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I. Introduction 
 The aim of considering semi-groups is to provide an introduction to the theory of rings. A more general 
concept than that of a group is that of a semi-group.  The algebraic system  Bi-semi-group is more general to the 

algebraic system ring or an associative ring. We introduced  Artex Spaces over Bi-monoids. As a development 

of Artex Spaces over Bi-monoids, we introduced SubArtex spaces of Artex spaces over bi-monoids. From the 

definition of a SubArtex space, it is clear that not every subset of an Artex space over a bi-monoid is a SubArtex 

space. We found and proved some propositions which qualify subsets to become SubArtex Spaces.  Completely 

Bounded Artex Spaces over bi-monoids  were introduced. It contains the least and greatest elements namely 0 

and 1. These elements play a good role in our study.  In our study Sum Combination of elements of  an Artex 

Space over a bi-monoid  is defined. The sum span of a finite subset of a completely bounded artex space over a 

bi-monoid is defined. Some propositions were found and proved. Examples are provided. As the theory of Artex 

spaces over  bi-monoids is developed from lattice theory, this theory  will play a good role in many fields 

especially in science and engineering and in computer fields. In Discrete Mathematics this theory will create a 

new dimension.  
 

II. Preliminaries 
2.1     Semi-group : A non-empty set S together with a binary operation . is called a Semi-group if for all a,b,c ϵ 

S,            a.(b . c) = (a.b).c  

2.2  Monoid : A non-empty set N together with a binary operation . is called a monoid if 

(i) for all a,b,c ϵ N,  a.(b . c) = (a.b).c   and 

(ii) there exists an element denoted by e in N such that a.e = a = e.a, for all a ϵ N.  

The element e is called the identity element of the monoid N. 

2.3 Relation : Let S be a non-empty set. Any subset of S×S is called a relation in S.                                   
If R is a relation in S, then R is a subset of S×S.  

If (a,b) belongs to the relation R, then we can express this by aRb or by a ≤ b.  

Note : A relation may be denoted by ≤  

2.4 Partial Ordering : A relation  ≤  on a set P is called a partial order relation or a partial ordering in P if  

(i) a ≤ a, for all aϵP                         ie   ≤ is reflexive, 

(ii) a ≤ b and b ≤ a implies a = b    ie   ≤   is anti-symmetric,   and  

(iii) a ≤ b and b ≤ c implies a ≤ c   ie   ≤   is  transitive. 

2.5 Partially Ordered Set (POSET) : If  ≤  is a partial ordering in P, then the ordered pair  ( P, ≤ ) is 

called a Partially Ordered Set or simply a POSET.     

2.6 Lattice : A lattice is a partially ordered set ( L,≤ ) in which every pair of elements  a,b ϵ L has a 

greatest lower bound and a least upper bound. 
The greatest lower bound of a and b is denoted by aɅb and the least upper bound of a and b is denoted by aV b  

2.7 Lattice as an Algebraic System : A lattice is an algebraic system (L,Ʌ,V) with two binary operations 

Ʌ and V on L which are both commutative, associative and satisfy the absorption laws namely aɅ(aVb) = a and 

aV(aɅb) = a, for all a,bϵL 

The operations Ʌ and V are called cap and cup respectively, or sometimes meet and join respectively. 

2.8 Properties  :      We have the following properties in a lattice ( L , Ʌ,V ) 

1.a Ʌ a = a    1’.a V a = a                     (Idempotent Law) 
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2.a Ʌ b = b Ʌ a                  2’.a V b = b V a              (Commutative Law) 

3.(a Ʌ b )Ʌ c = a Ʌ( b Ʌ c)  3’.(a V b) V c = a V( b V c)  (Associative Law) 

4.a Ʌ (a V b) = a                  4’.a V (a Ʌ b) = a, for all a,b,cϵ L (Absorption Law) 
2.9  Complete Lattice : A lattice is called a complete lattice if each of its nonempty subsets has a least 

upper bound and a greatest lower bound. 

Every finite lattice is a complete lattice and every complete lattice must have a least element and a greatest 

element. 

The least and the greatest elements, if they exist, are called the bounds or units of the lattice and are denoted by 

0 and 1 respectively. 

