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Abstract: In this paper, we introduce the concepts of pure po-ternary Γ-ideal, weakly pure po-ternary Γ-ideal 

and purely prime  po-ternary  Γ-ideal in an ordered ternary Γ-semiring. We obtain some characterizations of 

pure  po-ternary Γ-ideals and prove that the set of all purely prime po-ternary Γ-ideals is topologized. 
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I. Introduction 
In [1], Ahsan and Takahashi introduced the notions of pure ideal and purely prime ideal in a 

semigroup. Recently, Bashir and Shabir [2] defined the concepts of pure ideal, weakly pure ideal and purely 

prime ideal in a ternary semigroup without order. The authors gave some characterizations of pure ideals and 

showed that the set of all purely prime ideals of a ternary semigroup is topologized. In this paper, we introduce 

the concepts of purepo-ternary Γ-ideal, weakly pure po-ternary Γ-ideal and purely prime po-ternary Γ-ideal in an 

ordered ternary Γ-semiring. We characterize pure po-ternary Γ-ideals and prove that the set of all purely prime 

po-ternary Γ-ideals of an ordered ternary Γ-semiring is topologized. Note that the results on ternary Γ-semiring 

without order become then special cases. 

 

II. Preliminaries 
Definition 2.1: Let T and Γ be two additive commutative semigroups.   T is said to be a Ternary 𝚪-semiring if 

there exist a mapping from T ×Γ× T ×Γ× T to T  which maps (
1 2 3
,  ,  ,  ,  x x x  )   1 2 3

x x x  satisfying 

the conditions : 

i) [[a𝛼b𝛽c]γd𝛿e] = [a𝛼[b𝛽c𝛾d]𝛿e] = [a𝛼b𝛽[c𝛾d𝛿e]] 

ii)[(a + b)𝛼c𝛽d] = [a𝛼c𝛽d] + [b𝛼c𝛽d]   

iii) [a (b + c)βd] = [a𝛼b𝛽d] + [a𝛼c𝛽d] 

iv) [a𝛼b𝛽(c + d)] = [a𝛼b𝛽c] + [a𝛼b𝛽d] for all a, b, c, d∈ T and 𝛼, 𝛽, 𝛾, 𝛿∈ Γ. 

 Obviously, every ternary semiring T is a ternary Γ-semiring.  Let T be a ternary semiring and Γ be a 

commutative ternary semigroup.  Define a mapping T ×Γ× T ×Γ× T ⟶ T by a𝛼b𝛽c = abc for all a, b, c ∈ T 

and 𝛼, 𝛽∈Γ.  Then T is a ternary Γ-semiring. 

Note 2.2 :Let (T,Γ, +, [ ]) be a ternary Γ-semiring. For nonempty subsets A1,A2 and A3 of T, let  

[AΓBΓC]=  : , , , ,a b c a A b B c C         .For x∈ T, let [xΓA1ΓA2] = [{x}ΓA1ΓA2]. The other 

cases can be defined analogously. 

Note2.3 : Let T be a ternary semiring. If A, B are two subsets of T , we shall denote the set A + B = 

 : ,a b a A b B    and 2A = { a + a : a∈ A}. 

Definition 2.4 :A ternary Γ-semiring T is called an ordered ternary Γ-semiring if there is a partial order ≤ on T 

such that x ≤ y implies that (i) a + c ≤ b + c and c + a ≤c + b 

(ii) [a𝛼c𝛽d] ≤ [b𝛼c𝛽d], [c𝛼a𝛽d] ≤ [c𝛼b𝛽d] and [c𝛼d𝛽a] ≤ [c𝛼d𝛽b]for all a, b, c, d∈ T and  

𝛼, 𝛽, 𝛾, 𝛿 ∈ Γ. 

Note2.5 : For the convenience we write 
1 2 3

x x x   instead of  1 2 3
x x x 

 

III. PO-Ternary Γ-Ideals : 

Definition 3.1: Let T be PO-ternary Γ-semiring. A nonempty subset ‘S’ is said to be a PO-ternary 𝚪-

subsemiring of T if  

(i) S is an additive subsemigroup of T,  

(ii) a𝛼b𝛽c S for all a, b, c S, 𝛼, 𝛽 ∈ Γ. 
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(iii) T∈ T, s∈ S, t ≤ s⇒t∈ S. 

Example 3.2 :LetT= M2 ( Z ) and Γ =  M2 ( 0
Z


) define the ordering as 

i i i i
a b  .  Then T be the PO-ternary Γ-

semiring of the set of all 2x2 square matrices over Z , the set of all non-positive integers.  Let 

0
/

0 0

a
S a Z

  
   

  

.  Then S is a PO-ternary Γ-subsemiring of T. 

Notation 3.3 :LetT be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, 

we denote {s∈S :s ≤ h for some h∈ H} by (H]S.  

Notation 3.4: Let T be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, 

we denote {s∈S :h ≤ s for some h∈ H} by [H)S.  

Note 3.5 : (H]T and [H)T are simply denoted by (H] and [H) respectively.  

Note 3.6: A nonempty subset S of a po-ternary Γ-semiring T is apo-ternary  

Γ-subsemiring of T iff (1)S + S ⊆ S (2) SΓSΓS   S, (2) (S] ⊆ S.  

Theorem 3.7 : Let S be po-ternary 𝚪-semiring and A ⊆ S, B ⊆ S.  Then (i) A ⊆ (A],  (ii) ((A]] = (A],  (iii) 

(A]𝚪(B]𝚪(C] ⊆ (A𝚪B𝚪C] and (iv) A ⊆ B ⇒ A ⊆ (B], (v) A ⊆ B ⇒(A] ⊆ (B], (vi) (A ∩ B] = (A] ∩ (B],  

(vii) (A ∪ B] = (A] ∪ (B]. 

Definition 3.8 : A nonempty subset A of a PO-ternary Γ-semiring T is said to be left  

PO-ternary 𝚪-ideal of T if  

(1) a, b ∈ A implies a + b∈ A. 

(2) b, c  T, a A, 𝛼, 𝛽∈ Γ implies b𝛼c𝛽a A. 

(3) ,t T a A  , t ≤ a⇒t∈ A. 

Note 3.9 : A  nonempty subset A of a PO-ternary Γ-semiring T is a left PO-ternary Γ-ideal of T if and only if A 

is additive subsemigroup of T, TΓTΓA   A and (A] ⊆ A. 

Note 3.10:Let T be a PO-ternary Γ-semiring.  

Then the set (TΓTΓa] = {t∈ T / t ≤ 
1

n

i i i i

i

x y a 



 for some xi, yi∈ T, ,
i i

     and n∈ N}. 

Example 3.11 :In the PO-ternary Γ-semiring Z0 , nZ0 is a left PO-ternary Γ-ideal for any n ∈N. 

Theorem 3.12: Let Tbe a PO-ternary 𝚪-semiring.  Then (T𝚪T𝚪a] is a left PO-ternary 𝚪-ideal of T for all 

a∈ T. 

Definition 3.13: A left PO-ternary Γ-ideal A of a PO-ternary Γ-semiring T is said to be the principal left PO-

ternary 𝚪-ideal generated by a if A is a left PO-ternary Γ-ideal generated by  a  for some a  T. It is denoted 

by L (a) or <a>l. 

Theorem 3.14 : If T is a PO-ternary 𝚪-semiring and a T then  

L(a) = (A] where A=
0

1

: , , ,  an d  

n

i i i i i i i i

i

r t a n a r t T n z   




 
     

 
 , and  denotes a finite sum 

and 
0

z


is the set of all positive integer with zero. 

Proof :Given that A = 
0

1

: , , ,  an d  

n

i i i i i i i i

i

r t a n a r t T n z   




 
     

 
 .  Let a, b∈ A.   

a, b∈ A .  Then a = 
i i i i i

r t a n a    and b = 
j j j j

r t a n a    for ri, ti, rj, tj∈ T, , , ,
i i j j

       and 

n∈
0

z


. 

Now a + b = 
i i i i i

r t a n a    + 
j j j j

r t a n a   ⇒a + b is a finite sum. 

Therefore a + b∈ A and hence A is a additive subsemigroup of T. 

For t1,t2∈ T and a∈ A. 

Then t1αt2𝛽a = t1𝛼t2( i i i i
r t a na   ) = 

1 2 1 2
( ) ( )

i i i i
r t t t a n t t a      ∈ A 



On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings 

DOI: 10.9790/5728-11540513                                           www.iosrjournals.org                                       7 | Page 

 Therefore t1αt2𝛽a∈A and hence A is a left ternary Γ-ideal of T.   By theorem 3.18,we have (A] is a left 

ordered ternary Γ-ideal of T containing a. Thus L(a) ⊆(A].On the other hand, L(a) is also aleft ordered Γ-ideal 

of T containing a, so we have A ⊆ L(a). Thus (A] ⊆L(a) since (A] is a left ordered ternary ideal of T generated 

by A. Therefore L(a) = (A], as required. 

Definition 3.15 : A nonempty subset of a PO-ternary Γ-semiring T is said to be a lateral PO-ternary ideal of T 

if   

(1) a, b ∈ A implies a + b∈ A. 

(2) b, c  T , 𝛼, 𝛽∈ Γ, a A implies b𝛼a𝛽c  A. 

(3) ,t T a A  , t ≤ a⇒t∈ A. 

Note 3.16: A nonempty subset of A of a PO-ternary semiring T is a lateral PO-ternary Γ-ideal of T if and only if 

A is additive subsemigroup of T, TΓAΓT   A and (A] ⊆ A. 

Theorem 3.18: Let T be a PO-ternary 𝚪-semiring.  Then (T𝚪a𝚪T] is a lateral PO-ternary 𝚪-ideal of T for 

all a∈ T. 

Theorem 3.18: Let T be a PO-ternary 𝚪-semiring.  Then (T𝚪T𝚪a𝚪T𝚪T] is a lateral  

PO-ternary 𝚪-ideal of T for all a∈ T. 

Definition 3.19 : A lateral PO-ternary Γ-ideal A of a PO-ternary Γ-semiring T is said to be the principal lateral 

PO-ternary 𝚪-ideal generated by a if A is a lateral PO-ternary Γ-ideal generated by  a  for some a T. It is 

denoted by M (a) (or) <a>m.  

Theorem 3.20 : If T is a PO-ternary 𝚪-semiring and a T then  

M(a) = (A], where A = 

0

1 1

 : , , ,  , , , , ,  an d  

n n

i i i i j j j j j j j j i i j j j j i i j j j j

i j

r a t u v a p q n a r t u v p q T n z           


 

 
      

 
 

, and  denotes a finite sum and 
0

z


is the set of all positive integer with zero. 

Definition 3.21 : A nonempty subset A of a PO-ternary Γ-semiring T is a right PO-ternary 𝚪-idealof T if  

(1) a, b ∈ A implies a + b∈ A. 

(2) b, c   T , 𝛼, 𝛽 ∈ Γ, a A implies a𝛼b𝛽c  A. 

(3) ,t T a A  , t ≤ a⇒t∈ A. 

Note 3.22 : A  nonempty subset A of a PO-ternary Γ-semiring T is a rightPO-ternary Γ-ideal of T if and only if 

A is additive subsemigroup of T, AΓTΓT   A and (A] ⊆ A. 

Definition 3.23 : A right PO-ternary Γ-ideal A of a PO-ternary Γ-semiring T is said to be a principal right PO-

ternary 𝚪-ideal generated by a if A is a right PO-ternary Γ-ideal generated by  a  for some a T. It is denoted 

by R (a) (or) <a>r.  

Theorem 3.24 : If T is a po-ternary 𝚪-semiring and a T then  

R(a) = (A], where A =
0

1

 : , , ,  an d  

n

i i i i i i i i

i

a r t n a r t T n z   




 
     

 
 , denotes a finite sum and 

0
z


is the set of all positive integer with zero. 

Definition 3.25 : A nonempty subset A of a PO-ternary Γ-semiring T is a two sided  

PO-ternary 𝚪-idealof T if   

(1) a, b ∈ A implies a + b∈ A 

(2) b, c  T ,𝛼, 𝛽 ∈ Γ,a A implies b𝛼c𝛽a A, a𝛼b𝛽c A. 

(3) ,t T a A  , t ≤ a⇒t∈ A. 

Note 3.26: A nonempty subset A of a PO-ternary Γ-semiring T is a two sided PO-ternary  

Γ-ideal of T if and only if it is both a left PO-ternary Γ-ideal and a right PO-ternary Γ-ideal of T. 
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Definition 3.27 : A two sided PO-ternary Γ-ideal A of a PO-ternary Γ-semiring T is said to be the principal two 

sided PO-ternary 𝚪-ideal provided A is a two sided PO-ternary Γ-ideal generated by  a  for somea T. It is 

denoted by T (a) (or) <a>t. 

Theorem 3.28 : If T is a PO-ternary 𝚪-semiring and a  T then T(a) =  (A], where  

A = 1 1

1

0

 : 

, , , , , , , , , , , , , ,  a n d  

n n

n
i i i i j j j j k k k k k k k k

j k

i

i i j j k k k k i i j j k k k k

r s a a t u l m a p q n a

r s t u l m p q T n Z

       

       

 

 

 
  

 
 

 
   

 

 
  and  denotes a 

finite sum and 
0

z


is the set of all positive integer with zero. 

Definition 3.29 : A nonempty subset A of a PO-ternary Γ-semiring T is said to be PO-ternary  𝚪-idealof T if   

(1) a, b ∈ A implies a + b∈ A 

(2) b, c   T ,𝛼, 𝛽 ∈ Γ,a A implies b𝛼c𝛽a A, b𝛼a𝛽c A, a𝛼b𝛽c A. 

 (3) ,t T a A  , t ≤ a⇒t∈ A. 

Note 3.30 : A nonempty subset A of a PO-ternary Γ-semiring T is aPO-ternary Γ-ideal of T if and only if it is 

left PO-ternary Γ-ideal, lateral PO-ternary Γ-ideal and right PO-ternary Γ-ideal of T. 

Definition 3.31 :An element a of a PO-ternary Γ-semiring. T is said to be regular if there exist x, y∈ T such that 

a ≤ a𝛼x𝛽a𝛾y𝛿a for all 𝛼, 𝛽, 𝛾, 𝛿 ∈Γ. 

 

IV. Pure po-ternary𝚪-ideals in ordered ternary 𝚪-semiring 
In this section we define pure po-ternary Γ-ideals in ordered ternary Γ-semiring. 

Definition 4.1: Let T be an ordered ternary Γ-semiring. A two-sided po-ternary Γ-ideal A of T is called a left 

(respectively, right) pure two-sided po-ternary 𝚪-ideal if for each x ∈ A there exist yi,zi ∈ A, 𝛼i , 𝛽I ∈ Γ where i ∈ 

Δsuch that
1

n

i i i i

i

x y z x 



   (respectively, 
1

n

i i i i

i

x x y z 



  ). Apo-ternary Γ- ideal A of Tis called left 

(respectively, right) pure po-ternary 𝚪-ideal if for each x ∈A there exist yi ,zi ∈ A, 𝛼i , 𝛽I ∈ Γ where i ∈Δsuch that 

1

n

i i i i

i

x y z x 



  (respectively 
1

n

i i i i

i

x x y z 



  ). Similarly, we define one-sided left and right pure po-

ternary Γ-ideals. 

Theorem 4.2: Let T be an ordered ternary 𝚪-semiring and A a two-sided po-ternary𝚪-ideal of T. Then A 

is right pure po-ternary two-sided 𝚪-ideal if and only if B\A = ([B𝚪A𝚪A]] for all right po-ternary 𝚪-ideals 

B of T. 

Proof:Assume that A is right pure two-sided po-ternary Γ-ideal. Let B be a right po-ternary Γ-ideal of T. We 

have [BΓAΓA] ⊆[BΓTΓT] ⊆B.  Then ([BΓAΓA]] ⊆(B] = B. Since [BΓAΓA] ⊆[TΓTΓA] ⊆A, so ([BΓAΓA]] ⊆(A] = 

A.Hence ([BΓAΓA]] ⊆B∩A.To prove the reverse inclusion, let x ∈B⋂A. By assumption, there exist yi ,zi∈A, 𝛼i , 

𝛽i∈ Γ where i ∈Δsuch that 
1

n

i i i i

i

x x y z 



  . Since 
1

n

i i i i

i

x y z 



 ∈[BΓAΓA], we obtain x ∈([BΓAΓA]].  

Thus B⋂A⊆([BΓAΓA]]. 

Conversely, suppose that B ⋂ A = ([BΓAΓA]] for all right po-ternary Γ-ideals B of T. Let x ∈A. Since 

({x}⋃[xΓTΓT]] is a right po-ternary Γ-ideal of T and [TΓTΓA] ⊆A, we have ({x}⋃[xΓTΓT]] ⋂A = 

([({x}⋃[xΓTΓT]]ΓAΓA]] ⊆([xΓAΓA] ⋃[[xΓTΓT]ΓAΓA]] ⊆([xΓAΓA]].  Since x ∈({x}⋃[xΓTΓT]] ⋂A,  

x ∈([xΓAΓA]]. Hence A is a right pure two-sided po-ternaryΓ-ideal of T. 

Definition 4.3: An ordered ternary Γ-semiring T is said to be right weakly regular if for any  

x∈ T, x∈ ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]]. 

Note that every regular ordered ternary Γ-semiring is right weakly regular. 

Theorem 4.4: Let T be an ordered ternary 𝚪-semiring. The following are equivalent. 

(i) T is right weakly regular. 

(ii) ([A𝚪A𝚪A]] = A for all right po-ternary 𝚪-ideals A of T.  

(iii) B∩A = ([B𝚪A𝚪A]] for all right po-ternary 𝚪-ideals B and all two-sided po-ternary 𝚪-ideals A of T.  

(iv) B∩A = ([B𝚪A𝚪A]] for all right po-ternary𝚪-ideals B and all po-ternary 𝚪-ideals A of T. 
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Proof:(i) ⇒ (ii). Assume that T is right weakly regular.  

Let A be a right po-ternary Γ-ideal of T.  

Since [AΓAΓA] ⊆ [AΓTΓT] ⊆A, we have ([AΓAΓA]] ⊆ A.  

Let x ∈ A. By assumption, x∈ ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]] ⊆ ([AΓAΓA]].  

Then A ⊆ ([AΓAΓA]], whence ([AΓAΓA]] = A.  

(ii) ⇒ (i). Assume that ([AΓAΓA]] = A for all right po-ternary Γ-ideals A of T.  

Let x ∈ T.  Since ({x}∪[xΓTΓT]] is a right po-ternary Γ-ideal of T, we have  

({x}∪[xΓTΓT]] = ([({x}∪[xΓTΓT]]Γ({x}∪[xΓTΓT]]Γ({x}∪[xΓTΓT]]]  

⊆({[xΓxΓx]}∪[[xΓxΓx]TΓT]∪[[xΓxΓT]ΓTΓx]∪[[xΓxΓT]ΓTΓ[xΓTΓT]]∪[[xΓTΓT]ΓxΓx] 

∪[[xΓTΓT]ΓxΓ[xΓTΓT]]∪[[xΓTΓT]Γ[xΓTΓT]Γx]∪[[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]].  

Since x∈ ({x}∪ [xΓTΓT]], we obtain (by calculations) x∈ ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]].  
Hence T is right weakly regular. 

(i)⇒(iii). Assume that T is right weakly regular. Let B and A be a right po-ternary Γ-ideal and a two-sided po-

ternary Γ-ideal of T, respectively. Since [BΓAΓA] ⊆ [BΓTΓT] ⊆ B, ([BΓAΓA]] ⊆ B. 

Similarly, ([BΓAΓA]] ⊆ A.Then ([BΓAΓA]] ⊆ B ∩ A. 

Let x∈ B ∩ A. We have ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]] ⊆ ([BΓAΓA]].  

By assumption, we get x∈ ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]], hence x∈ ([BΓAΓA]].  

Thus B∩A ⊆ ([BΓAΓA]], whence B∩A = ([BΓAΓA]].  

That (iii) ⇒(iv) is clear.  

(iv) ⇒ (i). Assume that B∩A = ([BΓAΓA]] for all right po-ternary Γ-ideals B and all po-ternary Γ-ideals A of T.  

To prove that T is right weakly regular, let x∈ T.  

We have ({x}∪[xΓTΓT]] and ({x}∪[xΓTΓT]∪[TΓTΓx]∪[TΓxΓT]∪[TΓ[TΓxΓT]ΓT]] are rightpo-ternary Γ- ideal 

and ideal of T, respectively.  

Then ({x}∪[xΓTΓT]]∩({x}∪[xΓTΓT]∪[TΓTΓx]∪[TΓxΓT]∪[TΓ[TΓxΓT]ΓT]]  

=(({x}∪[xΓTΓT]]Γ({x}∪[xΓTΓT]∪[TΓTΓx]∪[TΓxΓT]∪[TΓ[TΓxΓT]ΓT]]Γ 
({x}∪[xΓTΓT]∪[TΓTΓx]∪[TΓxΓT]∪[TΓ[TΓxΓT]ΓT]]] 

⊆ ({[xΓxΓx]}∪[[xΓxΓx]ΓTΓT]∪[xΓ[xΓTΓT]x]∪[xΓ[xΓTΓx]ΓT] 

∪[xΓ[xΓTΓT]Γ[xΓTΓT]]∪[xΓ[TΓTΓx]Γx]∪[[xΓTΓT]Γ[xΓxΓT]ΓT] 

∪[[xΓTΓT]Γ[xΓTΓT]Γx]∪[[xΓTΓT]Γ[xΓTΓx]ΓT]∪[[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]] 

∪[[xΓTΓx]ΓTΓx]∪[[xΓTΓx]Γ[TΓxΓT]ΓT]∪[[xΓTΓx]Γ[TΓTΓx]ΓT]]  

⊆ ([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]]. 

Thus x ∈([[xΓTΓT]Γ[xΓTΓT]Γ[xΓTΓT]]].  

Hence T is right weakly regular ordered ternary Γ-semiring. 

Theorem 4.5.Let T be an ordered ternary 𝚪-semiring. The following areequivalent. 

(i) T is right weakly regular. 

(ii) Every two-sided po-ternary𝚪-ideal A of T is right pure. 

(iii) Every po-ternary𝚪-ideal A of T is right pure. 

Proof:This follows from Theorem 4.2, and Theorem 4.4. 

Definition4.6: An element a of a po-ternary Γ-semigroup T is said to be zero of T provided a𝛼b𝛽c = b𝛼a𝛽c = 

b𝛼c𝛽a = a and a ≤ t b, c  T, 𝛼, 𝛽∈ Γ. 

Theorem 4.7.Let T be an ordered ternary 𝚪-semiring with zero 0. 

(i) {0}is a right pure po-ternary𝚪-ideal of T. 

(ii) Union of any right pure two-sided po-ternary𝚪-ideals (respectively, po-ternary 𝚪-ideal) of T is a right    

       pure two-sided po-ternary𝚪-ideal (respectively, po-ternary 𝚪-ideals) of T. 

(iii) Finite intersection of right pure two-sided ideals (respectively, ideal) of T isa right pure two-sided po- 

       ternary𝚪-ideal (respectively, po-ternary 𝚪-ideals) of T. 

Proof:(i) This is obvious. 

(ii) Let Ai, i ∈I be right pure two-sided po-ternary Γ-ideals of T. We have 
i

i I

A



 is a 

two-sided po-ternary Γ-ideal of T. Let x ∈
i

i I

A



 . Then x ∈Aj  for some j ∈I. 

Since Aj  is right pure two-sided po-ternary Γ-ideal, there exist y, z ∈Aj, 𝛼, 𝛽 ∈ Γ such that  

x ≤[x𝛼y𝛽z]. Since y, z ∈Aj⊆ i

i I

A



 , we have 
i

i I

A



 is right pure. 

(iii) Let A1, A2, ……Anbe right pure two-sided po-ternary Γ-ideals of T.  
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Then
1

n

i

i

A



 is a two-sided po-ternary Γ-ideal of T.  

Let x ∈ 
1

n

i

i

A



 . For k ∈ {1,2, ….., n }, there exist yk, zk∈Ak,𝛼, 𝛽∈Γsuch that x ≤[x𝛼yk𝛽zk].  

We have x ≤[[x𝛼yn𝛽zn] ……[y2𝛼z2𝛽y1]𝛾z1].Since [[yn𝛼zn𝛽yn-1] ……[y2𝛾z2𝛿y1]εz1] ∈
1

n

i

i

A



 , we have 
1

n

i

i

A



 is a 

right pure two-sided  po-ternary Γ-ideal of T. 

Theorem 4.8.Let T be an ordered ternary 𝚪-semiring with zero 0 and A is a two-sided po-ternary 𝚪-ideal 

of T. Then A contains the largest right pure two-sided po-ternary 𝚪-ideal of T,  denoted by S(A). S(A) is 

called the pure part of A. 

Proof: Since {0}is a right pure two-sided po-ternary ideal of T contained in A, it follows thatthe union of all 

right pure two-sided po-ternary Γ-ideals of T contained in A exists, and henceit is the largest right pure two-

sided po-ternary Γ-ideal of T contained in A. 

Similarly, we have the following. 

Theorem 4.9.Let T be an ordered ternary 𝚪-semiring with zero 0 and A is a po-ternary 𝚪-ideal  of T. Then 

A contains the largest right pure po-ternary 𝚪-ideal of T. 

Theorem 4.10.Let T be an ordered ternary 𝚪-semiring with zero 0. Let A, B and Ai,  

i∈I be two-sided po-ternary 𝚪-ideals of T. 

(i) S(A⋂B) = S(A)⋂S(B). 

(ii) ( )
i

i I

S A



 ⊆ ( )
i

i I

S A



 . 

Proof:(i) Since S(A) ⊆A and S(B) ⊆B, we have S(A) ⋂ S(B) ⊆A ⋂B.  

HenceS(A)⋂S(B) ⊆ S(A⋂B). Since S(A⋂B) ⊆A⋂B ⊆A, we get S(A⋂B)⊆S(A). 

Similarly, S(A⋂B)⊆ S(B). Then S(A ⋂B) ⊆ S(A) ⋂ S(B), whence S(A ⋂B) = S(A) ⋂ S(B). 

(ii) Since S(Ai) ⊆ Ai for all i ∈ I, we have ( )
i

i I

S A



  ⊆
i

i I

A



 . Then ( )
i

i I

S A



 ⊆ ( )
i

i I

S A



 . 

Definition4.11: A right pure two-sided po-ternary Γ-ideal A of an ordered ternary Γ-semiring T is said to be 

purely maximal if for any proper right pure two-sided po-ternary Γ-ideal B of T, A ⊆ B implies A = B. 

Definition 4.12: A proper right pure two-sided po-ternary Γ-ideal A of an ordered ternary Γ-semiring T is said to 

be purely prime if for any right pure two-sided po-ternary Γ-ideals B1,B2 of T, B1 ∩B2⊆ A implies B1⊆ A or 

B2⊆ A. 

Theorem 4.13:Every purely maximal two-sided po-ternary 𝚪-ideal of an ordered ternary 𝚪-semiring T is 

purely prime. 

Proof:  Let A be a purely maximal two-sided po-ternary Γ-ideal of T. Let B and C be right pure two-sided po-

ternary Γ-ideals of T such that B∩C ⊆ A and B ⊈ A. Since B∪A is a right pure two-sided po-ternary Γ-ideal 

such that A ⊂ B∪A, so T = B∪A.  

We have C = C ∩T = C ∩(B∪A) = (C ∩B)∪(C ∩A) ⊆ A. Then A is purely prime. 

Theorem 4.14:The pure part of any maximal two-sided po-ternary 𝚪-ideal of an ordered ternary 𝚪-

semiring T with zero is purely prime. 

Proof:  Let A be a maximal two-side po-ternary Γ-ideal of T. To show thatS(A) is purely prime, let B,C be right 

pure two-side po-ternary Γ-ideals of T such that B ∩C ⊆ S(A). If B ⊆ A, then B ⊆S(A). Suppose that B ⊈ A. 

We have B∪A is a two-side po-ternary Γ-ideal of T. By maximality of A, T = B∪A, and hence C ⊆ A.  

Thus C ⊆S(A). 

Theorem 4.15: Let T be an ordered ternary 𝚪-semiring and Aa right pure two-sided po-ternary 𝚪-ideal of 

T. If x∈ T \A, then there exists a purely prime two-sided po-ternary 𝚪-ideal B of T such that A ⊆ B and x∉ 

B. 

Proof:  Let P = {B | B is a right pure two-sided po-ternary Γ-ideal of T, A ⊆ B and x∉ B}. Since A ∈ P, P ≠∅. 

Under the usual inclusion, P is a partially ordered set. Let Bk,k∈ K be a totally ordered subset of P. By Theorem 

4.7,
k

k K

B



 is a right pure two-sided po-ternary Γ-ideal of T. Since A ⊆
k

k K

B



 and x∉
k

k K

B



 , we have 
k

k K

B



 ∈ P. 

 By Zorn’s Lemma, P has a maximal element, say M. Then M is a right pure two-sided po-ternary Γ-

ideal, A⊆ M and x∉ M. We shall show that M is purely prime. Let A1 and A2 be right pure two-sided po-ternary 

Γ-ideals of T such that A1⊈ M and A2⊈ M. Since A1, A2 and M are right pure two-sided po-ternary Γ-ideals of 

T, we obtain A1∪M and A2∪M are right pure two-sided po-ternary Γ-ideals of T such that M ⊂ A1∪M and  
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M ⊂ A2∪M. Thus x∈Ai∪M (k = 1,2). Since x∉ M, x∈ A1∩A2.Hence A1 ∩A2⊈ M. This shows that M is purely 
prime. 

Theorem 4.16:Any proper right pure two-sided po-ternary 𝚪-ideal A of an ordered ternary 𝚪-semiring T 

is the intersection of all the purely prime two-sided po-ternary 𝚪-ideals of T containing A. 

Proof:By Theorem 4.15, there exists purely prime po-ternary Γ-ideals containing A.  

Let {Bi : I ∈ I}be the set of all purely prime two-sided po-ternary Γ-ideals of T containing A. We have 
i

i I

A B



 

. To show that
k

k K

B A



 . Let x ∉A. By Theorem 4.15, there exists purely prime po-ternary Γ-ideal Bj  such that 

A ⊆Bj  and x ∉Bj. Hence 
i

i I

x B



 
. 

 

V. Weakly pure ideals in ordered ternary PO-semi-rings 
In this section, we introduce the concept of weakly pure po-ternary Γ-ideal in ordered ternary Γ-

semiring. 

Definition 5.1.Let T be an ordered ternary Γ-semiring. A two-sided po-ternary Γ-ideal A of T is called left 

(respectively, right) weakly pure if A ⋂B = ([AΓAΓB]](respectively,A ⋂B = ([BΓAΓA]]) for all two-sided po-

ternary Γ-ideals B of S. 
In an ordered ternary Γ-semiring, every left (right) pure two-sided po-ternary Γ-ideals is left(right) 

weakly pure. 

Theorem 5.2:Let Tbe an ordered ternary semigroup with zero 0. If A and B are two-sidedpo-ternary Γ-

ideals of T, then 

B𝚪A
-1

 = {t∈T | ∀ x, y∈A, 𝜶, 𝜷∈𝚪,[x𝛂y𝛃t] ∈B} 

A-1𝚪B= {t∈T | ∀ x, y∈A, 𝜶, 𝜷∈𝚪,[t𝛂x𝛃y] ∈B} 

are two-sided po-ternary Γ-ideals of T. 

Proof: We shall show that BΓA−1 is a two-sided po-ternary Γ-ideal of T. That A−1ΓB is a twosided po-ternary Γ-

ideal of T can be proved similarly. Clearly, 0 ∈ BΓA−1.Let u, v∈ T, 𝛼, 𝛽∈Γ and t∈ BΓA−1. To show that  

[u𝛼v𝛽t] ∈ BΓA−1, letx, y∈ A. Since [y𝛾u𝛼v] ∈ A for 𝛾, 𝛿 ∈ Γ, we have [x𝜀y[u𝛿v𝛽t]] = [x𝜀[y𝛾u𝛿v]βt] ∈ B. Thus 

[u𝛼v𝛽t] ∈ BΓA−1. Let x∈ BΓA−1 and y∈ T be such that y ≤ x. Let z, w∈ A. Since [z𝛼w𝛽y] ≤[ z𝛼w𝛾x] and [z𝛼w𝛾x] 

∈ B, we have [z𝛼w𝛽y] ∈ B. Hence y∈ BΓA−1. Therefore, BΓA−1 is a two-sided po-ternary Γ-ideal of T. 

Theorem 5.3:Let T be an ordered ternary 𝚪-semiring and Aa two-sided po-ternary 𝚪-ideal of T. Then A is 

left (right) weakly pure two-sided po-ternary 𝚪-ideal if and only if (B𝚪A
−1

)∩ A = A∩B ((B𝚪A−1)∩A = 

A∩B) for all po-ternary 𝚪-ideals B of T. 

Proof:Suppose that A is left weakly pure two-sided po-ternary Γ-ideal. Let B be a po-ternary Γ-ideal of T. By 

Theorem 5.2, BΓA−1 is a two-side po-ternary Γ-ideal of T, and thus A∩BΓA−1 = ([AΓAΓ(BΓA−1)]]. Since 

[AΓAΓ(BΓA−1)] ⊆ [AΓTΓT] ⊆ A, we have ([AΓAΓ(BΓA−1])] ⊆ (A] = A. Let t∈ ([AΓAΓ(BΓA−1)]] be such that t 

≤ [x𝛼y𝛽z] for some x,y∈ A,𝛼, 𝛽∈Γ,z∈ BΓA−1. By Definition of BΓA−1, [x𝛼y𝛽z] ∈ B. Thus t∈ B. This proves that 

A∩BΓA−1⊆ A∩B. For the reverse inclusion, let a∈ A∩B. Since [x𝛼y𝛽a] ∈ B for any x,y∈ A,𝛼, 𝛽∈Γ, we have 

a∈ BΓA−1. We get a∈BΓA−1 ∩A, and then A∩B ⊆BΓA−1 ∩A. 

  

 Conversely, assume that (BΓA−1)∩A = A∩B for all po-ternary Γ-ideal B of T. To showthat A is left 

weakly pure two-sided po-ternary Γ-ideal, let C be any po-ternary Γ-ideal of T. To show that A∩C = 

([AΓAΓC]]. By assumption, A∩C = CΓA−1∩A. Since [AΓAΓC] ⊆ [AΓTΓT] ⊆ A, ([AΓAΓC]] ⊆ A.Let t∈ 

([AΓAΓC]] such that t ≤ [x𝛼y𝛽z] for some x,y∈ A,𝛼, 𝛽∈Γ,z∈ C and let a,b∈ A. Since [a[b𝛽x𝛾y]δz] = 

a𝛼b𝛽[x𝛾y𝛿z] ∈ C, we obtain [x𝛾y𝛿z] ∈ CΓA−1, and so t∈ CΓA−1. Then ([AΓAΓC]] ⊆ CΓA−1.This proves that 

([AΓAΓC]] ⊆ A∩C. For the reverse inclusion, we have C ⊆ ([AΓAΓC]]ΓA−1 because c∈ C,a,b∈ A, 𝛼, 𝛽∈Γ 

implies [a𝛼b𝛽c] ∈ [AΓAΓC] ⊆ ([AΓAΓC]]. Then A∩C ⊆ ([AΓAΓC]]ΓA−1∩A = A∩([AΓAΓC]] ⊆ ([AΓAΓC]]. 

Theorem 5.4: Let T be an ordered ternary 𝚪-semiring. The following are equivalent. 

(i) Every two-sided po-ternary 𝚪-ideal is left weakly pure two-sided po-ternary 𝚪-ideal. 

(ii) For every two-sided po-ternary 𝚪-ideal A of T, [A𝚪A𝚪A] = A. i.e. each two-sided po-ternary 𝚪-ideal is   

       idempotent. 

(iii) Every two-sided po-ternary 𝚪-ideal is right weakly pure two-sided po-ternary 𝚪-ideal. 

Proof : (i) ⇒ (ii) Suppose that  each two-sided po-ternary Γ-ideal of T is left weakly pure.  Let A be the two 

sided po-ternary Γ-ideal of  T, then for each two- sided po-ternary Γ-ideal B of T we have A ⋂ B = AΓAΓB.  In 

particular A = A ⋂ A = AΓAΓA.  Therefore each two-sided po-ternary Γ-ideal of T is idempotent.  
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(ii) ⇒ (i) Suppose that each two-sided po-ternary Γ-ideal of T is idempotent.  Let A be a two-sided  po-ternary 

Γ-ideal of T, then for any two-sided po-ternary Γ-ideal B of T we always have  AΓAΓB = A ⋂ B.  On the other 

hand, A ⋂ B = (A ⋂ B)Γ(A ⋂ B)Γ(A ⋂ B) ⊆ AΓAΓB.  Hence we have A ⋂ B = AΓAΓB.  Thus A is left weakly 

pure. 

(ii) ⇒ (iii) Similarly as (ii) ⇒ (i) 

(iii) ⇒ (ii) Suppose that each two-sided po-ternary Γ-ideal of T is right weakly pure two-sided po-ternary Γ-

ideal.  Let A be any two-sided po-ternary Γ-ideal of T.  Then A is right weakly pure.  Therefore for each two-

sided po-ternary Γ-ideal B of T, we have A ⋂ B = BΓAΓA.  In particular A ⋂ A = AΓAΓA.  Thus each two-

sided po-ternary Γ-ideal of T is idempotent. 

6. Pure spectrum of an ordered ternary 𝚪-semiring 

Notation 6.1 :Let T be an ordered ternary Γ-semiring with zero such that [TΓTΓT] = T.The set of all right pure po-

ternary Γ-ideals of T and the set of all proper purely prime po-ternary  

Γ-ideals of T will be denoted by P(T) and P′(T), respectively.  For A ∈ P(T), let  

                              IA = {J ∈ P′(T) | A ⊈ J} and τ(T) = {IA | A ∈ P(T)}. 

Theorem 6.2: τ(T) forms a topology on P′(T).  

Proof:  Since {0} is a right pure po-ternary Γ-ideal of T and I{0} = ∅, we have ∅ ∈ τ(T). Since T is a right pure po-

ternary Γ-ideal of T such that IT = P′(T), we get P′(T) ∈ τ(T).  

Let {
A

I


| α ∈ Λ}⊆ τ(T). We have 
A

I


 

  = { ( ) :J P T A


  ⊈ J for some 𝛼 ∈ Λ} =  

{ ( ) :J P T A


  ⊈ J } = 
A

I


 


.  Whence 

A
I



 

 ∈τ (T).  Let 
1 2

,
A A

I I  ∈ τ(T). We shall show that 

1 2 1 2
A A A A

I I I


 , therefore let J ∈ 
1 2

A A
I I .  We have J ∈ P′(T), A1 ⊈ J and A2 ⊈ J. Suppose that A1∩A2 ⊆ J. 

Since J is purely prime, A1 ⊆ J or A2 ⊆ J.  A contradiction. Then J ∈ 
1 2

A A
I I , hence 

1 2
A A

I I ⊆ 
1 2

A A
I


. For 

the reverse inclusion, let J ∈ 
1 2

A A
I


.  Since A1 ∩ A2  ⊈ J, A1 ⊈ J and A2 ⊈ J. This implies that J ∈ 

1 2
A A

I I , thus 

1 2
A A

I


⊆ 
1 2

A A
I I .  Consequently, 

1 2 1 2
A A A A

I I I


 , which implies 
1 2

A A
I I  ∈ τ(T).  Therefore τ(T) forms a 

topology on P′(T). 

 

VI. Conclusion  

In this paper mainly we start the study of pure po-ternary Γ-ideals, weakly pure po-ternary Γ-ideals and 

purely prime po-ternary Γ-ideals in po-ternary Γ-semirings.  We characterize po-ternary Γ-semirings by the 

properties of pure and weakly pure po-ternary Γ-ideals.  
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