The Sum Span of a Finite Subset of A Completely Bounded Artex Space over ABi-Monoid

Dr. K. Muthukumaran
Controller of Examinations and Associate Professor / P.G. and Research Department Of Mathematics/ Saraswathi Narayanan College, Perungudi Madurai/

Abstract

Completely Bounded Artex Spaces over bi-monoids contain the least and greatest elements namely 0 and 1. These elements play a good role in our study. Sum Combination of elements of a Completely Bounded ArtexSpace over a bi-monoid is defined. The sum span of a finite subset of a completely bounded Artex space over a bi-monoid is defined. Some propositions were found and proved. Examples are provided.

 Keywords: Bi-monoids, Artex Spaces over bi-monoids, Completely Bounded Artex Spaces over bi-monoids, Sum Combination,Sumspan.
I. Introduction

The aim of considering semi-groups is to provide an introduction to the theory of rings. A more general concept than that of a group is that of a semi-group. The algebraic system Bi-semi-group is more general to the algebraic system ring or an associative ring. We introduced Artex Spaces over Bi-monoids. As a development of Artex Spaces over Bi-monoids, we introduced SubArtex spaces of Artex spaces over bi-monoids. From the definition of a SubArtex space, it is clear that not every subset of an Artex space over a bi-monoid is a SubArtex space. We found and proved some propositions which qualify subsets to become SubArtex Spaces. Completely Bounded Artex Spaces over bi-monoids were introduced. It contains the least and greatest elements namely 0 and 1. These elements play a good role in our study. In our study Sum Combination of elements of an Artex Space over a bi-monoid is defined. The sum span of a finite subset of a completely bounded artex space over a bi-monoid is defined. Some propositions were found and proved. Examples are provided. As the theory of Artex spaces over bi-monoids is developed from lattice theory, this theory will play a good role in many fields especially in science and engineering and in computer fields. In Discrete Mathematics this theory will create a new dimension.

II. Preliminaries

2.1 Semi-group : A non-empty set S together with a binary operation. is called a Semi-group if for all a,b,c ϵ S, a.(b.c) = (a.b).c
2.2 Monoid : A non-empty set N together with a binary operation . is called a monoid if
(i) for all a,b,c $\in \mathrm{N}$, a.(b .c) = (a.b).c and
(ii) there exists an element denoted by e in N such that a.e $=a=e . a$, for all $a \in N$.

The element e is called the identity element of the monoid N .
2.3 Relation : Let S be a non-empty set. Any subset of $S \times S$ is called a relation in S.

If R is a relation in S, then R is a subset of $S \times S$.
If (a, b) belongs to the relation R, then we can express this by $a R b$ or by $a \leq b$.
Note : A relation may be denoted by \leq
2.4 Partial Ordering : A relation \leq on a set P is called a partial order relation or a partial ordering in P if (i) $\mathrm{a} \leq \mathrm{a}$, for all $\mathrm{a} \in \mathrm{P} \quad$ ie \leq is reflexive,
(ii) $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{a}$ implies $\mathrm{a}=\mathrm{b}$ ie \leq is anti-symmetric, and
(iii) $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$ implies $\mathrm{a} \leq \mathrm{c}$ ie \leq is transitive.
2.5 Partially Ordered Set (POSET) : If \leq is a partial ordering in P , then the ordered pair (P, \leq) is called a Partially Ordered Set or simply a POSET.
2.6 Lattice : A lattice is a partially ordered set (L, \leq) in which every pair of elements a,b $\in \mathrm{L}$ has a greatest lower bound and a least upper bound.
The greatest lower bound of a and b is denoted by $a \wedge b$ and the least upper bound of a and b is denoted by $a V b$
2.7 Lattice as an Algebraic System : A lattice is an algebraic system ($\mathrm{L}, \Lambda, \mathrm{V}$) with two binary operations Λ and V on L which are both commutative, associative and satisfy the absorption laws namely $\mathrm{a} \Lambda(\mathrm{aVb})=\mathrm{a}$ and $\mathrm{aV}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{a}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{L}$
The operations Λ and V are called cap and cup respectively, or sometimes meet and join respectively.
2.8 Properties : We have the following properties in a lattice ($\mathrm{L}, \Lambda, \mathrm{V}$)

1. $\mathrm{a} \Lambda \mathrm{a}=\mathrm{a} \quad$ 1'. $\mathrm{a} \mathrm{Va}=\mathrm{a} \quad$ (Idempotent Law)
2. $\mathrm{a} \Lambda \mathrm{b}=\mathrm{b} \Lambda \mathrm{a}$
2'. $\mathrm{aV} \mathrm{b}=\mathrm{b} V \mathrm{a} \quad$ (Commutative Law)
3. $(\mathrm{a} \Lambda \mathrm{b}) \Lambda \mathrm{c}=\mathrm{a} \Lambda(\mathrm{b} \Lambda \mathrm{c})$
3'. (a V b) V c = a V(b V c) (Associative Law)
4.a $\Lambda(\mathrm{a} V \mathrm{~b})=\mathrm{a} \quad$ 4'. $^{\mathrm{a} V} \mathrm{~V}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{a}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$ (Absorption Law)
2.9 Complete Lattice : A lattice is called a complete lattice if each of its nonempty subsets has a least upper bound and a greatest lower bound.
Every finite lattice is a complete lattice and every complete lattice must have a least element and a greatest element.
The least and the greatest elements, if they exist, are called the bounds or units of the lattice and are denoted by 0 and 1 respectively.
2.10 Bounded Lattice : A lattice which has both elements 0 and 1 is called a bounded lattice. A bounded lattice is denoted by ($\mathrm{L}, \Lambda, \mathrm{V}, 0,1$)
The bounds 0 and 1 of a lattice ($\mathrm{L}, \Lambda, \mathrm{V}$) satisfy the following identities.
For any $a \in L, \quad a \vee 0=a \quad$ a $\Lambda 1=a \quad a \vee 1=1 \quad$ a $\Lambda 0=0$
2.10.1 Example : For any set S, the lattice ($P(S), \subseteq$) is a bounded lattice.Here for each $A, B \in P(S)$, the least upper bound of A and B is $A \cup B$ and the greatest lower bound of A and B is $A \cap B$. The bounds in this lattice are φ, the empty set and S , the universal set.
2.11 Complemented Lattice : Let $(\mathrm{L}, \Lambda, \mathrm{V}, 0,1)$ be a bounded lattice. An element $\mathrm{a}^{\prime} \in \mathrm{L}$ is called a complement of an element $\mathrm{a} \in \mathrm{L}$ if $\mathrm{a} \Lambda \mathrm{a}^{\prime}=0$, $\mathrm{a} \mathrm{V} \mathrm{a}^{\prime}=1$. A bounded lattice ($\mathrm{L}, \Lambda, \mathrm{V}, 0,1$) is said to be a complemented lattice if every element of L has at least one complement. A complemented lattice is denoted by (L, $\Lambda, \mathrm{V},{ }^{\prime}, 0,1$).
2.11.1 Example : For any set S, the lattice $(P(S), \subseteq)$ is a Complemented lattice.

For each $A, B \in P(S)$, the least upper bound of A and B is $A \cup B$ and the greatest lower bound of A and B is $A \cap B$.
The bounds in this lattice are φ, the empty set and S , the universal set.
Here for any $\mathrm{A} \in \mathrm{P}(\mathrm{S})$, the complement of A in $\mathrm{P}(\mathrm{S})$ is $\mathrm{S}-\mathrm{A}$
2.12 Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and . is called a Doubly Closed Space if (i) a. $(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}$ and (ii) $(\mathrm{a}+\mathrm{b}) . \mathrm{c}=\mathrm{a} . \mathrm{c}+\mathrm{b} . \mathrm{c}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{D}$
A Doubly closed space is denoted by ($\mathrm{D},+$, .)
Note 1: The axioms (i) $a .(b+c)=a . b+a . c$ and (ii) $(a+b) . c=a . c+b . c$, for all $a, b, c \in D$ are called the distributive properties of the Doubly Closed Space.
Note 2: The operations + and . need not be the usual addition and usual multiplication respectively.
2.12.1 Example : Let N be the set of all natural numbers.

Then ($\mathrm{N},+,$.), where + is the usual addition and . is the usual multiplication, is a Doubly closed space.
Similarly $(\mathrm{Z},+,),.(\mathrm{Q},+,),.(\mathrm{R},+,$.$) and (\mathrm{C},+,$.$) are all Doubly closed spaces.$
2.12.2 Example : $\mathrm{Z},+,-$), where + is the usual addition and - is the usual subtraction , is not a Doubly closed space.
Even though + and - are binary operations in $\mathrm{Z},(\mathrm{Z},+,-)$ is not a Doubly closed space because of the distributive properties of the Doubly Closed Space.
Take $\mathrm{a}=15, \mathrm{~b}=7, \mathrm{c}=4$
Then $\mathrm{a}-(\mathrm{b}+\mathrm{c})=15-(7+4)$

$$
\begin{aligned}
& =15-11 \\
& =4
\end{aligned}
$$

But $(a-b)+(a-c)=(15-7)+(15-4)$

$$
=8+11
$$

$$
=19
$$

Therefore, $\mathrm{a}-(\mathrm{b}+\mathrm{c}) \ddagger(\mathrm{a}-\mathrm{b})+(\mathrm{a}-\mathrm{c})$
Therefore, $(\mathrm{Z},+,-)$ is not a Doubly closed space.
2.13 Bi-semi-group : A Doubly closed space ($\mathrm{S},+,$.) is called a Bi-semi-group if + and . are associative in D.
2.13.1 Example : $(\mathrm{N},+,),.(\mathrm{Z},+,),.(\mathrm{Q},+,),.(\mathrm{R},+,$.$) , and (\mathrm{C},+,$.$) , where +$ is the usual addition and . is the usual multiplication, are all Bi-semi-groups.
2.14 Bi-monoid : A Bi-semi-group ($\mathrm{M},+$, .) is called a Bi -monoid if there exist elements denoted by 0 and 1 in S such that $a+0=a=0+a$, for all $a \in M$ and $a .1=a=1 . a$, for all $a \in M$.
The element 0 is called the identity element of M with respect to the binary operation + and the element 1 is called the identity element of M with respect to the binary operation.
2.14.1 Example : Let $W=\{0,1,2,3, \ldots\}$.Then ($\mathrm{W},+,$.$) , where +$ is the usual addition and . is the usual multiplication, is a Bi -monoid.
2.14.2 Example : Let $\mathrm{Q}^{\prime}=\mathrm{Q}^{+} \cup\{0\}$, where Q^{+}is the set of all positive rational numbers. Then $\left(\mathrm{Q}^{\prime},+\right.$, . $)$ is a bi-monoid.
2.14.3 Example : $R^{\prime}=R^{+} \cup\{0\}$, where R^{+}is the set of all positive real numbers. Then $\left(\mathrm{R}^{\prime},+,.\right)$ is a bimonoid.
2.14.4 Example : $(\mathrm{Z},+,),.(\mathrm{Q},+,),.(\mathrm{R},+,$.$) , and (\mathrm{C},+,$.$) , where +$ is the usual addition and. is the usual multiplication, are all Bi-monoids.

III. Artex Spaces Over A Bi-Monoids

3.1 Artex Space Over a Bi-monoid : Let ($\mathrm{M},+,$.) be a bi-monoid with the identity elements 0 and 1 with respect to + and . respectively. A non-empty set A together with two binary operations ${ }^{\wedge}$ and v is said to be an Artex Space Over the Bi-monoid ($\mathrm{M},+,$.) if

1. $(\mathrm{A}, \Lambda, \mathrm{V})$ is a lattice and
2.for each $\mathrm{m} \in \mathrm{M}, \mathrm{m} \neq 0$, and $\mathrm{a} \in \mathrm{A}$, there exists an element $\mathrm{ma} \in \mathrm{A}$ satisfying the following conditions :
(i) $\mathrm{m}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{ma} \Lambda \mathrm{mb}$
(ii) $\mathrm{m}(\mathrm{a} V \mathrm{~b})=\mathrm{ma} V \mathrm{mb}$
(iii) $\mathrm{ma} \Lambda \mathrm{na} \leq(\mathrm{m}+\mathrm{n}) \mathrm{a}$ and $\mathrm{maV} \mathrm{na} \leq(\mathrm{m}+\mathrm{n})$ a
(iv) $(\mathrm{mn}) \mathrm{a}=\mathrm{m}(\mathrm{na})$, for all $\mathrm{m}, \mathrm{n} \in \mathrm{M}, \mathrm{m} \neq 0, \mathrm{n} \ddagger 0$, and $\mathrm{a}, \mathrm{b} \in \mathrm{A}$
(v) $1 . \mathrm{a}=\mathrm{a}$, for all $\mathrm{a} \in \mathrm{A}$.

Here, \leq is the partial order relation corresponding to the lattice ($\mathrm{A}, \Lambda, \mathrm{V}$). The multiplication ma is called a bimonoid multiplication with an artex element or simply bi-monoid multiplication in A.

3.2 Examples

3.2.1 Example : Let $W=\{0,1,2,3, \ldots\}$.

Then ($\mathrm{W},+,$.) is a bi-monoid, where + and . are the usual addition and multiplication respectively.
Let Z be the set of all integers
Then (Z, \leq) is a lattice in which Λ and V are defined by a $\Lambda \mathrm{b}=$ minimum of $\{\mathrm{a}, \mathrm{b}\}$ and a $\mathrm{Vb}=$ maximum of $\{\mathrm{a}, \mathrm{b}\}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$.
Clearly for each $\mathrm{m} \in \mathrm{W}, \mathrm{m} \neq 0$, and for each $\mathrm{a} \in \mathrm{Z}$, ma€Z.
Also
(i) $\mathrm{m}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{ma} \Lambda \mathrm{mb}$
(ii) $\mathrm{m}(\mathrm{a} V \mathrm{~b})=\mathrm{ma} V \mathrm{mb}$
(iii) $\mathrm{ma} \Lambda \mathrm{na} \leq(\mathrm{m}+\mathrm{n}) \mathrm{a}$ and $\mathrm{maVna} \leq(\mathrm{m}+\mathrm{n})$ a
(iv) $(\mathrm{mn}) \mathrm{a}=\mathrm{m}(\mathrm{na})$
(v) $1 . \mathrm{a}=\mathrm{a}$, for all $\mathrm{m}, \mathrm{n} \in \mathrm{W}, \mathrm{m} \neq 0, \mathrm{n} \neq 0$ and $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$

Therefore, Z is an Artex Space Over the Bi-monoid ($\mathrm{W},+$, .)
3.2.2 Example : As defined in Example 3.2.1, Q, the set of all rational numbers is an Artex space over W
3.2.3 Example : As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over W.
3.2.4 Example : Let $\mathrm{Q}^{\prime}=\mathrm{Q}^{+} \cup\{0\}$, where Q^{+}is the set of all positive rational numbers.

Then ($\mathrm{Q}^{\prime},{ }^{+},$.) is a bi-monoid. Now as defined in Example 3.2.1, Q , the set of all rational numbers is an Artex space over Q^{\prime}
3.2.5 Example : $\mathrm{R}^{\prime}=\mathrm{R}^{+} \cup\{0\}$, where R^{+}is the set of all positive real numbers. Then $\left(\mathrm{R}^{\prime},+\right.$, . $)$ is a bimonoid.
As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over R'

3.3 Properties

Properties 3.3.1 : We have the following properties in a lattice ($\mathrm{L}, \Lambda, \mathrm{V}$)

1. $\mathrm{a} \Lambda \mathrm{a}=\mathrm{a} \quad 1$ '. $\mathrm{a} \vee \mathrm{a}=\mathrm{a}$
2. $\mathrm{a} \Lambda \mathrm{b}=\mathrm{b} \Lambda \mathrm{a} \quad$ 2'. $\mathrm{a} V \mathrm{~b}=\mathrm{b} V \mathrm{a}$
3. $(\mathrm{a} \Lambda \mathrm{b}) \Lambda \mathrm{c}=\mathrm{a} \Lambda(\mathrm{b} \Lambda \mathrm{c}) \quad 3^{\prime}$. $(\mathrm{a} V \mathrm{~V}) \mathrm{V} \mathrm{c}=\mathrm{aV}(\mathrm{b} V \mathrm{c})$
4. $\mathrm{a} \Lambda(\mathrm{aVb})=\mathrm{a} \quad 4{ }^{\prime}, \mathrm{a} V(\mathrm{a} \Lambda \mathrm{b})=\mathrm{a}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$

Therefore, we have the following properties in an Artex Space A over a bi-monoid M.
(i) $\mathrm{m}(\mathrm{a} \Lambda \mathrm{a})=\mathrm{ma}$
(i)'. $m(a \vee a)=m a$
(ii) $(\mathrm{m}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{m}(\mathrm{b} \Lambda \mathrm{a})$
(ii)' $\cdot m(a \vee b)=m(b \vee a)$
(iii) $m((a \Lambda b) \Lambda c)=m(a \Lambda(b \Lambda c))$
(iii)' $\cdot \mathrm{m}((\mathrm{a} V \mathrm{~b}) \mathrm{V} \mathrm{c})=\mathrm{m}(\mathrm{a} V(\mathrm{~b} V \mathrm{c}))$
(iv) $m(a \Lambda(a \vee b))=m a$
(iv)' $m(a \vee(a \Lambda b))=m a$,
for all $\mathrm{m} \in \mathrm{M}, \mathrm{m} \neq 0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
3.4 SubArtex Space : Let ($\mathrm{A}, ~ \Lambda, \mathrm{~V}$) be an Artex space over a bi-monoid. ($\mathrm{M},+$, .). Let S be a nonempty subset of A . Then S is said to be a SubArtex Space of A if $(\mathrm{S}, \Lambda, \mathrm{V})$ itself is an Artex Space over M.
3.4.1 Example : As defined in Example 3.2.1, Z is an Artex Space over $W=\{0,1,2,3, \ldots .$.$\} and W$ is a subset of Z . Also W itself is an Artex space over W under the operations defined in Z . Therefore, W is a SubArtex space of Z.
3.5 Complete Artex Space over a bi-monoid : An Artex space A over a bi- monoid M is said to be a Complete Artex Space over M if as a lattice, A is a complete lattice, that is each nonempty subset of A has a least upper bound and a greatest lower bound.
3.5.1 Remark : Every Complete Artex space must have a least element and a greatest element.