2.10  Bounded Lattice : A lattice which has both elements 0 and 1 is called a bounded lattice. A bounded 

lattice is denoted by (L, Ʌ,V,0,1) 

The bounds 0 and 1 of a lattice (L, Ʌ,V) satisfy the following identities.  

For any aϵL, a V 0 = a a Ʌ 1 = a a V 1 = 1 a Ʌ 0 = 0 

2.10.1  Example : For any set S, the lattice ( P(S), ⊆ ) is a bounded lattice.Here for each A,B ϵ P(S), the least 

upper bound of  A and B is A∪B and the greatest lower bound of A and B is A∩B. The bounds in this lattice are 

φ, the empty set and S, the universal set. 

2.11 Complemented Lattice : Let (L, Ʌ,V,0,1) be a bounded lattice. An element a’ϵL is called a 

complement of an element aϵL if  a Ʌ a’ = 0, a V a’ = 1. A bounded lattice (L, Ʌ,V,0,1) is said to be a 

complemented lattice if every element of L has at least one complement. A complemented lattice is denoted by 

(L, Ʌ,V, ’ ,0,1).  

2.11.1 Example : For any set S, the lattice ( P(S), ⊆ ) is a Complemented lattice. 

For each A,B ϵ P(S), the least upper bound of  A and B is A∪B and the greatest lower bound of A and B is 

A∩B. 
The bounds in this lattice are φ, the empty set and S, the universal set. 

Here for any A ϵ P(S), the complement of A in P(S) is S-A 

2.12  Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and .  is 

called a Doubly Closed Space if (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all a,b,c ϵ D 

A Doubly closed space  is denoted by (D, + , .) 

Note 1: The axioms (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c ,for all a,b,c ϵ D are called the distributive 

properties of the Doubly Closed Space. 

Note 2: The operations + and . need not be the usual addition and usual multiplication respectively. 

2.12.1 Example :  Let N be the set of all natural numbers.  

Then (N, + , .), where + is the usual addition and . is the usual multiplication, is a Doubly closed space. 

Similarly (Z, + , .), (Q, + , .), (R, + , .) and (C, + , .) are all Doubly closed spaces. 
2.12.2 Example : ( Z , + , – ), where + is the usual addition  and   – is the usual subtraction , is not a  Doubly 

closed space. 

Even though + and – are binary operations in Z, ( Z , + , – ) is not a  Doubly closed space because of the 

distributive properties of the Doubly Closed Space. 

Take a = 15, b = 7, c = 4 

Then a – ( b + c ) = 15 – ( 7 + 4 )  

                             = 15 – 11  

                             = 4 

But (a – b) + (a – c) = (15 – 7) + (15 – 4)   

                                 = 8 + 11 

                                 = 19 

Therefore, a – ( b + c ) ǂ (a – b) + (a – c) 
Therefore, ( Z , + , – ) is not a  Doubly closed space. 

2.13 Bi-semi-group : A Doubly closed space (S , + , .) is called a Bi-semi-group if + and . are associative in 

D. 

2.13.1 Example  : (N, + , .), (Z, + , .), (Q, + , .), (R, + , .), and (C, + , .), where + is the usual addition  and  . is 

the usual multiplication, are all Bi-semi-groups. 

2.14 Bi-monoid : A Bi-semi-group ( M , + , . ) is called a Bi-monoid if there exist elements denoted by 0 

and 1 in S such that a+0=a=0+a, for all aϵM  and  a.1=a=1.a, for all aϵM . 

The element 0 is called the identity element of M with respect to the binary operation + and the element 1 is 

called the identity element of M with respect to the binary operation.. 

2.14.1 Example :  Let W = {0,1,2,3,…}.Then (W, + , .), where + is the usual addition and . is the usual 

multiplication, is a Bi-monoid. 

2.14.2 Example  :  Let Q’= Q+ ∪{0}, where Q+ is the set of all positive rational numbers. Then (Q’, + , . ) is a 

bi-monoid. 
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2.14.3 Example :  R’= R+ ∪{0}, where R+ is the set of all positive real numbers. Then (R’, + , . ) is a bi-

monoid. 
2.14.4 Example : (Z, + , .), (Q, + , .), (R, + , .), and (C, + , .), where + is the usual addition  and  . is the usual 

multiplication, are all Bi-monoids. 

