On Some Continuous and Irresolute Maps In Ideal Topological Spaces

M. Navaneethakrishnan¹, P. Periyasamy², S. Pious Missier³

¹Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. ²Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. ³Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu, India.

Abstract: In this paper we introduce some continuous and irresolute maps called $\hat{\delta}$ -continuity, $\hat{\delta}$ -irresolute, $\hat{\delta}_{s}$ -continuity and $\hat{\delta}_{s}$ -irresolute maps in ideal topological spaces and study some of their properties. **Keywords:** $\hat{\delta}$ -continuity, $\hat{\delta}$ -irresolute, $\hat{\delta}_{s}$ - continuity, $\hat{\delta}_{s}$ -irresolute.

I. Introduction

Ideals in topological space (X, τ) is a non-empty collection of subsets of X which satisfies the properties (i) $A \in I$ and $B \subset A \Rightarrow B \in I$ (ii) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$. An ideal topological space is denoted by the triplet (X, τ, I) . In an ideal space (X, τ, I) , if P(X) is the collection of all subsets of X, a set operator (.)* : $P(X) \rightarrow P(X)$ called a local function [4] with respect to the topology τ and ideal I is defined as follows: for $A \subseteq X$, $A^* = \{x \in X \mid U \cap A \notin I$, for every open set U containing x}. A Kuratowski closure operator cl*(.) of a subset A of X is defined by cl*(A) = $A \cup A^*$ [12]. Yuksel, Acikgoz and Noiri [14] introduced the concept of δ -I-closed sets in ideal topological space. M. Navaneethakrishnan, P.Periyasamy, S.Pious missier introduced the concept of $\hat{\delta}$ -closed set [9] and $\hat{\delta}_s$ -closed set [8] in ideal topological spaces. K. Balachandran, P. Sundaram and H.Maki [1], B.M. Munshi and D.S. Bassan [7], T.Noiri [10], Julian Dontchev and Maximilian Ganster [3], N.Levine [5] introduced the concept of g-continuity, supercontinuity, δ -continuity, δ -continuity, w-continuity, respectively. The purpose of this paper is to introduce the concept of $\hat{\delta}$ -continuity, $\hat{\delta}$ -irresolute, $\hat{\delta}_s$ -continuity, $\hat{\delta}_s$ -irresolute maps. Also, we study some of the characterization and basic properties of these maps.

II. Preliminaries

Definition 2.1 A subset A of a topological space (X, τ) is called a

- (i) Semi-open set [5] if $A \subseteq cl(int(A))$
- (ii) g-closed set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- (iii) w-closed set [11] $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.
- (iv) δ -closed set [13] if $\delta cl(A) = A$, where $\delta cl(A) = \{x \in X : int(cl(U)) \cap A \neq \phi, \text{ for each } U \in \tau(x)\}$.
- (v) δg -closed set [3] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

The complement of semi-open (resp. g-closed, w-closed, δ -closed, δ g-closed) set is called semi-closed (resp. g-open, w-open, δ -open, δ g-open) set.

Definition 2.2 [14] Let (X, τ, I) be an ideal topological space, A a subset of X and x a point of X.

- (i) x is called a δ -I-cluster point of A if A \cap int cl*(U) $\neq \phi$ for each open neighbourhood of x.
- (ii) The family of all δ -I-cluster points of A is called the δ -I-closure of A and is denoted by $[A]_{\delta$ -I and
- (iii) A subset A is said to be δ -I-closed if $[A]_{\delta-I} = A$. The complement of δ -I-closed set of X is said to be δ -I-open.

Remark 2.3 [9] From the Definition 2.2 it is clear that $[A]_{\delta - I} = \{x \in X: int(cl^*(U)) \cap A \neq \phi, \text{ for each } U \in \tau(x)\}.$

Notation 2.4 [9]. Throughout this paper $[A]_{\delta - I}$ is denoted by $\sigma cl(A)$.

Definition 2.5 A subset A of an ideal topological space (X, τ, I) is called

- (i) Ig-closed set [2] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.
- (ii) $\hat{\delta}$ -closed set [9] if $\sigma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (iii) $\hat{\delta}_{s}$ -closed set [8] if $\sigma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

The complement of Ig-closed (resp. $\hat{\delta}$ -closed, $\hat{\delta}_s$ -closed) set is called Ig-open (resp. $\hat{\delta}$ -open; $\hat{\delta}_s$ -open) set.

Definition 2.6 Let A be a subset of an ideal space (X, τ , I) then the $\hat{\delta}_s$ -closure of A is defined to be the intersection of all $\hat{\delta}_s$ -closed sets containing A and is denoted by $\hat{\delta}_s$ cl(A). That is $\hat{\delta}_s$ cl(A) = \cap {F: A \subseteq F and F is $\hat{\delta}_s$ -closed}.

 $\delta_{\rm s}$ -closed }.

- **Definition 2.7** A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be
- [1]. g-continuous [1] if $f^{1}(F)$ is g-closed in X for every closed set F of Y.
- [2]. g-irresolute [1] if $f^{-1}(F)$ is g-closed in X for every g-closed set F of Y.
- [3]. w-continuous [5] if $f^{1}(F)$ is w-closed in X for every closed set F of Y.
- [4]. w-irresolute [5] if $f^{1}(F)$ is w-closed in X for every w-closed set F of Y.
- [5]. δg -continuous [3] if $f^1(F)$ is δg -closed in X for every closed set F of Y.
- [6]. δg -irresolute [3] if $f^1(F)$ is δg -closed in X for every δg -closed set F of Y.
- [7]. δ -continuous [10] if $f^{1}(U)$ is δ -open in X for every δ -open set U in Y.
- [8]. Supercontinuous [7] if $f^{1}(U)$ is δ -open in X for every open set U in Y.

Definition 2.8 A map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ is said to be

- (i) Ig-continuous if $f^{1}(F)$ is Ig-closed in X for every closed set F of Y.
- (ii) Ig-irresolute if $f^{1}(F)$ is Ig-closed in X for every Ig-closed set F of Y.

Definition 2.9 A topological space (X, τ) is called

- (i) $T_{1/2}$ -space [6] if for every g-closed subset of X is closed.
- (ii) T_{3_4} -space [3] if for every δg -closed subset of X is δ -closed.

Definition 2.10 [2] An ideal space (X, τ , I) is called T_I-space if for every Ig-closed subset is *-closed.

III. $\hat{\delta}$ -Continuous And $\hat{\delta}$ -Irresolute Maps

Definition 3.1 A function f from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is called $\hat{\delta}$ -continuous if $f^1(F)$ is $\hat{\delta}$ -closed in (X, τ, I_1) for every closed set F of (Y, σ, I_2) .

Definition 3.2 A function f from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is called $\hat{\delta}$ -irresolute if f^1 (F) is $\hat{\delta}$ -closed in (X, τ, I_1) for every $\hat{\delta}$ -closed set F in (Y, σ, I_2) .

Theorem 3.3 If a map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is $\hat{\delta}$ - continuous, then it is g-continuous.

Proof. Let $f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}$ -continuous and F be any closed set in Y. Then the inverse image $f^1(F)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . Since every $\hat{\delta}$ -closed set is g-closed, $f^1(F)$ is g-closed in (X, τ, I_1) . Therefore f is g-continuous.

Remark 3.4 The converse of Theorem 3.3 need not be true as seen in the following Example.

Example 3.5 Let $X=Y=\{a,b,c,d\}$ with topologies $\tau = \{X, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}, \sigma = \{Y, \phi, \{b\}, \{c,d\}, \{b,c,d\}$ and ideals $I_1=\{\phi, \{c\}, \{d\}, \{c,d\}\}, I_2=\{\phi, \{b\}, \{c\}, \{b,c\}\}$. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a map defined by f(a)=b, f(b)=c, f(c)=d and f(d)=a, then f is g-continuous but not $\hat{\delta}$ - continuous, since for the closed set $F=\{a,b\}$ in (Y, σ, I_2) , $f^1(F) = \{a,d\}$ is not $\hat{\delta}$ - closed set in (X, τ, I_1) .

Theorem 3.6 If a map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is $\hat{\delta}$ - continuous, then it is I_g-continuous.

Proof. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}$ -continuous and F be any closed set in (Y, σ, I_2) . Then the inverse image $f^1(F)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . Since every $\hat{\delta}$ -closed set is I_g -closed, $f^1(F)$ is Ig-closed. Therefore f is I_g -continuous.

Remark 3.7 The converse of the above Theorem is not always true as shown in the following Example.

Example 3.8 Let $X=Y=\{a,b,c,d\}$ with topologies $\tau = \{X, \phi, \{b\}, \{d\}, \{b,c\}, \{b,c,d\}\}, \sigma = \{Y, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ and ideals $I_1=\{\phi, \{d\}\}, I_2=\{\phi, \{c\}, \{d\}, \{c,d\}\}$. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a map defined by f(a)=d, f(b)=a, f(c)=b and f(d)=c, then f is I_g –continuous but not $\hat{\delta}$ - continuous, since for the closed set $F=\{c\}$ in (Y, σ, I_2) , $f^1(F) = \{d\}$ is not $\hat{\delta}$ - closed set in (X, τ, I_1) .

Theorem 3.9 A map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is supercontinuous, then f is $\hat{\delta}$ - continuous.

Proof. Let $f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ is supercontinuous and U be an open set in (Y, σ, I_2) . Then $f^1(U)$ is δ -open in (X, τ, I_1) . Since $f^1(U^c) = [f^1(U)]^c$, $f^1(U^c)$ is δ -closed in (X, τ, I_1) for every closed set U^c in (Y, σ, I_2) . Also, since every δ -closed set is $\hat{\delta}$ -closed $f^1(U^c)$ is $\hat{\delta}$ -closed for every closed set U^c in (Y, σ, I_2) . Hence f is $\hat{\delta}$ -continuous.

Remark 3.10 The converse of the above Theorem is not always true as shown in the following Example.

Example 3.11 Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}, \sigma = \{Y, \phi, \{c\}, \{a, d\}, \{a, c, d\}\}$ and ideals $I_1 = \{\phi, \{c\}\}, I_2 = \{\phi, \{a\}, \{d\}, \{a, d\}\}$. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a map defined by f(a) = b, f(b) = a, f(c) = c and f(d) = d, then f is $\hat{\delta}$ -continuous but not supercontinuous because, for the open set $U = \{a, d\}$ in $(Y, \sigma, I_2), f^1(U) = \{b, d\}$ is not δ -open in (X, τ, I_1) .

Theorem 3.12 A function f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ is $\hat{\delta}$ -continuous if and only if $f^1(U)$ is $\hat{\delta}$ - open in (X, τ, I_1) for every open set U in (Y, σ, I_2) .

Proof. Necessity - Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}$ -continuous and U any open set in (Y, σ, I_2) . Then $f^1(U^c)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . But $f^1(U^c) = [f^1(U)]^c$ and so $f^1(U)$ is $\hat{\delta}$ -open in (X, τ, I_1) .

Sufficiency - Suppose $f^{1}(U)$ is $\hat{\delta}$ -open in (X, τ, I_{1}) for every open set U in (Y,σ,I_{2}) . Again since $f^{1}(U^{c}) = [f^{1}(U)]^{c}$, $f^{1}(U^{c})$ is $\hat{\delta}$ -closed in X, for every closed set U^{c} in (Y,σ,I_{2}) . Therefore f is $\hat{\delta}$ -continuous.

Definition 3.13 A map f: $(X,\tau,I_1) \rightarrow (Y,\sigma,I_2)$ is called δ -I-closed if the image of δ -I-closed set under f is δ -I-closed.

Theorem 3.14 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be continuous and δ -I-closed, then for every $\hat{\delta}$ -closed subset A of (X, τ, I_1) , f(A) is $\hat{\delta}$ -closed in (Y, σ, I_2) .

Proof. Let A be $\hat{\delta}$ -closed in (X, τ, I_1) . Let $f(A) \subseteq U$ where U is open in (Y, σ, I_2) . Since $A \subseteq f^{-1}(U)$ and A is $\hat{\delta}$ -closed and since $f^1(U)$ is open in (X, τ, I_1) , then $\sigma cl(A) \subseteq f^1(U)$. Thus $f(\sigma cl(A)) \subseteq U$. Hence $\sigma cl(f(A)) \subseteq \sigma cl(f(\sigma cl(A))) = f(\sigma cl(A)) \subseteq U$. Since f is δ -l-closed. Hence f(A) is $\hat{\delta}$ -closed in (Y, σ, I_2) .

Remark 3.15 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}$ -continuous function then it is clear that $f(\sigma cl(A)) \subset cl(f(A))$ for every δ -I-closed subset A of X. But the converse is not true. For instant, let $X = Y = \{a, b, c, d\}$, with topologies $\tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and ideals $I_1 = \{\phi, \{c\}\}, I_2 = \{\phi, \{a\}\}$. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be identity map. Then $f(\sigma cl(A)) \subset cl(f(A))$ for every δ -I-closed subset A of X. But for the closed set $\{b\}$ of Y, $f^1(\{b\}) = \{b\}$ is not $\hat{\delta}$ -closed set in X. Therefore f is not $\hat{\delta}$ -continuous.

Remark 3.16 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a continuous function then it is clear that, $f(\sigma cl(A)) \subset cl(f(A))$ for every δ -I-closed subset A of X. But the converse is not true. For instant, let X, Y, τ , σ , I_1 , I_2 , f be as Example given in Remark 3.15. Then $f(\sigma cl(A)) \subset cl(f(A))$ for every subset A of X. But for the closed set $B = \{b\}$ in Y, f $^1(B) = \{b\}$ is not closed in X. Hence f is not continuous.

Theorem 3.17 A map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is $\hat{\delta}$ - irresolute if and only if the inverse image of every $\hat{\delta}$ -open set in (Y, σ, I_2) is $\hat{\delta}$ -open in (X, τ, I_1) .

Proof. Necessity - Assume that f is $\hat{\delta}$ -irresolute. Let U be any $\hat{\delta}$ -open set in (Y, σ, I_2) . Then X–U is $\hat{\delta}$ -closed in (Y, σ, I_2) . Since f is $\hat{\delta}$ -irresolute f¹(X–U) is $\hat{\delta}$ -closed in (X, τ, I_1) . But $f^1(U^c) = [f^1(U)]^c$ and so $f^1(U)$ is $\hat{\delta}$ - open in X. Hence the inverse image of every $\hat{\delta}$ -open set in (Y, σ, I_2) is $\hat{\delta}$ -open in X.

Sufficiency - Assume that the inverse image of every $\hat{\delta}$ -open set in (Y, σ, I_2) is $\hat{\delta}$ -open in (X, τ, I_1) . Let V be any $\hat{\delta}$ -closed set in (Y, σ, I_2) . Then X–V is $\hat{\delta}$ -open in (Y, σ, I_2) . By assumption, $f^1(X-V)$ is $\hat{\delta}$ -open in (X, τ, I_1) . But $f^1(V^c) = [f^1(V)]^c$ and so $f^1(V)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . Therefore f is $\hat{\delta}$ -irresolute.

Theorem 3.18 Let every $\hat{\delta}$ -closed set is δ -closed in (X, τ, I_1) and f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}$ -irresolute. Then f is δ -continuous.

Proof. Let F be a δ -closed subset of (Y, σ, I_2) . By Theorem 3.3 [9], F is $\hat{\delta}$ -closed. Since f is $\hat{\delta}$ -irresolute, $f^1(F)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . By hypothesis $f^1(F)$ is δ -closed. Then f is δ -continuous.

Remark 3.19 The converse of Theorem 3.18 is need not be true as shown in the following Example.

Example 3.20 Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}, \sigma = (Y, \phi, \{c\}, \{c, d\}, \{a, c, d\}\}$ and ideals $I_1 = \{\phi, \{a\}, \{b\}, \{a, b\}\}, I_2 = \{\phi, \{b\}, \{d\}, \{b, d\}\}$. Here every $\hat{\delta}$ -closed set is δ -closed in (X, τ, I_1) . Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be identity map. Then f is δ -continuous, but not $\hat{\delta}$ -irresolute because for the $\hat{\delta}$ -closed set A = $\{a, b\}$ in (Y, σ, I_2) , $f^1(A) = \{a, b\}$ is not $\hat{\delta}$ -closed in (X, τ, I_1) . Theorem 3.21 If f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ is bijective, open and $\hat{\delta}$ -continuous then f is $\hat{\delta}$ -irresolute.

Proof. Let F be any $\hat{\delta}$ -closed set in Y and $f^1(F) \subseteq U$, where $U \in \tau$. Then it is clear that $\sigma cl(F) \subseteq f(U)$ and therefore $f^1(\sigma cl(F)) \subseteq U$. Since f is $\hat{\delta}$ -continuous and $\sigma cl(F)$ is a closed subset of $(Y, \sigma, I_2), \sigma cl(f^1(\sigma cl(F))) \subseteq U$ and hence $\sigma cl(f^1(F)) \subseteq U$. Thus $f^1(F)$ is $\hat{\delta}$ -closed in (X, τ, I_1) . This shows that f is $\hat{\delta}$ -irresolute.

Theorem 3.22 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be surjective, $\hat{\delta}$ -irresolute and δ -closed. If every $\hat{\delta}$ -closed set is δ -closed in (X, τ, I_1) then the same in (Y, σ, I_2) .

Proof. Let F be a $\hat{\delta}$ -closed set in (Y, σ , I₂). Since f is $\hat{\delta}$ -irresolute, f¹(F) is $\hat{\delta}$ -closed in (X, τ , I₁). Then by hypothesis, f¹(F) is δ -closed in (X, τ , I₁). Since f is surjective and F is δ -closed in (Y, σ , I₂).

Theorem 3.23 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ and g: $(Y, \sigma, I_2) \rightarrow (Z, \eta, I_3)$ be any two functions. Then the following hold.

(i) gof is $\hat{\delta}$ -continuous if f is $\hat{\delta}$ -irresolute and g is $\hat{\delta}$ -continuous.

(ii) gof is $\hat{\delta}$ -irresolute if f is $\hat{\delta}$ -irresolute and g is $\hat{\delta}$ -irresolute.

(iii) gof is g-continuous if f is g-irresolute and g is $\,\hat{\delta}$ -continuous.

(iv) gof is Ig-continuous if f is Ig-irresolute and g is $\hat{\delta}$ -continuous

Proof. (i) Let F be a closed set in (Z, η , I₃). Since g is $\hat{\delta}$ -continuous, $g^{-1}(F)$ is $\hat{\delta}$ -closed in (Y, σ , I₂). Since f is $\hat{\delta}$ -irresolute, $f^{-1}(g^{-1}(F))$ is $\hat{\delta}$ -closed in (X, τ , I₁). Thus (gof)⁻¹(F) = $f^{-1}(g^{-1}(F))$ is a $\hat{\delta}$ -closed set in (X, τ , I₁) and hence gof is $\hat{\delta}$ -continuous.

(ii) Let V be a $\hat{\delta}$ -closed set in (Z, η , I₃). Since g is $\hat{\delta}$ -irresolute, $g^{-1}(V)$ is $\hat{\delta}$ -closed in (Y, σ , I₂). Also, since f is $\hat{\delta}$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\hat{\delta}$ -closed in (X, τ , I₁). Thus (gof)⁻¹(V) = $f^{-1}(g^{-1}(V))$ is a $\hat{\delta}$ -closed set in (X, τ , I₁) and hence gof is $\hat{\delta}$ -irresolute.

(iii) Let F be a closed set in (Z, η , I₃). Since g is $\hat{\delta}$ -continuous, g⁻¹(F) is $\hat{\delta}$ -closed in (Y, σ , I₂). Since every $\hat{\delta}$ -closed set is g-closed g⁻¹(F) is g-closed in (Y, σ , I₂). Since f is g-irresolute, f⁻¹(g⁻¹(F)) is g-closed in (X, τ , I₁). Thus (gof)⁻¹(F) = f⁻¹(g⁻¹(F)) is g-closed in (X, τ , I₁) and hence gof is g-continuous.

(iv) Let F be a closed set in (Z, η , I₃). Since g is $\hat{\delta}$ -continuous g⁻¹(F) is $\hat{\delta}$ -closed in (Y, σ , I₂). Since every $\hat{\delta}$ -closed set is Ig-closed g⁻¹(F) is Ig-closed in (Y, σ , I₂). Since f is Ig-irresolute, f⁻¹(g⁻¹(F)) is Ig-closed in (X, τ , I₁). Thus (gof)⁻¹(F) = f⁻¹(g⁻¹(F)) is Ig-closed in (X, τ , I₁) and hence gof is Ig-continuous.

Remark 3.24 Composition of two $\hat{\delta}$ -continuous functions need not be $\hat{\delta}$ -continuous as shown in the following Example.

Example 3.25 Let $X = Y = Z = \{a, b, c, d\}$ with topologies $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $\sigma = \{Y, \phi, \{a, b, c\}\}$, $\eta = \{Z, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}$ and ideals $I_1 = \{\phi, \{a\}\}$, $I_2 = \{\phi, \{a\}\}$ and $I_3 = \{\phi, \{d\}\}$. Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ and g: $(Y, \sigma, I_2) \rightarrow (Z, \eta, I_3)$ defined by f(a) = g(a) = d, f(b) = g(b) = b, f(c) = g(c) = c, and f(d) = g(d) = a. Then f and g are $\hat{\delta}$ -continuous but their composition gof: $(X, \tau, I_1) \rightarrow (Z, \eta, I_3)$ is not $\hat{\delta}$ -continuous, because for the closed set $A = \{a, c, d\}$ in (Z, η, I_3) , $(gof)^{-1}(A) = \{a, c, d\}$ is not $\hat{\delta}$ -closed in (X, τ, I_1) .

IV. $\hat{\delta}_{s}$ -Continuous And $\hat{\delta}_{s}$ –Irresolute Maps

Definition 4.1 A function f from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is called $\hat{\delta}_s$ -continuous if $f^1(F)$ is $\hat{\delta}_s$ – closed in (X, τ, I_1) for every closed set F of (Y, σ, I_2) .

Definition 4.2 A function f from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) is called $\hat{\delta}_s$ -irresolute if f⁻¹(F) is $\hat{\delta}_s$ - closed in (X, τ, I_1) for every $\hat{\delta}_s$ -closed set F of (Y, σ, I_2) .

Theorem 4.3 If a map f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ from an ideal space (X,τ, I_1) into an ideal space (Y,σ,I_2) is $\hat{\delta}_s$ – continuous then it is $\hat{\delta}$ –continuous.

Proof : Let f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ be $\hat{\delta}_s$ -continuous and F be any closed set in (Y,σ,I_2) . Then the inverse image f¹(F) is $\hat{\delta}_s$ -closed. Since every $\hat{\delta}_s$ - closed set is $\hat{\delta}$ -closed, f¹(F) is $\hat{\delta}$ -closed in (X,τ, I_1) . Therefore f is $\hat{\delta}$ -continuous.

Remark 4.4 The converse of Theorem 4.3 is not always true as shown in the following Example.

Example 4.5 Let X=Y={a,b,c,d} with topologies τ ={X, ϕ ,{c}, {c,d}, {a,c,d}}, σ ={Y, ϕ , {a}, {c,d}, {a,c,d}, {b,c,d} and ideals I₁={ ϕ ,{b},{d},{b,d}}, I₂={ ϕ ,{a}}. Let f: (X, τ , I₁) \rightarrow (Y, σ ,I₂) be an identity map, then F is $\hat{\delta}$ -continuous but not $\hat{\delta}_{s}$ -continuous since for the closed set F={a,b} in (Y, σ ,I₂), f¹ (F)={a,b} is not $\hat{\delta}$ -closed in (X, τ , I₁).

Theorem 4.6 If a map f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ from an ideal space (X,τ, I_1) into an ideal space (Y,σ,I_2) is $\hat{\delta}_s$ – continuous then it is g-continuous.

Proof : Let f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ be $\hat{\delta}_s$ -continuous and F be any closed set in (Y,σ,I_2) . Then the inverse image $f^1(F)$ is $\hat{\delta}_s$ - closed in (X,τ, I_1) . Since every $\hat{\delta}_s$ - closed set is g-closed, $f^1(F)$ is g-closed in (X,τ, I_1) . Therefore f is g-continuous.

Remark 4.7 The reversible implication of Theorem 4.6 is not true as shown in the following Example.

Example 4.8 Let $X=Y=\{a,b,c,d\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{X, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ and ideals $I_1=\{\phi\{d\}\}, I_2 = \{\phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f: (X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ be an identify map, then f is g- continuous but not $\hat{\delta}_s$ -continuous, since for the closed set $F=\{c\}$ in (Y,σ,I_2) , f^1 $(F)=\{c\}$ is not $\hat{\delta}_s$ -closed in (X,τ, I_1) .

Theorem 4.9 If a map f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ from an ideal space (X,τ, I_1) into an ideal space (Y,σ,I_2) is $\hat{\delta}_s$ – continuous then it is w-continuous.

Proof : Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}_s$ -continuous and F be any closed set in (Y, σ, I_2) . Then the inverse image $f^1(F)$ is $\hat{\delta}_s$ -closed in (X, τ, I_1) . Since every $\hat{\delta}_s$ -closed set is w-closed $f^1(F)$ is w-closed in X. Therefore F is w-continuous.

Remark 4.10 The converse of Theorem 4.9 need not be true as seen in the following Example.

Example 4.11 Let X=Y={a,b,c,d} with topologies τ ={ X, ϕ , {c}, {a,c},{b,c}, {a,b,c},{a,c,d}}, σ = {Y, ϕ , {b}, {b,c}} and ideals I₁={ ϕ , {c}}, I₂={ ϕ }. Let f: (X, τ , I₁) \rightarrow (Y, σ ,I₂) be a map defined by f(a)=c, f(b)=a, f(c)=b and f(d)=d, then f is w-continuous but not $\hat{\delta}_s$ –continuous, because, for the closed set F={a,d} in (Y, σ ,I₂), f¹(F)={b,d} is not $\hat{\delta}_s$ -closed in (X, τ , I₁).

Theorem 4.12 If a map f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ from an ideal space (X,τ, I_1) into an ideal space (Y,σ,I_2) is $\hat{\delta}_s$ – continuous, then it is I_g-continuous.

Proof: Let f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ be $\hat{\delta}_s$ -continuous and F be any closed set in (Y,σ,I_2) . Then the inverse image f¹(F) is $\hat{\delta}_s$ -closed. Since every $\hat{\delta}_s$ -closed set is I_g-closed, f¹(F) is I_g-closed in (X,τ, I_1) . Therefore f is I_g-continuous.

Remark 4.13 The reversible direction of Theorem 4.12 is not always true as shown in the following Example.

Example 4.14 Let X=Y={a,b,c,d} with topologies $\tau = \{X,\phi,\{b\},\{d\},\{b,c,d\}\}, \sigma = \{Y,\phi,\{b\}, \{a,d\}, \{a,b,d\},\{a,c,d\}\}$ and ideals I₁={ ϕ ,{d}}, I₂={ ϕ ,{b}}. Let f:(X, τ , I₁) \rightarrow (Y, σ ,I₂) be a map defined by f(a)=c, f(b)=a, f(c)=d, and f(d)=b, then f is I_g-continuous, but not $\hat{\delta}_s$ –continuous, because for the closed set F={b,c} in (Y, σ ,I₂), f¹(F)={a,d} is not $\hat{\delta}_s$ –closed in (X, τ , I₁)

Theorem 4.15 If f: $(X,\tau, I_1) \rightarrow (Y,\sigma, I_2)$ is supercontinuous then f is $\hat{\delta}_s$ -continuous.

Proof: Let f: $(X,\tau, I_1) \rightarrow (Y,\sigma,I_2)$ is supercontinuous and U be any open set in (Y,σ,I_2) . Then $f^1(U)$ is δ -open in (X,τ, I_1) . Since $f^1(U^c) = [f^1(U)]^c$, $f^1(U^c)$ is δ -closed, in (X,τ, I_1) for every closed Set U^c in (Y,σ,I_2) . Also since every δ -closed set is $\hat{\delta}_s$ –closed $f^1(U^c)$ is $\hat{\delta}_s$ –closed for every closed U^c in (Y,σ,I_2) . Hence, f is $\hat{\delta}_s$ – continuous.

Remark 4.16 The following Example shows that the converse of Theorem 4.15 is not true.

Example 4.17 Let X,Y,Z, σ ,I₁,I₂ and f be as in Example 3.11. Then f is $\hat{\delta}_s$ -continuous but it is not supercontinuous because, for the open set U={a,d} in (Y, σ ,I₂), f¹(U) ={b,d} is not δ -open in (X, τ , I₁).

Theorem 4.18 Let $f:(X,\tau,I_1) \to (Y,\sigma,I_2)$ be a map from an ideal space (X,τ,I_1) into an ideal space (Y,σ,I_2) , then the following are equivalent.

(i) f is $\hat{\delta}_s$ - continuous

(ii) The inverse image of each open set in Y is $\hat{\delta}_s$ open in X.

Proof: (i) \Rightarrow (ii) Assume that $f:(X,\tau,I_1) \rightarrow (Y,\sigma,I_2)$ be a $\hat{\delta}_s$ – continuous. Let U be open in (Y,σ,I_2) . Then U^c is closed in (Y,σ,I_2) . Since f is $\hat{\delta}_s$ – continuous, $f^1(U^c)$ is a $\hat{\delta}_s$ – closed in (X,τ,I_1) But $f^1(U^c) = [f^1(U)]^c$. Thus $[f^1(U)]^c$ is $\hat{\delta}_s$ –closed in (X,τ,I_1) and so $f^1(U)$ is $\hat{\delta}_s$ –open in (X,τ,I_1)

(ii) \Rightarrow (i) Assume that the inverse image of each open set is $\hat{\delta}_s$ – open in (X, τ, I_1) . Let F be any closed set in (Y, σ, I_2) . Then F^c is open in (Y, σ, I_2) . By assumption, $f^1(F^c)$ is $\hat{\delta}_s$ – open in (X, τ, I_1) . But $f^1(F^c) = [f^1(F)]^c$. Thus $[f^1(F)]^c$ is $\hat{\delta}_s$ – open in (X, τ, I_1) and so $f^1(F)$ is $\hat{\delta}_s$ – closed in (X, τ, I_1) . Therefore f is $\hat{\delta}_s$ – continuous.

Theorem 4.19 Let $f:(X,\tau,I_1)\to(Y,\sigma,I_2)$ be a $\hat{\delta}_s$ -continuous function. Then $f(\hat{\delta}_s cl(A)) \subset cl(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq cl(f(A))$, we have $A \subseteq f^{1}(cl(f(A)))$. Also since cl(f(A)) is a closed set in (Y, σ, I_{2}) and hence $f^{1}(cl(f(A)))$ is a $\hat{\delta}_{s}$ -closed set containing A. Consequently $\hat{\delta}_{s}cl(A) \subseteq f^{1}(cl(f(A)))$. Therefore $f(\hat{\delta}_{s}cl(A)) \subseteq f(f^{1}(cl(f(A)))) \subseteq cl(f(A))$.

Remark 4.20 The following Example shows that the converse of Theorem 4.19 is not true.

Example 4.21 Let X,Y, τ , σ ,I₁,I₂ and f be f as Example given in Remark 3.15. Then f($\hat{\delta}_s cl(A)$) $\subset cl(f(A))$ for every subset A of X. But for the closed set A={b}, f¹{A}={b} is not $\hat{\delta}_s$ – closed in X. Hence f is not $\hat{\delta}_s$ – continuous.

Remark 4.22 Let $f:(X,\tau,I_1) \to (Y,\sigma,I_2)$ be a $\hat{\delta}_s$ -continuous function then it is clear that $f(\sigma cl(A)) \subset cl(f(A))$ for every δ -I-closed subset A of X. The following Example shows that the converse is not true. Let X,Y, τ , σ ,I₁,I₂, and f be as Example given in Remark 3.15. Then $f(\sigma cl(A)) \subset cl(f(A))$ for every δ -I-closed subset A of X. But for the closed set B={b}, f⁻¹{B}={b} is not $\hat{\delta}_s$ - closed in X. Therefore f is not $\hat{\delta}_s$ -continuous.

Theorem 4.23 Let $:(X,\tau,I_1) \to (Y,\sigma,I_2)$ and $g: (Y,\sigma,I_2) \to (Z,\eta,I_3)$ be any two functions. Then the following hold.

- (i) gof is $\hat{\delta}_s$ continuous if f is $\hat{\delta}_s$ continuous and g is continuous.
- (ii) gof is g continuous if f is g irresolute and g is $\hat{\delta}_s$ continuous.

(iii) gof is I_g – continuous if f is I_g – irresolute and g is $\hat{\delta}_s$ – continuous.

(iv) gof is w-continuous if f is w-irresolute and g is $\hat{\delta}_s$ -continuous.

- (v) Let (Y,σ,I_2) be $T_{\frac{3}{4}}$ space. Then gof is $\hat{\delta}_s$ continuous if f is $\hat{\delta}_s$ continuous and g is δg continuous.
- (vi) Let every $\hat{\delta}_s$ closed set is δ -I-closed in (Y, σ ,I₂). Then gof is $\hat{\delta}_s$ continuous if both f and g are $\hat{\delta}_s$ continuous.

(vii) Let (Y,σ,I_2) be $T_{\frac{1}{2}}$ – Space. Then gof is $\hat{\delta}_s$ – continuous if f is $\hat{\delta}_s$ – continuous and g is g – continuous

(viii) Let every Ig-closed set is closed in (Y, σ ,I₂). Then gof is $\hat{\delta}_s$ -continuous if f is $\hat{\delta}_s$ – continuous and g is I_g – continuous

(ix) Let (Y, σ, I_2) be $T_{1/2}$ – Space. Then gof is g- irresolute if f is $\hat{\delta}_s$ – continuous and g is g- irresolute

(x) Let every Ig-closed set is closed in (Y,σ,I_2) . Then gof is I_g –irresolute if f is $\hat{\delta}_s$ – continuous and g is I_g – irresolute

Proof: (i) Let F be a closed set in (Z,η,I_3) . Since g is continuous g^{-1} (F) is also closed in (Y, σ, I_2) . Since f is $\hat{\delta}_{s}$ -continuous $f^{-1}(g^{-1}(F))$ is $\hat{\delta}_{s}$ closed in (X,τ,I_1) . Thus $(gof)^{-1} = f^{-1}(g^{-1}(F))$ is $\hat{\delta}_{s}$ closed in (X,τ,I_1) . Therefore gof is $\hat{\delta}_{s}$ -continuous.

(ii) Let F be a closed set in (Z, η, I_3) . Since g is $\hat{\delta}_s$ -continuous, $g^{-1}(F)$ is $\hat{\delta}_s$ closed in (Y, σ, I_2) . Since every $\hat{\delta}_s$ -closed set is g-closed, $g^{-1}(F)$ is g - closed in (Y,σ,I_2) . Also, since f is g-irresolute $f^1(g^{-1}(F))$ is g- closed in (X,τ,I_1) Thus $(gof)^{-1} = f^1(g^{-1}(F))$ is g-closed in (X,τ,I_1) . Therefore gof is g-continuous.

(iii). Since g is $\hat{\delta}_s$ -continuous, for any closed set F in (Z, η ,I₃), g⁻¹(F) is $\hat{\delta}_s$ - closed in (Y, σ , I₂). Since every $\hat{\delta}_s$ - closed set is I_g-closed and f is I_g-irresolute, f¹(g⁻¹(F)) is I_g - closed in (X, τ ,I₁). Hence gof is I_g-continuous.

(iv) Since g is $\hat{\delta}_s$ -continuous for any closed set F in (Z, η , I₃), g⁻¹ (F) is $\hat{\delta}_s$ - closed in (Y, σ , I₂). Since every $\hat{\delta}_s$ - closed set is w-closed and f is w-irresolute , f⁻¹ (g⁻¹ (F)) is w-closed in (X, τ , I₁). Hence gof is w-continuous.

(v) Since g is δg – continuous, for every closed set F in (Z, η , I₃), g⁻¹(F) is δg -closed in (Y, σ ,I₂). Since by hypothesis and f is $\hat{\delta}_s$ -continuous, f⁻¹(g⁻¹(F)) is $\hat{\delta}_s$ -closed in (X, τ , I₁). Hence gof is $\hat{\delta}_s$ -continuous.

(vi) Since g is $\hat{\delta}_s$ -continuous, for every closed set F in (Z, η , I₃), g⁻¹ (F) is $\hat{\delta}_s$ - closed in (Y, σ ,I₂). By hypothesis g⁻¹ (F) is δ -I-closed. Since every δ -I –closed set is closed, g⁻¹ (F) is closed in (Y, σ ,I₂). Also since f is $\hat{\delta}_s$ -continuous f⁻¹ (g⁻¹ (F) is $\hat{\delta}_s$ -closed in (X, τ , I₁). Therefore gof is $\hat{\delta}_s$ -continuous.

(vii) Since g is g-continuous and by the assumption, for every closed set F in (Z, η , I₃), g⁻¹ (F) is closed. Also since f is $\hat{\delta}_s$ -continuous. f⁻¹ (g⁻¹ (F)) is $\hat{\delta}_s$ -closed in (X, τ , I₁). Therefore gof is $\hat{\delta}_s$ -continuous.

(viii) Since g is I_g-continuous and by the assumption, for every closed set F in (Z, η , I₃), g⁻¹ (F) is *-closed in (Y, σ , I₂). Also, since f is $\hat{\delta}_s$ -continuous, f¹(g⁻¹(F)) is $\hat{\delta}_s$ -closed in (X, τ , I₁) and hence gof is $\hat{\delta}_s$ -continuous.

(ix) Since g is g-irresolute and by the assumption, for every g-closed set in (Z, η , I₃), g⁻¹(F) is closed in (Y, σ ,I₂). Also, since f is $\hat{\delta}_s$ -continuous and every $\hat{\delta}_s$ -closed set is g-closed, f⁻¹ (g⁻¹ (F)) is g-closed in (X, τ ,I₁). Therefore gof is g- irresolute. (x) Let F be an I_g-closed set in (Z, η , I₃), Since g is Ig-irresolute and by the assumption, g⁻¹ (F) is closed in (Y, σ , I₂). Again, since f is $\hat{\delta}_s$ –continuous and every $\hat{\delta}_s$ -closed set is I_g-closed, f⁻¹ (g⁻¹ (F)) is I_g-closed in (X, τ ,I₁). Therefore gof is I_g- irresolute.

Remark 4.24 Composition of two $\hat{\delta}_s$ -continuous functions need not be $\hat{\delta}_s$ -continuous as shown in the following Example.

Example 4.25 Let X,Y,Z, τ , σ , η , I₁, I₂, I₃, f, g and A be as in Example 3.25. Then f and g are $\hat{\delta}_s$ -continuous but their composition gof is not $\hat{\delta}_s$ - continuous because, (gof)⁻¹(A) ={a,c,d} is not $\hat{\delta}_s$ - closed in (X, τ , I₁).

Definition 4.26 Let (X, τ, I_1) be an ideal space and $\tau \hat{\delta}_s = \{U \subseteq X : \hat{\delta}_s cl(X-U) = X-U\}, \tau \hat{\delta}_s$ is a topology in (X, τ, I_1) .

Theorem 4.27 Let $f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a function from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) such that $\tau \hat{\delta}_s$ is a topology on (X, τ, I_1) . Then the following are equivalent.

(i) For every subset A of X, $f(\hat{\delta}_s cl(A)) \subseteq cl(f(A))$ holds.

(ii) f: $(X, \tau \hat{\delta}_s) \rightarrow (Y, \sigma)$ is continuous.

Proof: (i) \Rightarrow (ii) Let A be a closed subset in Y. By hypothesis f ($\hat{\delta}_s$ cl (f¹(A))) \subseteq cl (f(f¹(A))) \subseteq cl(A) = A. Therefore $\hat{\delta}_s$ cl (f¹(A)) \subseteq f¹(A). Also f¹(A) \subseteq $\hat{\delta}_s$ cl (f¹(A)). Hence $\hat{\delta}_s$ cl (f¹(A)) = f¹(A). Thus f¹(A) is closed in (X, $\tau\hat{\delta}_s$) and so f is continuous.

(ii) \Rightarrow (i) Let A \subseteq X, then cl(f(A)) is closed in (Y, σ , I₂). Since f: (X, $\tau \hat{\delta}_s$, I₁) \rightarrow (Y, σ , I₂) is continuous, f¹ (cl(f(A))) is closed in (X, $\tau \hat{\delta}_s$, I₁) and hence $\hat{\delta}_s$ cl (f¹ (cl(f(A)))) = f¹ (cl(f(A))). Since A \subseteq f¹(f(A)) \subseteq f¹ (cl(f(A))), $\hat{\delta}_s$ cl(A) $\subseteq \hat{\delta}_s$ cl (f¹ (cl(f(A))) = f¹ (cl(f(A))). Therefore f($\hat{\delta}_s$ cl(A)) \subseteq cl (f(A)).

Theorem 4.28 Let $f : (X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be a function from an ideal space (X, τ, I_1) into an ideal space (Y, σ, I_2) . Then the following are equivalent.

(i) For each point x in X and each open set V in Y with f(x)∈V, there is a δ̂ s-open set U in X such that x∈U and f(U)⊆V.

(ii) For each subset A of X, f ($\hat{\delta}_{s}$ cl (A)) \subseteq cl(f(A))

(iii) For each subset G of Y, $\hat{\delta}_{s}$ cl (f¹(G) \subseteq f¹(cl (G)

(iv) For each subset G of Y, f^1 (int(G) $\subseteq \hat{\delta}_s$ int (f^1 (G))

Proof : (i) \Rightarrow (ii) Let $y \in f(\hat{\delta}_s cl(A))$ and V be any open set of Y containing y. Since $y \in f(\hat{\delta}_s cl(A))$, there exists $x \in \hat{\delta}_s cl(A)$ such that f(x)=y. Since $f(x)\in V$, then by hypothesis there exists a $\hat{\delta}_s$ - open set U in X such that $x \in U$ and $f(U)\subseteq V$. Since $x \in \hat{\delta}_s cl(A)$, then by Theorem 5.7 [8] $U \cap A \neq \phi$. Then $\phi=f(U \cap A)\subseteq f(U) \cap f(A) \subseteq V \cap f(A)$ and hence $V \cap f(A)\neq \phi$. Therefore we have $y=f(x)\in cl(f(A)$.

(ii) \Rightarrow (i) Let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c)$. Then $x \notin A$. Since $f(\hat{\delta}_s cl(A)) \subseteq cl(f(A) \subseteq V^c, \hat{\delta}_s cl(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A, x \notin \hat{\delta}_s cl(A)$. By Theorem 5.7 [8] there exists a $\hat{\delta}_s$ -open set U containing x such that $U \cap A = \phi$, and so $U \subseteq A^c$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

(ii) \Rightarrow (iii) Let G be any subset of Y. Replacing A by $f^{1}(G)$ in (ii), we get $f(\hat{\delta}_{s}cl(f^{1}(G))) \subseteq cl(f(f^{1}(G))) \subseteq cl(G)$.

(iii) \Rightarrow (ii) Put G=f(A) in (iii) we get, $\hat{\delta}_{s}$ cl (f¹(f(A))) \subseteq f¹(cl(f(A))) and hence f($\hat{\delta}_{s}$ cl(A)) \subseteq cl (f(A)).

(iii) \Rightarrow (iv) Let G be any subset in Y. Then Y–G \subseteq Y. By (iii), $\hat{\delta}_{s}$ cl(f¹(Y–G)) \subseteq f¹(cl(Y–G)). Therefore X– $\hat{\delta}_{s}$ int (f¹(G)) \subseteq X – f¹(int (G)) and so f¹(int (G)) $\subseteq \hat{\delta}_{s}$ int (f¹(G).

iv) \Rightarrow (iii) Let G be any subset in Y. Then Y–G \subseteq Y. By (iv), f¹ (int (Y–G)) $\subseteq \hat{\delta}_s$ int(f¹(Y–G)). Therefore X–f¹ (cl(G)) \subseteq X– $\hat{\delta}_s$ cl (f¹(G)) and hence $\hat{\delta}_s$ cl(f¹(G)) \subseteq f¹(cl(G)).

Theorem 4.29 A map f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ is $\hat{\delta}_s$ – irresolute if and only if the inverse image of every $\hat{\delta}_s$ -open set in (Y, σ, I_2) is $\hat{\delta}_s$ –open in (X, τ, I_1) .

Proof : Necessity - Assume that f is $\hat{\delta}_s$ - irresolute. Let U be any $\hat{\delta}_s$ - open set in (Y, σ, I_2) . Then U^c is $\hat{\delta}_s$ - closed in (Y, σ, I_2) . Since f is $\hat{\delta}_s$ - irresolute, f¹(U^c) is $\hat{\delta}_s$ - closed in (X, τ, I_1) . But f¹(U^c)=[f¹(U)]^c and so f¹ (U) is $\hat{\delta}_s$ -open in (X, τ, I_1) . Hence the inverse image of every $\hat{\delta}_s$ -open set in (Y, σ, I_2) is $\hat{\delta}_s$ -open in (X, τ, I_1) .

Sufficiency – Assume that the inverse image of every $\hat{\delta}_s$ - open set in (Y, σ, I_2) is $\hat{\delta}_s$ -open in (X, τ, I_1) . Let V be any $\hat{\delta}_s$ - closed set in (Y, σ, I_2) . Then V^c is $\hat{\delta}_s$ -open in (Y, σ, I_2) . By assumption, $f^1(V^c)$ is $\hat{\delta}_s$ -open in (X, τ, I_1) . But $f^1(V^c)=[f^1(V)]^c$ and so $f^1(V)$ is $\hat{\delta}_s$ -closed in (X, τ, I_1) . Therefore f is $\hat{\delta}_s$ -irresolute.

Theorem 4.30 Let every $\hat{\delta}_s$ - closed set is δ -closed in (X, τ, I_1) . If f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ be $\hat{\delta}_s$ -irresolute. Then f is δ -continuous.

Proof : Let F be a δ -closed subset of (Y, σ , I₂). By Theorem 3.2 [8], F is $\hat{\delta}_s$ -closed. Since f is $\hat{\delta}_s$ -irresolute, f ¹(F) is $\hat{\delta}_s$ -closed in (X, τ , I₁). By hypothesis f¹(F) is δ -closed. Then f is δ -continuous.

Theorem 4.31 Let f: $(X, \tau, I_1) \rightarrow (Y, \sigma, I_2)$ and g: $(Y, \sigma, I_2) \rightarrow (Z, \eta, I_3)$ be any two functions. Then the following hold.

(i) gof is $\hat{\delta}_s$ – continuous if f is $\hat{\delta}_s$ – irresolute and g is $\hat{\delta}_s$ – continuous.

(ii) gof is $\hat{\delta}_s$ – irresolute if f is $\hat{\delta}_s$ – irresolute and g is $\hat{\delta}_s$ – irresolute.

(iii) hof is g- continuous if f is g- irresolute and h is $\hat{\delta}_{s}-$ continuous.

(iv) gof is w – continuous if f is w – irresolute and g is $\hat{\delta}_s$ – continuous.

(v) gof is I_g - continuous if f is I_g – irresolute and g is $\hat{\delta}_s$ – continuous.

(vi) gof is $\hat{\delta}_s$ – continuous if f is $\hat{\delta}_s$ – irresolute and g is $\hat{\delta}_s$ – continuous.

Proof : (i) Since g is $\hat{\delta}_s$ – continuous, for every closed set F in (Z, η , I₃), g⁻¹ (F) is $\hat{\delta}_s$ – closed in (Y, σ , I₂). Since f is $\hat{\delta}_s$ – irresolute, f⁻¹(g⁻¹(F) is $\hat{\delta}_s$ – closed in (X, τ , I₁).

(ii) Since g is $\hat{\delta}_s$ – irresolute, for every $\hat{\delta}_s$ – closed set F in (Z, η , I₃), g⁻¹ (F) is $\hat{\delta}_s$ – closed in (Y, σ , I₂). Since f is $\hat{\delta}_s$ – irresolute, f⁻¹(g⁻¹(F)) is $\hat{\delta}_s$ – closed in (X, τ , I₁).

(iii) Since h is $\hat{\delta}_s$ –continuous, for every closed set F in (Z, η , I₃), h⁻¹(F) is $\hat{\delta}_s$ – closed set in (Y, σ , I₂). Since f is g-irresolute and every $\hat{\delta}_s$ - closed set is g–closed, f⁻¹(h⁻¹(F)) is g – closed in (X, τ , I₁).

(iv) Since g is $\hat{\delta}_s$ – continuous, f is w – irresolute and every $\hat{\delta}_s$ – closed set is w – closed, f⁻¹ (g⁻¹(F)) is w – closed in (X, τ , I₁) for every closed set F in (Z, η ,I₃).

(v) Since g is $\hat{\delta}_s$ – continuous, f is I_g – irresolute and every $\hat{\delta}_s$ – closed set is I_g – closed, f⁻¹ (g⁻¹ (F)) is I_g – closed in (X, τ , I_1) for every closed set F in (Z, η , I_3).

(vi) Since g is $\hat{\delta}_s$ – continuous, f is $\hat{\delta}$ – irresolute and every $\hat{\delta}_s$ – closed set is $\hat{\delta}$ – closed, f¹ (g⁻¹(F)) is $\hat{\delta}$ – closed in (X, τ , I₁) for every closed set F in (Z, η , I₃).

Theorem 4.32 (i) f:(X, τ , I₁) \rightarrow (Y, σ , I₂) is a $\hat{\delta}_s$ – continuous, surjection and X is $\hat{\delta}_s$ – connected then Y is connected.

(ii) If f:(X, τ , I₁) \rightarrow (Y, σ , I₂) is $\hat{\delta}_s$ – irresolute, surjection and X is $\hat{\delta}_s$ – connected then Y is $\hat{\delta}_s$ – connected.

Proof: (i) Suppose Y is not connected. Then $Y = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A, B are open in Y. Since f is $\hat{\delta}_s$ – continuous and onto $X = f^1(A) \cup f^1(B)$ where $f^1(A)$ and $f^1(B)$ are disjoint non-empty $\hat{\delta}_s$ – open sets in X. This contradicts the fact that X is $\hat{\delta}_s$ – connected. Hence Y is connected.

(ii) The proof is similar to the proof of (i).

References

- Balachandran, P.Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem, Fac. Sci. Kochi Univ. ser. A, Math., 12(1991), 5-13.
- [2]. Dotchev J., M.Ganster and T. Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3]. Dotchev, J. and M.Ganster, On δ generalized closed sets and $T_{3/4}$ spaces, Mem. Fac. Sci. Kochi Univ.Ser. A, Math., 17(1996), 15-31.
- [4]. Kuratowski, Topology, Vol.I, Academic Press (New York, 1966).
- [5]. Levine N. Semi- open sets and semi continuity in topological spaces Amer math. Monthly, 70 (1963), 36-41.
- [6]. Levine N. Generalized closed sets in topology. Rend. circ. Mat. Palermo, 19 (1970), 89-96.
- [7]. Munshi. B.M., and D.S. Bassan, Supercontinuous mappings, