The Sum Span of a Finite Subset of A Completely Bounded Artex Space over ABi-Monoid

Dr. K. Muthukumaran

Controller of Examinations and Associate Professor / P.G. and Research Department Of Mathematics/ Saraswathi Narayanan College, Perungudi Madurai/

Abstract: Completely Bounded Artex Spaces over bi-monoids contain the least and greatest elements namely 0 and 1. These elements play a good role in our study. Sum Combination of elements of a Completely Bounded ArtexSpace over a bi-monoid is defined. The sum span of a finite subset of a completely bounded Artex space over a bi-monoid is defined. Some propositions were found and proved. Examples are provided. **Keywords:** Bi-monoids, Artex Spaces over bi-monoids, Completely Bounded Artex Spaces over bi-monoids, Sum Combination, Sumspan.

I. Introduction

The aim of considering semi-groups is to provide an introduction to the theory of rings. A more general concept than that of a group is that of a semi-group. The algebraic system Bi-semi-group is more general to the algebraic system ring or an associative ring. We introduced Artex Spaces over Bi-monoids. As a development of Artex Spaces over Bi-monoids, we introduced SubArtex spaces of Artex spaces over bi-monoids. From the definition of a SubArtex space, it is clear that not every subset of an Artex space over a bi-monoid is a SubArtex space. We found and proved some propositions which qualify subsets to become SubArtex Spaces. Completely Bounded Artex Spaces over bi-monoids were introduced. It contains the least and greatest elements namely 0 and 1. These elements play a good role in our study. In our study Sum Combination of elements of an Artex space over a bi-monoid is defined. The sum span of a finite subset of a completely bounded artex space over a bi-monoid is defined. The sum span of a finite subset of a completely bounded artex space over a bi-monoid is defined. The sum span of a finite subset of a completely bounded artex space over a bi-monoid is defined. Some propositions were found and proved. Examples are provided. As the theory of Artex spaces over bi-monoids is developed from lattice theory, this theory will play a good role in many fields especially in science and engineering and in computer fields. In Discrete Mathematics this theory will create a new dimension.

II. Preliminaries

2.1 Semi-group : A non-empty set S together with a binary operation . is called a Semi-group if for all a,b,c \in a.(b. c) = (a.b).c

2.2 Monoid : A non-empty set N together with a binary operation . is called a monoid if

(i) for all $a,b,c \in N$, a.(b.c) = (a.b).c and

(ii) there exists an element denoted by e in N such that a.e = a = e.a, for all $a \in N$.

The element e is called the identity element of the monoid N.

2.3 Relation : Let S be a non-empty set. Any subset of S×S is called a relation in S.

If R is a relation in S, then R is a subset of $S \times S$.

If (a,b) belongs to the relation R, then we can express this by aRb or by $a \le b$.

Note : A relation may be denoted by \leq

2.4 Partial Ordering : A relation \leq on a set P is called a partial order relation or a partial ordering in P if (i) $a \leq a$, for all $a \in P$ ie \leq is reflexive,

 $(ii) \ a \leq b \ and \ b \leq a \ implies \ a = b \quad ie \ \leq \ is \ anti-symmetric, \ and$

(iii) $a \le b$ and $b \le c$ implies $a \le c$ ie \le is transitive.

2.5 Partially Ordered Set (POSET) : If \leq is a partial ordering in P, then the ordered pair (P, \leq) is called a Partially Ordered Set or simply a POSET.

2.6 Lattice : A lattice is a partially ordered set (L, \leq) in which every pair of elements $a, b \in L$ has a greatest lower bound and a least upper bound.

The greatest lower bound of a and b is denoted by aAb and the least upper bound of a and b is denoted by aV b

2.7 Lattice as an Algebraic System : A lattice is an algebraic system (L,Λ,V) with two binary operations Λ and V on L which are both commutative, associative and satisfy the absorption laws namely $a\Lambda(aVb) = a$ and $aV(a\Lambda b) = a$, for all $a,b\in L$

The operations Λ and V are called cap and cup respectively, or sometimes meet and join respectively.

2.8 Properties : We have the following properties in a lattice (L, Λ, V)

1.a
$$\Lambda a = a$$
 1'.a $\vee a = a$ (Idempotent Law)

 $2.a \Lambda b = b \Lambda a$ 2'.a V b = b V a(Commutative Law) $3.(a \Lambda b) \Lambda c = a \Lambda (b \Lambda c)$ 3'.(a V b) V c = a V (b V c)(Associative Law) $4.a \Lambda (a V b) = a$ $4'.a V (a \Lambda b) = a$, for all $a,b,c \in L$ (Absorption Law)

2.9 Complete Lattice : A lattice is called a complete lattice if each of its nonempty subsets has a least upper bound and a greatest lower bound.

Every finite lattice is a complete lattice and every complete lattice must have a least element and a greatest element.

The least and the greatest elements, if they exist, are called the bounds or units of the lattice and are denoted by 0 and 1 respectively.

2.10 Bounded Lattice : A lattice which has both elements 0 and 1 is called a bounded lattice. A bounded lattice is denoted by $(L, \Lambda, V, 0, 1)$

The bounds 0 and 1 of a lattice (L, Λ ,V) satisfy the following identities.

For any $a \in L$, $a \lor 0 = a$ $a \land 1 = a$ $a \lor 1 = 1$ $a \land 0 = 0$

2.10.1 Example : For any set S, the lattice (P(S), \subseteq) is a bounded lattice. Here for each A, B \in P(S), the least upper bound of A and B is AUB and the greatest lower bound of A and B is AOB. The bounds in this lattice are φ , the empty set and S, the universal set.

2.11 Complemented Lattice : Let $(L, \Lambda, V, 0, 1)$ be a bounded lattice. An element $a' \in L$ is called a complement of an element $a \in L$ if $a \wedge a' = 0$, $a \vee a' = 1$. A bounded lattice $(L, \Lambda, V, 0, 1)$ is said to be a complemented lattice if every element of L has at least one complement. A complemented lattice is denoted by $(L, \Lambda, V, ', 0, 1)$.

2.11.1 Example : For any set S, the lattice $(P(S), \subseteq)$ is a Complemented lattice.

For each A,B \in P(S), the least upper bound of A and B is AUB and the greatest lower bound of A and B is A \cap B.

The bounds in this lattice are ϕ , the empty set and S, the universal set.

Here for any $A \in P(S)$, the complement of A in P(S) is S-A

2.12 Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and . is called a Doubly Closed Space if (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all $a,b,c \in D$

A Doubly closed space is denoted by (D, +, .)

Note 1: The axioms (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all $a,b,c \in D$ are called the distributive properties of the Doubly Closed Space.

Note 2: The operations + and . need not be the usual addition and usual multiplication respectively.

2.12.1 Example : Let N be the set of all natural numbers.

Then (N, +, .), where + is the usual addition and . is the usual multiplication, is a Doubly closed space.

Similarly (Z, +, .), (Q, +, .), (R, +, .) and (C, +, .) are all Doubly closed spaces.

2.12.2 Example : (Z, +, -), where + is the usual addition and - is the usual subtraction, is not a Doubly closed space.

Even though + and - are binary operations in Z, (Z, +, -) is not a Doubly closed space because of the distributive properties of the Doubly Closed Space.

Take a = 15, b = 7, c = 4

Then a - (b + c) = 15 - (7 + 4)= 15 - 11= 4But (a - b) + (a - c) = (15 - 7) + (15 - 4)= 8 + 11= 19

Therefore, $a - (b + c) \ddagger (a - b) + (a - c)$

Therefore, (Z, +, -) is not a Doubly closed space.

2.13 Bi-semi-group : A Doubly closed space (S , + , .) is called a Bi-semi-group if + and . are associative in D.

2.13.1 Example : (N, +, .), (Z, +, .), (Q, +, .), (R, +, .), and (C, +, .), where + is the usual addition and . is the usual multiplication, are all Bi-semi-groups.

2.14 Bi-monoid : A Bi-semi-group (M, +, .) is called a Bi-monoid if there exist elements denoted by 0 and 1 in S such that a+0=a=0+a, for all $a\in M$ and a.1=a=1.a, for all $a\in M$.

The element 0 is called the identity element of M with respect to the binary operation + and the element 1 is called the identity element of M with respect to the binary operation.

2.14.1 Example : Let $W = \{0,1,2,3,...\}$. Then (W, +, .), where + is the usual addition and . is the usual multiplication, is a Bi-monoid.

2.14.2 Example : Let $Q' = Q^+ \cup \{0\}$, where Q^+ is the set of all positive rational numbers. Then (Q', +, .) is a bi-monoid.

2.14.3 Example: $R' = R^+ \cup \{0\}$, where R^+ is the set of all positive real numbers. Then (R', +, ...) is a bimonoid.

2.14.4 Example : (Z, +, .), (Q, +, .), (R, +, .), and (C, +, .), where + is the usual addition and . is the usualmultiplication, are all Bi-monoids.

III. **Artex Spaces Over A Bi-Monoids**

3.1 Artex Space Over a Bi-monoid : Let (M, +, .) be a bi-monoid with the identity elements 0 and 1 with respect to + and \cdot respectively. A non-empty set A together with two binary operations $^{\wedge}$ and \mathbf{v} is said to be an Artex Space Over the Bi-monoid (M, +, .) if

1.(A, Λ , V) is a lattice and

2.for each m ϵ M, m \pm 0, and a ϵ A, there exists an element ma ϵ A satisfying the following conditions :

(i) $m(a \Lambda b) = ma \Lambda mb$

(ii) m(a V b) = ma V mb

(iii) ma Λ na \leq (m +n)a and ma V na \leq (m + n)a

(iv) (mn)a = m(na), for all $m, n \in M$, $m \neq 0$, $n \neq 0$, and $a, b \in A$

1.a = a, for all $a \in A$. (v)

Here, \leq is the partial order relation corresponding to the lattice (A, A, V). The multiplication main called a **bi**monoid multiplication with an artex element or simply bi-monoid multiplication in A.

3.2 **Examples**

3.2.1 **Example :** Let $W = \{0, 1, 2, 3, ...\}$.

Then (W, +, .) is a bi-monoid, where + and . are the usual addition and multiplication respectively.

Let Z be the set of all integers

Then ($Z \le b$ is a lattice in which A and V are defined by a A b = minimum of {a,b} and a V b = maximum of $\{a,b\}$, for all $a,b\in \mathbb{Z}$.

Clearly for each m \in W,m \ddagger 0, and for each a \in Z, ma \in Z.

Also

 $m(a \Lambda b) = ma \Lambda mb$ (i)

(ii) m(a V b) = ma V mb

(iii) ma Λ na \leq (m+n)a and ma V na \leq (m+n)a

(iv) (mn)a = m(na)

1.a = a, for all m,n \in W, m $\ddagger 0$, n $\ddagger 0$ and a,b \in Z (v)

Therefore, Z is an Artex Space Over the Bi-monoid (W, +, .)

Example : As defined in Example 3.2.1, Q, the set of all rational numbers is an Artex space over W 3.2.2

Example : As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over W. 3.2.3

3.2.4 **Example :** Let $Q' = Q^+ \cup \{0\}$, where Q^+ is the set of all positive rational numbers.

Then (Q', +, .) is a bi-monoid. Now as defined in Example 3.2.1, Q, the set of all rational numbers is an Artex space over O'

Example : $R' = R' \cup \{0\}$, where R^+ is the set of all positive real numbers. Then (R', +, .) is a bi-3.2.5 monoid.