 

III. Artex Spaces Over A Bi-Monoids 
 3.1  Artex Space Over a Bi-monoid : Let ( M , + , . ) be a bi-monoid with the  identity elements 0 and 1 

with respect to + and . respectively. A non-empty set A together with two binary operations  ^  and  v  is said to 

be an Artex Space Over the Bi-monoid  ( M , + , . ) if 

1.(A, Ʌ , V) is a lattice and 

2.for each mϵM , mǂ0, and aϵA, there exists an element ma ϵ A satisfying the following conditions : 
(i)     m(a Ʌ b) = ma Ʌ mb 

(ii)    m(a V b) = ma V mb 

(iii)    ma Ʌ na ≤ (m +n)a     and   ma V na ≤ (m + n)a   

(iv)   (mn)a = m(na), for all m,nϵM, mǂ0, nǂ0, and a,bϵA              

(v)      1.a = a, for all a ϵ A.  

Here, ≤ is the partial order relation corresponding to the lattice (A, Ʌ , V) .The multiplication ma is called a bi-

monoid multiplication with an artex element or simply bi-monoid multiplication in A.  

3.2 Examples 

3.2.1 Example  :   Let  W = {0,1,2,3,…}. 

Then ( W , + , . ) is a bi-monoid , where + and . are the usual addition and multiplication respectively. 

Let Z be  the set of all integers 

Then ( Z, ≤ ) is a lattice in which Ʌ and V are defined by a Ʌ b = minimum of {a,b} and a V b = maximum of 
{a,b}, for all a,bϵZ. 

Clearly for each mϵW,mǂ0, and for each aϵZ,  maϵZ. 

Also   

(i)     m(a Ʌ b) = ma Ʌ mb 

(ii)    m(a V b) = ma V mb 

(iii)    ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a 

(iv)   (mn)a = m(na) 

(v)      1.a = a , for all m,nϵW, m ǂ 0, n ǂ 0 and a,bϵZ 

Therefore, Z is an Artex Space Over the Bi-monoid ( W , + , . ) 

3.2.2 Example  :   As defined in Example 3.2.1, Q, the set of all rational numbers is an Artex space over W 

3.2.3 Example  :   As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over W. 

3.2.4 Example  :  Let Q’= Q+ ∪ {0}, where Q+ is the set of all positive rational numbers.  

Then (Q’, + , . ) is a bi-monoid. Now as defined in Example 3.2.1, Q, the set of all rational numbers is an Artex 

space over Q’ 

3.2.5 Example   : R’= R+ ∪ {0}, where R+ is the set of all positive real numbers. Then (R’, + , . ) is a bi-

monoid. 

As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over R’ 

3.3     Properties 

Properties 3.3.1 : We have the following properties in a lattice ( L , Ʌ,V) 

1.a Ʌ a = a    1’.a V a = a 

2.a Ʌ b = b Ʌ a                  2’.a V b = b V a 
3.(a Ʌ b )Ʌ c = a Ʌ( b Ʌ c)  3’.(a V b) V c = a V( b V c) 

4.a Ʌ (a V b) = a                 4’.a V (a Ʌ b) = a, for all a,b,c ϵ L 

Therefore, we have the following properties in an Artex Space A over a bi-monoid M. 

(i) m(a Ʌ a) = ma          (i)’.m(a V a) = ma 

(ii) (m(a Ʌ b) =m(b Ʌ a)                       (ii)’.m(a V b) = m(b V a) 

(iii) m((a Ʌ b )Ʌ c)=m(a Ʌ( b Ʌ c))                    (iii)’.m((a V b) V c) = m(a V( b V c))      

(iv) m(a Ʌ (a V b)) = ma                       (iv)’.m(a V (a Ʌ b)) = ma,                                                                                

 for all mϵM, m ǂ 0 and a,b,c ϵ A 

3.4 SubArtex Space : Let (A, Ʌ ,V) be an Artex space over a bi-monoid. (M , + , .). Let S be a nonempty 

subset of A. Then S is said to be a SubArtex Space of A  if (S, Ʌ ,V) itself  is an Artex Space over M. 

3.4.1 Example  : As defined in Example 3.2.1, Z is an Artex Space over W = {0,1,2,3,…..} and W is a 
subset of Z. Also W itself  is an Artex space over W under the operations defined in Z. Therefore, W is a 

SubArtex space of Z.      
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3.5 Complete Artex Space over a bi-monoid  : An Artex space A over a bi- monoid M is said to be a 

Complete Artex Space over M if as a lattice, A is a complete lattice, that is each nonempty subset of A has a 

least upper bound and a greatest lower bound. 
3.5.1 Remark : Every Complete Artex space must have a least element and a greatest element.  

The least and the greatest elements, if they exist, are called the bounds or units of the Artex space and are 

denoted by 0 and 1 respectively. 

3.6 Lower Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be 

a Lower Bounded Artex Space over  M if  as a lattice, A has the least element 0.                                                                          

3.6.1 Example : Let A be the set of all constant  sequences (xn) in [0,∞)  

Let W = {0,1,2,3,…}.  

Define  ≤ ’, an order relation, on A by for (xn), (yn) in A, (xn)  ≤ ’ (yn) means xn  ≤  yn , for each  n  

where  ≤  is the usual relation “ less than or equal to “ 

Therefore, A is an Artex space over W. 

The sequence (0n), where 0n is 0 for all n, is a constant sequence belonging to A 
Also (0n)  ≤ ’ (xn) , for all the sequences (xn) belonging to in A  

Therefore, (0n) is the least element of A. 

That is, the sequence   0,0,0,……    is the least element of A   

Hence A is a Lower Bounded Artex space over W. 

3.7 Upper Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be 

an Upper Bounded Artex Space over M if  as a lattice, A has the greatest element 1. 

3.7.1 Example :    Let A be the set of all constant  sequences (xn) in (-∞,0] and let W = {0,1,2,3,…}.  

Define ≤’ ,an order relation, on A by for (xn), (yn) in A, (xn) ≤’ (yn) means xn  ≤ yn , for n = 1,2,3,…, where ≤ is 

the usual relation “ less than or equal to “ 

A is an Artex space over W. 

Now, the sequence (1n), where 1n is 0, for all n, is a constant sequence belonging to A 

Also (xn)  ≤ ’ (1n) , for all the sequences (xn) in A  
Therefore, (1n) is the greatest element of A. 

That is,  the sequence 0,0,0,….. is the greatest element of A  

Hence A is an Upper Bounded Artex Space over W. 

3.8 Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be a 

Bounded Artex Space over M if A is both a Lower bounded Artex Space over M and an Upper bounded Artex 

Space over M. 

3.9 Completely Bounded Artex Space over a bi-monoid: A Bounded Artex Space A over a bi-monoid M 

is said to be a Completely Bounded Artex Space over M if  (i) 0.a = 0,  for all a ϵ A (ii) m.0 = 0, for all m ϵ M.  

3.9.1 Note : While the least and the greatest elements of the Complemented Artex Space is denoted by 0 and 

1, the identity elements of the bi-monoid ( M , + , . ) with respect to addition and multiplication are, if no 

confusion arises, also denoted by 0 and 1 respectively.  
 

IV.   The Sum Span Of A Sub Set Of An Artex Space Over A Bi-Monoid 
4.1 Sum Combination :  Let (A, Ʌ ,V) be a Completely Bounded Artex Space over a bi-monoid (M , + , . 

). Let a1, a2, a3, ……. an ϵ A. Then  any element of the form m1a1Vm2a2Vm3a3V ……. V mnan  , where mi ϵ  M, is 

called a Sum Combination or Join Combination of a1, a2, a3, ……. an over the Artex Space A. 

4.2 The Sum Span of a subset of a Completely Bounded Artex Space over a Bi-monoid :    Let (A, Ʌ 

,V) be a Completely Bounded Artex Space over a bi-monoid (M , + , . ) and W be a  nonempty finite  subset of 

A. Then the Sum Span of W or Join Span of W denoted by S[W] is defined to be the set of all sum combinations 

of elements of W. That is, if W = { a1, a2, a3, ……. an }, then S[W] = {m1a1Vm2a2Vm3a3V …… Vmnan / mi ϵ  
M}. 