The least and the greatest elements, if they exist, are called the bounds or units of the Artex space and are denoted by 0 and 1 respectively.
3.6 Lower Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Lower Bounded Artex Space over M if as a lattice, A has the least element 0.
3.6.1 Example : Let A be the set of all constant sequences $\left(\mathrm{x}_{\mathrm{n}}\right)$ in $[0, \infty)$

Let $\mathrm{W}=\{0,1,2,3, \ldots\}$.
Define \leq^{\prime}, an order relation, on A by for $\left(\mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{y}_{\mathrm{n}}\right)$ in $\mathrm{A},\left(\mathrm{x}_{\mathrm{n}}\right) \leq{ }^{\prime}\left(\mathrm{y}_{\mathrm{n}}\right)$ means $\mathrm{x}_{\mathrm{n}} \leq \mathrm{y}_{\mathrm{n}}$, for each n
where \leq is the usual relation " less than or equal to "
Therefore, A is an Artex space over W.
The sequence $\left(0_{\mathrm{n}}\right)$, where 0_{n} is 0 for all n , is a constant sequence belonging to A
Also $\left(0_{n}\right) \leq \prime\left(\mathrm{x}_{\mathrm{n}}\right)$, for all the sequences $\left(\mathrm{x}_{\mathrm{n}}\right)$ belonging to in A
Therefore, $\left(0_{\mathrm{n}}\right)$ is the least element of A .
That is, the sequence $0,0,0, \ldots \ldots$ is the least element of A
Hence A is a Lower Bounded Artex space over W.
3.7 Upper Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be an Upper Bounded Artex Space over M if as a lattice, A has the greatest element 1.
3.7.1 Example : Let A be the set of all constant sequences $\left(x_{n}\right)$ in $(-\infty, 0]$ and let $W=\{0,1,2,3, \ldots\}$.

Define \leq^{\prime}, an order relation, on A by for $\left(x_{n}\right),\left(y_{n}\right)$ in $A,\left(x_{n}\right) \leq '\left(y_{n}\right)$ means $x_{n} \leq y_{n}$, for $n=1,2,3, \ldots$, where \leq is the usual relation " less than or equal to "
A is an Artex space over W.
Now, the sequence $\left(1_{\mathrm{n}}\right)$, where 1_{n} is 0 , for all n , is a constant sequence belonging to A
Also $\left(\mathrm{x}_{\mathrm{n}}\right) \leq{ }^{\prime}\left(1_{\mathrm{n}}\right)$, for all the sequences $\left(\mathrm{x}_{\mathrm{n}}\right)$ in A
Therefore, $\left(1_{n}\right)$ is the greatest element of A.
That is, the sequence $0,0,0, \ldots \ldots$ is the greatest element of A
Hence A is an Upper Bounded Artex Space over W.
3.8 Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be a Bounded Artex Space over M if A is both a Lower bounded Artex Space over M and an Upper bounded Artex Space over M.
3.9 Completely Bounded Artex Space over a bi-monoid: A Bounded Artex Space A over a bi-monoid M is said to be a Completely Bounded Artex Space over M if (i) $0 . a=0$, for all a $\in A$ (ii) $\mathrm{m} .0=0$, for all $\mathrm{m} \in \mathrm{M}$.
3.9.1 Note : While the least and the greatest elements of the Complemented Artex Space is denoted by 0 and 1, the identity elements of the bi-monoid ($\mathrm{M},+,$.$) with respect to addition and multiplication are, if no$ confusion arises, also denoted by 0 and 1 respectively.

IV. The Sum Span Of A Sub Set Of An Artex Space Over A Bi-Monoid

4.1 Sum Combination : Let $(\mathrm{A}, \Lambda, \mathrm{V})$ be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n} \in A$. Then any element of the form $m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots \ldots . V m_{n} a_{n}$, where $m_{i} \in M$, is called a Sum Combination or Join Combination of $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{n}$ over the Artex Space A.
4.2 The Sum Span of a subset of a Completely Bounded Artex Space over a Bi-monoid : Let (A, Λ ,V) be a Completely Bounded Artex Space over a bi-monoid ($\mathrm{M},+,$.) and W be a nonempty finite subset of A. Then the Sum Span of W or Join Span of W denoted by S[W] is defined to be the set of all sum combinations of elements of W. That is, if $W=\left\{a_{1}, a_{2}, a_{3}, \ldots . . a_{n}\right\}$, then $S[W]=\left\{m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . V m_{n} a_{n} / m_{i} \epsilon\right.$ M\}.

4.3 Propositions

Proposition 4.3.1: Let $(\mathrm{A}, \Lambda, \mathrm{V})$ be a Completely Bounded Artex Space over a bi-monoid $\quad(\mathrm{M},+,$.$) and$ W be a nonempty finite subset of A. Then W \subseteq S [W]
Proof : Let $(\mathrm{A}, \Lambda, \mathrm{V})$ be a Completely Bounded Artex Space over a bi-monoid ($\mathrm{M},+,$.)
Let $W=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}\right\}$ be a finite subset of A.
$S[W]=\left\{m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . \mathrm{Vm}_{n} a_{n} / m_{i} \in M\right\}$.
Since (A, Λ, V) is a Completely Bounded Artex Space over a bi-monoid $(M,+,$.$) , the least element$ of A and the greatest element of A will exist in A.
Let 0 and 1 be the least and the greatest elements of A respectively.
For any $\mathrm{a} \in \mathrm{A}, \quad \mathrm{a} V 0=\mathrm{a} \quad \mathrm{a} \Lambda 1=\mathrm{a} \quad \mathrm{a} V 1=1 \quad \mathrm{a} \Lambda 0=0$.

Without any confusion the identity elements with respect to + and. in M will also be denoted by 0 and 1 respectively .
Let $\mathrm{a}_{\mathrm{i}} \in \mathrm{W}$.
Then $a_{i}=0 . a_{1} V 0 . a_{2} V \ldots . .0 . a_{3} V 1 . a_{i} V 0 . a_{i+1} V \ldots . . V 0 . a_{n} \in S[W]$
Therefore, $\mathrm{W} \subseteq \mathrm{S}[\mathrm{W}]$.
Proposition 4.3.2 : Let ($\mathrm{A}, \Lambda, \mathrm{V}$) be a Completely Bounded Artex Space over a bi-monoid (M, + , .). Let W and V be any two nonempty finite subsets of A . Then $\mathrm{W} \subseteq \mathrm{V}$ implies $\mathrm{S}[\mathrm{W}] \subseteq \mathrm{S}[\mathrm{V}]$.
Proof : Let $(\mathrm{A}, \Lambda, \mathrm{V})$ be a Completely Bounded Artex Space over a bi-monoid ($\mathrm{M},+,$.)
Let W and V be any two nonempty finite subsets of A such that $W=\left\{a_{1}, a_{2}, a_{3}, \ldots . . a_{n}\right\}$ and $V=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}, b_{1}, b_{2}, b_{3}, \ldots \ldots . b_{k}\right\}$
Then $\mathrm{W} \subseteq \mathrm{V}$
Let $\mathrm{x} \in \mathrm{S}[\mathrm{W}]$
Then $x=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . \operatorname{Vm}_{n} a_{n}$, where $m_{i} \in M$
We have $W \subseteq V$ and $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n} \in V$.
Therefore, $x=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . m_{n} a_{n} V 0 . b_{1} V 0 . b_{2} V \ldots . . V 0 . b_{k} \in S[V]$.
(Since for any $\mathrm{a} \in \mathrm{A}, \mathrm{a} \mathrm{V} 0=\mathrm{a} \quad$)
Therefore, $\mathrm{S}[\mathrm{W}] \subseteq \mathrm{S}[\mathrm{V}]$
Hence, if $\mathrm{W} \subseteq \mathrm{V}$, then $\mathrm{S}[\mathrm{W}] \subseteq \mathrm{S}[\mathrm{V}]$.
Proposition 4.3.3 : Let $(\mathrm{A}, ~ \Lambda, \mathrm{~V})$ be a Completely Bounded Artex Space over a bi-monoid (M, + , .). Let W and V be any two nonempty finite subsets of A. Then $S[W U V]=S[W] V S[V]$.
Proof : Let $(\mathrm{A}, ~ \Lambda, \mathrm{~V})$ be a Completely Bounded Artex Space over a bi-monoid ($\mathrm{M},+,$.)
Let W and V be any two nonempty finite subsets of A such that $W=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}\right\}$ and $\mathrm{V}=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots \ldots . \mathrm{b}_{\mathrm{k}}\right\}$
Let $x \in S[W U V]$
Then $x=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . \operatorname{Vm}_{n} a_{n} V m_{n+1} b_{1} V m_{n+2} b_{2} V \ldots . . V m_{n+k} b_{k}$
Let $x=w V v$, where $w=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . V m_{n} a_{n}$ and $v=m_{n+1} b_{1} V m_{n+2} b_{2} V \ldots . . V m_{n+k} b_{k}$
Clearly $w=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . \operatorname{Vm}_{n} a_{n} \in S[W]$ and

$$
\begin{equation*}
v=m_{n+1} b_{1} V m_{n+2} b_{2} V \ldots \ldots . V m_{n+k} b_{k} \in S[V] \tag{i}
\end{equation*}
$$

Therefore, $x=w V v \in S[W]$ V S[V]
Therefore, $\mathrm{S}[\mathrm{W} \cup \mathrm{V}] \subseteq \mathrm{S}[\mathrm{W}] \mathrm{V} \mathrm{S}[\mathrm{V}]$
Conversely, let $\mathrm{x} \in \mathrm{S}[\mathrm{W}] \mathrm{V}$ S[V]
Then $x=w V v$, where $w \in S[W]$ and $v \in S[V]$
Then $w=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots . . \operatorname{Vm}_{n} a_{n} \in S[W]$ and
$v=m_{n+1} b_{1} V m_{n+2} b_{2} V \ldots . . V m_{n+k} b_{k} \in S[V]$, where $m_{i} \in M$.
Now $\mathrm{x}=\mathrm{w} \mathrm{Vv}$
$x=m_{1} a_{1} V m_{2} a_{2} V m_{3} a_{3} V \ldots \ldots . m_{n} a_{n} V m_{n+1} b_{1} V m_{n+2} b_{2} V \ldots \ldots . V m_{n+k} b_{k} \in S[W U V]$
S[W] V S[V] \subseteq S[WUV] --------------------- (ii)
From (i) and (ii) we have $\mathrm{S}[\mathrm{WUV}]=\mathrm{S}[\mathrm{W}] \mathrm{V}$ S[V].

4.4 Examples

4.4.1 Example : Let $\mathrm{R}^{\prime}=\mathrm{R}^{+} \cup\{0\}$, where R^{+}is the set of all positive real numbers and let $\mathrm{W}=\{0,1,2,3, \ldots \ldots\}$ $\left(\mathrm{R}^{\prime}, \leq\right)$ is a lattice in which Λ and V are defined by $\Lambda \mathrm{b}=\operatorname{mini}\{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{a} V \mathrm{~V}=\operatorname{maxi}\{\mathrm{a}, \mathrm{b}\}$, for all $\mathrm{a}, \mathrm{b} \epsilon$ R'.
Here ma is the usual multiplication of a by m.
Clearly for each $m \in W, m \neq 0$, and for each $a \in R^{\prime}$, $m a \in R^{\prime}$.
Also,
(i) $\mathrm{m}(\mathrm{a} \Lambda \mathrm{b})=\mathrm{ma} \Lambda \mathrm{mb}$
(ii) $\mathrm{m}(\mathrm{a} V \mathrm{~b})=\mathrm{ma} V \mathrm{mb}$
(iii) $\mathrm{ma} \Lambda \mathrm{na} \leq(\mathrm{m}+\mathrm{n}) \mathrm{a}$ and $\mathrm{maV} \mathrm{na} \leq(\mathrm{m}+\mathrm{n})$ a
(iv) $(\mathrm{mn}) \mathrm{a}=\mathrm{m}(\mathrm{na})$, for all $\mathrm{m}, \mathrm{n} \in \mathrm{W}, \mathrm{m} \neq 0$, $\mathrm{n} \neq 0$, and $\mathrm{a}, \mathrm{b} \in \mathrm{R}^{\prime}$
(v) $1 . a=a$, for all $a \in R^{\prime}$

Therefore, R^{\prime} is an Artex Space Over the bi-monoid ($\mathrm{W},+,$.)
Generally, if Λ_{1}, Λ_{2}, and Λ_{3} are the cap operations of A, B and C respectively and if V_{1}, V_{2}, and V_{3} are the cup operations of A, B and C respectively, then the cap of $A \times B \times C$ denoted by Λ and the cup of $A \times B \times C$ denoted by V are defined
$\mathrm{x} \Lambda \mathrm{y}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right) \Lambda\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)=\left(\mathrm{a}_{1} \Lambda_{1} \mathrm{a}_{2} \Lambda_{1} \mathrm{a}_{3}, \mathrm{~b}_{1} \Lambda_{2} \mathrm{~b}_{2} \Lambda_{2} \mathrm{~b}_{3}, \mathrm{c}_{1} \Lambda_{3} \mathrm{c}_{2} \Lambda_{3} \mathrm{c}_{3}\right)$ and
$x V y=\left(a_{1}, b_{1}, c_{1}\right) V\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1} V_{1} a_{2} V_{1} a_{3}, b_{1} V_{2} b_{2} V_{2} b_{3}, c_{1} V_{3} c_{2} V_{3} c_{3}\right)$
Here, Λ_{1}, Λ_{2}, and Λ_{3} denote the same meaning minimum of two elements in R' and $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{3} denote the same meaning maximum of two elements in R '

Therefore, $\mathrm{R}^{3}=\mathrm{R}^{\prime} \times \mathrm{R}^{\prime} \times \mathrm{R}^{\prime}$ is an Artex Space over W, where cap and cup operations are denoted by Λ and V respectively.
Let $\mathrm{H}=\{(1,0,0)\}$ and let $\mathrm{T}=\{(0,1,0)\}$
Now $S[H]=\left\{(m, 0,0) / m \in R^{\prime}\right\}$ and $S[T]=\left\{(0, n, 0) / n \in R^{\prime}\right\}$
$\mathrm{S}[\mathrm{H}] \mathrm{V} \mathrm{S}[\mathrm{T}]=\left\{(\mathrm{m}, 0,0) / \mathrm{m} \in \mathrm{R}^{\prime}\right\} \mathrm{V}\left\{(0, \mathrm{n}, 0) / \mathrm{n} \in \mathrm{R}^{\prime}\right\}$
$=\left\{\left(\mathrm{m} \mathrm{V}_{1} 0,0 \mathrm{~V}_{2} \mathrm{n}, 0 \mathrm{~V}_{3} 0\right)\right\}$
$=\{(\mathrm{m}, \mathrm{n}, 0)\}\left(\right.$ since $\mathrm{mV}_{1} 0=\max .\{\mathrm{m}, 0\}=\mathrm{m}, 0 \mathrm{~V}_{2} \mathrm{n}=\max .\{0, \mathrm{n}\}=\mathrm{n}$ and $\left.0 \mathrm{~V}_{3} 0=\max .\{0,0\}=0\right)$
$\mathrm{S}[\mathrm{H}] \mathrm{V}$ S $[\mathrm{T}]=\left\{(\mathrm{m}, \mathrm{n}, 0) / \mathrm{m}, \mathrm{n} \in \mathrm{R}^{\prime}\right\}$ \qquad (i)

