusion equations as a water pollution model which demands the further study.   
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