 

4.3 Propositions 

Proposition  4.3.1:  Let (A, Ʌ ,V) be a Completely Bounded Artex Space over a bi-monoid      (M , + , . ) and 

W be a nonempty finite subset of A. Then W ⊆ S [W]  

Proof : Let (A, Ʌ ,V) be a  Completely Bounded Artex Space over a bi-monoid (M , + , . )  

Let W = { a1, a2, a3, ……. an }be a finite subset of A.  

S[W] = {m1a1Vm2a2Vm3a3V …… Vmnan / mi ϵ  M}. 

 Since (A, Ʌ ,V) is a Completely Bounded Artex Space over a bi-monoid   (M , + , . ), the least element 

of A and the greatest element of A will exist in A. 

Let 0 and 1 be the least  and the greatest elements of A respectively. 
For any aϵA, a V 0 = a a Ʌ 1 = a a V 1 = 1 a Ʌ 0 = 0. 
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 Without any confusion the identity elements with respect to + and . in M will also be denoted by 0 and 

1 respectively . 

Let ai ϵ W. 
Then ai = 0.a1V0.a2V….0.a3V1.ai V0.ai+1V…… V0.an ϵ S[W]  

Therefore, W ⊆ S [W]. 

Proposition  4.3.2 :  Let (A, Ʌ ,V) be a  Completely Bounded Artex Space over a bi-monoid (M , + , . ). Let W 

and V be any two nonempty finite subsets of A. Then W ⊆ V implies S[W] ⊆ S[V] . 

Proof : Let (A, Ʌ ,V) be a  Completely Bounded Artex Space over a bi-monoid (M , + , . )  

Let W and V be any two nonempty finite subsets of A such that  W = { a1, a2, a3, ……. an } and                                                              

V = { a1, a2, a3, ……. an, b1, b2, b3, ……. bk } 

Then W ⊆ V 

Let x ϵ S[W] 
Then x = m1a1Vm2a2Vm3a3V …… Vmnan, where mi ϵ  M  

We have W ⊆ V and a1, a2, a3, ……. an ϵ V. 

Therefore, x =  m1a1Vm2a2Vm3a3V …… Vmnan V0.b1V0.b2V …… V0.bk ϵ S[V]. 

                                                                                         (Since for any aϵA, a V 0 = a ) 

Therefore, S[W] ⊆ S[V] 

Hence, if W ⊆ V, then S[W] ⊆  S[V] . 

Proposition  4.3.3 :  Let (A, Ʌ ,V) be a  Completely Bounded Artex Space over a bi-monoid (M , + , . ). Let W 

and V be any two nonempty finite subsets of A. Then S[W∪V] = S[W] V S[V] . 

Proof : Let (A, Ʌ ,V) be a  Completely Bounded Artex Space over a bi-monoid (M , + , . )  
Let W and V be any two nonempty finite subsets of A such that  W = { a1, a2, a3, ……. an } and                                                

V = { b1, b2, b3, ……. bk } 

Let x ϵ S[W∪V] 

Then x =  m1a1Vm2a2Vm3a3V …… Vmnan Vmn+1b1V mn+2b2V …… V mn+kbk  

Let x = w Vv , where w = m1a1Vm2a2Vm3a3V …… Vmnan  and  v = mn+1b1V mn+2b2V …… V mn+kbk 

Clearly w = m1a1Vm2a2Vm3a3V …… Vmnan ϵ S[W] and  

             v = mn+1b1V mn+2b2V …… V mn+kbk ϵ S[V] 

Therefore, x = w Vv ϵ S[W] V S[V] 

Therefore,  S[W∪V] ⊆ S[W] V S[V] ------------------ (i) 

Conversely, let x ϵ S[W] V S[V] 
Then x = w Vv, where wϵ S[W] and v ϵ S[V] 

Then w = m1a1Vm2a2Vm3a3V …… Vmnan ϵ S[W] and  

         v = mn+1b1V mn+2b2V …… V mn+kbk ϵ S[V], where mi ϵ  M. 

Now x = w Vv 

        x =  m1a1Vm2a2Vm3a3V …… Vmnan Vmn+1b1V mn+2b2V …… V mn+kbk ϵ S[W∪V] 

S[W] V S[V] ⊆ S[W∪V] ---------------------- (ii) 

From (i) and (ii) we have S[W∪V] = S[W] V S[V]. 

 

4.4 Examples  

4.4.1 Example : Let R’ = R+ ∪{0}, where R+ is the set of all positive real numbers and let W = {0,1,2,3,…..} 

( R’, ≤ ) is a lattice in which Ʌ and V are defined by a Ʌ b = mini {a,b} and   a V b = maxi {a,b} , for all a,b ϵ 

R’. 

Here ma is the usual multiplication of a by m. 

Clearly for each m ϵ W,mǂ0, and for each a ϵ R’,  ma ϵ R’. 

Also, 

(i)     m(a Ʌ b) = ma Ʌ mb          

(ii)    m(a V b) = ma V mb 

(iii)    ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a          

(iv)   (mn)a = m(na) , for all m,n ϵ W, mǂ0, nǂ0, and a,b ϵ R’                     
(v)      1.a = a ,  for all a ϵ R’                                              

Therefore, R’ is an Artex Space Over the bi-monoid ( W , + , . )  

Generally, if Ʌ1, Ʌ2, and  Ʌ3 are the cap operations of A , B and C respectively and if V1, V2, and V3 are the cup 

operations of A , B and C respectively, then the cap of A×B×C  denoted by Ʌ and the cup of A×B×C denoted by 

V are defined                                                                                                     

x Ʌ y =(a1,b1,c1) Ʌ (a2,b2, c2) = (a1 Ʌ1a2 Ʌ1a3 , b1 Ʌ2b2 Ʌ2b3, c1Ʌ3c2 Ʌ3c3 )  and                                               

x V y =(a1,b1,c1) V (a2,b2, c2) = (a1 V1a2 V1a3 , b1 V2b2V2b3, c1V3c2V3c3 )                                                 

Here, Ʌ1, Ʌ2, and  Ʌ3 denote the same meaning minimum of two elements in R’ and V1, V2, and  V3 denote the 

same meaning maximum  of two elements in R’ 
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 Therefore, R’3 = R’×R’×R’ is an Artex Space over W, where cap and cup operations are denoted by Ʌ 

and V respectively. 

Let  H = { (1,0,0) } and let  T = { (0,1,0) } 
Now S[H] = { (m,0,0) / mϵR’ } and  S[T] = { (0,n,0) / nϵR’ } 

S[H] V S[T] = { (m,0,0) / mϵR’ } V { (0,n,0) / nϵR’ } 

                      = {(m V10 ,0V2n, 0V30)} 

        ={(m,n,0)} (since mV10 = max.{m,0} = m, 0V2n=max.{0,n}=n and 0V30=max.{0,0}=0) 

S[H] V S[T] = {(m,n,0) / m,nϵR’}   ----------- (i) 

Now H ∪ T = { (1,0,0), (0,1,0) } 

Let m,n ϵ M, mǂ0,nǂ0 

Then m(1,0,0) V n(0,1,0) = (m,0,0) V (0,n,0) 

                                           = (m V10 ,0 V2 n ,V3 0) 

                            =(m,n,0)    ( since mV10 = max.{m,0} = m, 0V2n=max.{0,n}=n and  

                                                                                                           0V30=max.{0,0}=0) 

Therefore, S[H∪T] = {(m,n,0) / m,nϵR’}   ----------- (ii) 

From equations (i) and (ii) we have S[H∪T] =  S[H] V S[T] 

4.4.2 Example : Let  H = { (1,0,0) } and let  T = { (1,0,0),(0,1,0) } 

Clearly H ⊆ T 

Now  S[H] = { (a,0,0) / a ϵ R’ } 

and    S[T] = { (a,0,0), (0,b,0) / a, b ϵ R’ }  

Therefore, S[H] ⊆  S[T].  

 

V.     Conclusion 
 Sum Combination of elements of  an Artex Space over a bi-monoid , Sum Span of a finite subset of a 

completely bounded artex space over a bi-monoid will create a dimension in the theory of Artex spaces over bi-

monoids. Interested researcher can do wonders if they work very hard in this field..    
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