Now H $\cup T=\{(1,0,0),(0,1,0)\}$
Let $\mathrm{m}, \mathrm{n} \in \mathrm{M}, \mathrm{m} \neq 0, \mathrm{n} \neq 0$
Then $\mathrm{m}(1,0,0) \mathrm{Vn}(0,1,0)=(\mathrm{m}, 0,0) \mathrm{V}(0, \mathrm{n}, 0)$

$$
=\left(\mathrm{m} \mathrm{~V}_{1} 0,0 \mathrm{~V}_{2} \mathrm{n}, \mathrm{~V}_{3} 0\right)
$$

$=(m, n, 0) \quad\left(\right.$ since $\mathrm{mV}_{1} 0=\max .\{\mathrm{m}, 0\}=\mathrm{m}, 0 \mathrm{~V}_{2} \mathrm{n}=\max .\{0, \mathrm{n}\}=\mathrm{n}$ and $0 V_{3} 0=$ max. $\{0,0\}=0$)
Therefore, $\mathrm{S}[\mathrm{H} \cup \mathrm{T}]=\left\{(\mathrm{m}, \mathrm{n}, 0) / \mathrm{m}, \mathrm{n} \in \mathrm{R}^{\prime}\right\}$(ii)

From equations (i) and (ii) we have $\mathrm{S}[\mathrm{H} \cup \mathrm{T}]=\mathrm{S}[\mathrm{H}] \mathrm{V} \mathrm{S}[\mathrm{T}]$
4.4.2 Example : Let $H=\{(1,0,0)\}$ and let $T=\{(1,0,0),(0,1,0)\}$

Clearly $\mathrm{H} \subseteq \mathrm{T}$
Now $S[H]=\left\{(a, 0,0) / a \in R^{\prime}\right\}$
and $\mathrm{S}[\mathrm{T}]=\left\{(\mathrm{a}, 0,0),(0, \mathrm{~b}, 0) / \mathrm{a}, \mathrm{b} \in \mathrm{R}^{\prime}\right\}$
Therefore, $\mathrm{S}[\mathrm{H}] \subseteq \mathrm{S}[\mathrm{T}]$.

V. Conclusion

Sum Combination of elements of an Artex Space over a bi-monoid, Sum Span of a finite subset of a completely bounded artex space over a bi-monoid will create a dimension in the theory of Artex spaces over bimonoids. Interested researcher can do wonders if they work very hard in this field..

References:

[1]. K.Muthukumaran And M.Kamaraj, "Artex Spaces Over Bi-Monoids", "Research Journal Of Pure Algebra", 2(5), May 2012, Pages 135-140.
[2]. K.Muthukumaran And M.Kamaraj, "Subartex Spaces Of An Artex Space Over A Bi-Monoid" "Mathematical Theory And Modeling"(With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages $39-48$.
[3]. K.Muthukumaran And M.Kamaraj, "Bounded Artex Spaces Over Bi-Monoids And Artex Space Homomorphisms", "Research Journal Of Pure Algebra", 2(7), July 2012, Pages 206 - 216.
[4]. K.Muthukumaran And M.Kamaraj, "Some Special Artex Spaces Over Bi-Monoids", "Mathematical Theory And Modeling"(With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages 62-73.
[5]. K.Muthukumaran And M.Kamaraj, "Boolean Artex Spaces Over Bi-Monoids", Mathematical Theory And Modeling" (With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages 74-85.
[6]. K.Muthukumaran And M.Kamaraj, "Cap-Cosets And Cup-Cosets Of A Subset S In An Artex Space A Over A Bi-Monoid M", "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research", Volume 2, Issue 1(July - August 2012) Pages 17-22.
[7]. K.Muthukumaran And M.Kamaraj, "M-Artex Spaces Over Monoids And Cap-Quotient And Cup-Quotient M-Artex Spaces", "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research" Volume 2, Issue 4(Sep -Oc T 2012) Pages 22-28.
[8]. John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London,1967.
[9]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.
[10]. Garrett Birkhoff \& Thomas C.Bartee, Modern Applied Algebra, Cbs Publishers \& Distributors,1987.
[11]. J.Eldon Whitesitt, Boolean Algebra And Its Applications, Addison-Wesley Publishing Company, Inc.,U.S.A., 1961.
[12]. I.N.Herstein, Topics In Algebra, Wiley Eastern Limited.