As defined in Example 3.2.1, R, the set of all real numbers is an Artex space over R'

3.3 **Properties**

Properties 3.3.1 : We have the following properties in a lattice (L , Λ ,V)

1.a Λ a = a 1'.a V a = a2'.a V b = b V a $2.a \wedge b = b \wedge a$ 3.(a Λ b) Λ c = a Λ (b Λ c) 3'.(a V b) V c = a V(b V c) $4.a \Lambda (a V b) = a$ 4'.a V (a Λ b) = a, for all a,b,c \in L Therefore, we have the following properties in an Artex Space A over a bi-monoid M. (i) $m(a \Lambda a) = ma$ (i)'.m(a V a) = ma (ii) $(m(a \Lambda b) = m(b \Lambda a)$ (ii)'.m(a V b) = m(b V a) (iii) m(($a \Lambda b \rangle \Lambda c$)=m($a \Lambda (b \Lambda c)$) (iii)'.m((a V b) V c) = m(a V (b V c)) (iv)'.m(a V (a Λ b)) = ma,

(iv) m(a Λ (a V b)) = ma

for all m \in M, m \ddagger 0 and a,b,c \in A

SubArtex Space : Let (A, Λ, V) be an Artex space over a bi-monoid. (M, +, .). Let S be a nonempty 3.4 subset of A. Then S is said to be a SubArtex Space of A if (S, Λ, V) itself is an Artex Space over M.

Example : As defined in Example 3.2.1, Z is an Artex Space over $W = \{0, 1, 2, 3, ...,\}$ and W is a 3.4.1 subset of Z. Also W itself is an Artex space over W under the operations defined in Z. Therefore, W is a SubArtex space of Z.

3.5 Complete Artex Space over a bi-monoid : An Artex space A over a bi- monoid M is said to be a Complete Artex Space over M if as a lattice, A is a complete lattice, that is each nonempty subset of A has a least upper bound and a greatest lower bound.

3.5.1 **Remark :** Every Complete Artex space must have a least element and a greatest element.

The least and the greatest elements, if they exist, are called the bounds or units of the Artex space and are denoted by 0 and 1 respectively.

3.6 Lower Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be a Lower Bounded Artex Space over M if as a lattice, A has the least element 0.

3.6.1 Example : Let A be the set of all constant sequences (x_n) in $[0,\infty)$

Let W = $\{0, 1, 2, 3, ...\}$.

Define \leq ', an order relation, on A by for (x_n) , (y_n) in A, $(x_n) \leq$ ' (y_n) means $x_n \leq y_n$, for each n

where \leq is the usual relation "less than or equal to "

Therefore, A is an Artex space over W.

The sequence (0_n) , where 0_n is 0 for all n, is a constant sequence belonging to A

Also $(0_n) \leq (x_n)$, for all the sequences (x_n) belonging to in A

Therefore, (0_n) is the least element of A.

That is, the sequence 0,0,0,..... is the least element of A

Hence A is a Lower Bounded Artex space over W.

3.7 Upper Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be an Upper Bounded Artex Space over M if as a lattice, A has the greatest element 1.

3.7.1 Example: Let A be the set of all constant sequences (x_n) in $(-\infty, 0]$ and let $W = \{0, 1, 2, 3, ...\}$.

Define \leq ', an order relation, on A by for (x_n) , (y_n) in A, $(x_n) \leq$ ' (y_n) means $x_n \leq y_n$, for n = 1, 2, 3, ..., where \leq is the usual relation "less than or equal to "

A is an Artex space over W.

Now, the sequence (1_n) , where 1_n is 0, for all n, is a constant sequence belonging to A

Also $(x_n) \leq (1_n)$, for all the sequences (x_n) in A

Therefore, (1_n) is the greatest element of A.

That is, the sequence $0,0,0,\ldots$ is the greatest element of A

Hence A is an Upper Bounded Artex Space over W.

3.8 Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be a Bounded Artex Space over M if A is both a Lower bounded Artex Space over M and an Upper bounded Artex Space over M.

3.9 Completely Bounded Artex Space over a bi-monoid: A Bounded Artex Space A over a bi-monoid M is said to be a Completely Bounded Artex Space over M if (i) 0.a = 0, for all $a \in A$ (ii) m.0 = 0, for all $m \in M$.

3.9.1 Note : While the least and the greatest elements of the Complemented Artex Space is denoted by 0 and 1, the identity elements of the bi-monoid (M, +, .) with respect to addition and multiplication are, if no confusion arises, also denoted by 0 and 1 respectively.

IV. The Sum Span Of A Sub Set Of An Artex Space Over A Bi-Monoid

4.1 Sum Combination : Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let $a_1, a_2, a_3, \ldots a_n \in A$. Then any element of the form $m_1a_1Vm_2a_2Vm_3a_3V \ldots Vm_na_n$, where $m_i \in M$, is called a Sum Combination or Join Combination of $a_1, a_2, a_3, \ldots a_n$ over the Artex Space A.

4.2 The Sum Span of a subset of a Completely Bounded Artex Space over a Bi-monoid : Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a nonempty finite subset of A. Then the Sum Span of W or Join Span of W denoted by S[W] is defined to be the set of all sum combinations of elements of W. That is, if $W = \{a_1, a_2, a_3, \dots, a_n\}$, then S[W] = $\{m_1a_1Vm_2a_2Vm_3a_3V \dots Vm_na_n / m_i \in M\}$.

4.3 Propositions

Proposition 4.3.1: Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a nonempty finite subset of A. Then $W \subseteq S[W]$

Proof : Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .)

Let $W = \{a_1, a_2, a_3, \dots, a_n\}$ be a finite subset of A.

 $S[W] = \{m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n / m_i \in M\}.$

Since (A, Λ, V) is a Completely Bounded Artex Space over a bi-monoid (M, +, .), the least element of A and the greatest element of A will exist in A.

Let 0 and 1 be the least and the greatest elements of A respectively.

For any $a \in A$, $a \lor 0 = a$ $a \land 1 = a$ $a \lor 1 = 1$ $a \land 0 = 0$.

Without any confusion the identity elements with respect to + and . in M will also be denoted by 0 and 1 respectively. Let $a_i \in W$. Then $a_i = 0.a_1 V 0.a_2 V \dots 0.a_3 V 1.a_i V 0.a_{i+1} V \dots V 0.a_n \in S[W]$ Therefore, $W \subseteq S[W]$. **Proposition 4.3.2**: Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let W and V be any two nonempty finite subsets of A. Then $W \subseteq V$ implies $S[W] \subseteq S[V]$. **Proof**: Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .)Let W and V be any two nonempty finite subsets of A such that $W = \{a_1, a_2, a_3, \dots, a_n\}$ and $V = \{ a_1, a_2, a_3, \dots, a_n, b_1, b_2, b_3, \dots, b_k \}$ Then $W \subseteq V$ Let $x \in S[W]$ Then $x = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n$, where $m_i \in M$ We have $W \subseteq V$ and $a_1, a_2, a_3, \ldots, a_n \in V$. Therefore, $x = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n V 0.b_1 V 0.b_2 V \dots V 0.b_k \in S[V].$ (Since for any $a \in A$, a V 0 = a) Therefore, $S[W] \subseteq S[V]$ Hence, if $W \subseteq V$, then $S[W] \subseteq S[V]$. **Proposition 4.3.3 :** Let (A, A, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let W and V be any two nonempty finite subsets of A. Then $S[W \cup V] = S[W] \vee S[V]$. **Proof**: Let (A, Λ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .)Let W and V be any two nonempty finite subsets of A such that $W = \{a_1, a_2, a_3, \dots, a_n\}$ and $V = \{ b_1, b_2, b_3, \dots, b_k \}$ Let $x \in S[W \cup V]$ Then $x = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n V m_{n+1} b_1 V m_{n+2} b_2 V \dots V m_{n+k} b_k$ Let x = w Vv, where $w = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n$ and $v = m_{n+1} b_1 V m_{n+2} b_2 V \dots V m_{n+k} b_k$ Clearly $w=m_1a_1Vm_2a_2Vm_3a_3V$ \ldots . $Vm_na_n\in S[W]$ and $v = m_{n+1}b_1V m_{n+2}b_2V \dots V m_{n+k}b_k \in S[V]$ Therefore, $x = w Vv \in S[W] V S[V]$ Therefore, $S[W \cup V] \subseteq S[W] \vee S[V]$ ------ (i) Conversely, let $x \in S[W] \vee S[V]$ Then x = w Vv, where $w \in S[W]$ and $v \in S[V]$ Then $w = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n \in S[W]$ and $v = m_{n+1}b_1V m_{n+2}b_2V \dots V m_{n+k}b_k \in S[V]$, where $m_i \in M$. Now x = w V v $x = m_1 a_1 V m_2 a_2 V m_3 a_3 V \dots V m_n a_n V m_{n+1} b_1 V m_{n+2} b_2 V \dots V m_{n+k} b_k \in S[W \cup V]$ $S[W] \vee S[V] \subseteq S[W \cup V]$ ------ (ii) From (i) and (ii) we have $S[W \cup V] = S[W] \vee S[V]$.

4.4 Examples

4.4.1 Example : Let $R' = R^+ \cup \{0\}$, where R^+ is the set of all positive real numbers and let $W = \{0, 1, 2, 3, \dots\}$ (R', \leq) is a lattice in which Λ and V are defined by a Λ b = mini $\{a,b\}$ and a V b = maxi $\{a,b\}$, for all a,b \in R'.

Here ma is the usual multiplication of a by m.

Clearly for each m ε W,m^{‡0}, and for each a ε R', ma ε R'.

Also,

- (i) $m(a \Lambda b) = ma \Lambda mb$
- (ii) m(a V b) = ma V mb

(iii) $ma \Lambda na \le (m+n)a$ and $ma V na \le (m+n)a$

(iv) (mn)a = m(na), for all m, $n \in W$, m[‡]0, n[‡]0, and a, $b \in R'$

(v) 1.a = a, for all $a \in R'$

Therefore, R' is an Artex Space Over the bi-monoid (W, +, .)

Generally, if Λ_1 , Λ_2 , and Λ_3 are the cap operations of A, B and C respectively and if V_1 , V_2 , and V_3 are the cup operations of A, B and C respectively, then the cap of A×B×C denoted by Λ and the cup of A×B×C denoted by V are defined

 $x \wedge y = (a_1, b_1, c_1) \wedge (a_2, b_2, c_2) = (a_1 \wedge_1 a_2 \wedge_1 a_3, b_1 \wedge_2 b_2 \wedge_2 b_3, c_1 \wedge_3 c_2 \wedge_3 c_3) \text{ and }$

x V y = (a_1,b_1,c_1) V $(a_2,b_2,c_2) = (a_1 V_1 a_2 V_1 a_3, b_1 V_2 b_2 V_2 b_3, c_1 V_3 c_2 V_3 c_3)$

Here, Λ_1 , Λ_2 , and Λ_3 denote the same meaning minimum of two elements in R' and V₁, V₂, and V₃ denote the same meaning maximum of two elements in R'

Therefore, $R^{3} = R^{3} \times R^{3} \times R^{3}$ is an Artex Space over W, where cap and cup operations are denoted by Λ and V respectively. Let $H = \{ (1,0,0) \}$ and let $T = \{ (0,1,0) \}$ Now S[H] = { (m,0,0) / m \in R' } and S[T] = { (0,n,0) / n \in R' } S[H] V S[T] = { $(m,0,0) / m \in \mathbb{R}^{2}$ } V { $(0,n,0) / n \in \mathbb{R}^{2}$ } $= \{ (m V_1 0, 0V_2 n, 0V_3 0) \}$ $=\{(m,n,0)\}$ (since mV₁0 = max.{m,0} = m, 0V₂n=max.{0,n}=n and 0V₃0=max.{0,0}=0) $S[H] V S[T] = \{(m,n,0) / m,n \in R'\}$ ------(i) Now $H \cup T = \{ (1,0,0), (0,1,0) \}$ Let m,n \in M, m \neq 0,n \neq 0 Then m(1,0,0) V n(0,1,0) = (m,0,0) V (0,n,0) $= (m V_1 0 , 0 V_2 n , V_3 0)$ =(m,n,0) (since $mV_10 = max.\{m,0\} = m, 0V_2n = max.\{0,n\} = n$ and $0V_30=max.\{0,0\}=0$ Therefore, $S[H \cup T] = \{(m,n,0) / m,n \in \mathbb{R}^{2}\}$ ------ (ii) From equations (i) and (ii) we have $S[H \cup T] = S[H] \vee S[T]$ 4.4.2 **Example :** Let $H = \{ (1,0,0) \}$ and let $T = \{ (1,0,0), (0,1,0) \}$ Clearly $H \subseteq T$ Now $S[H] = \{ (a,0,0) / a \in R' \}$ and $S[T] = \{ (a,0,0), (0,b,0) / a, b \in \mathbb{R}^{2} \}$ Therefore, $S[H] \subseteq S[T]$.

V. Conclusion

Sum Combination of elements of an Artex Space over a bi-monoid, Sum Span of a finite subset of a completely bounded artex space over a bi-monoid will create a dimension in the theory of Artex spaces over bi-monoids. Interested researcher can do wonders if they work very hard in this field.

References:

- K.Muthukumaran And M.Kamaraj, "Artex Spaces Over Bi-Monoids", "Research Journal Of Pure Algebra", 2(5), May 2012, Pages 135-140.
- [2]. K.Muthukumaran And M.Kamaraj, "Subartex Spaces Of An Artex Space Over A Bi-Monoid", "Mathematical Theory And Modeling" (With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages 39 – 48.
- [3]. K.Muthukumaran And M.Kamaraj, "Bounded Artex Spaces Over Bi-Monoids And Artex Space Homomorphisms", "Research Journal Of Pure Algebra", 2(7), July 2012, Pages 206 216.
 [4]. K.Muthukumaran And M.Kamaraj, "Some Special Artex Spaces Over Bi-Monoids", "Mathematical Theory And Modeling" (With
- [4]. K.Muthukumaran And M.Kamaraj, "Some Special Artex Spaces Over Bi-Monoids", "Mathematical Theory And Modeling" (With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages 62 – 73.
- [5]. K.Muthukumaran And M.Kamaraj, "Boolean Artex Spaces Over Bi-Monoids", Mathematical Theory And Modeling" (With Ic Impact Factor 5.53), An Usa Journal Of "International Institute For Science, Technology And Education", Vol.2, No.7, 2012, Pages 74 – 85.
- [6]. K.Muthukumaran And M.Kamaraj, "Cap-Cosets And Cup-Cosets Of A Subset S In An Artex Space A Over A Bi-Monoid M", "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research", Volume 2, Issue 1(July – August 2012) Pages 17 - 22.
- [7]. K.Muthukumaran And M.Kamaraj, "M-Artex Spaces Over Monoids And Cap-Quotient And Cup-Quotient M-Artex Spaces", "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research" Volume 2, Issue 4(Sep –Oc T 2012) Pages 22 - 28.
- [8]. John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London, 1967.
- [9]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.
- [10]. Garrett Birkhoff & Thomas C.Bartee, Modern Applied Algebra, Cbs Publishers & Distributors, 1987.
- [11]. J.Eldon Whitesitt, Boolean Algebra And Its Applications, Addison-Wesley Publishing Company, Inc., U.S.A., 1961.
- [12]. I.N.Herstein, Topics In Algebra, Wiley Eastern Limited.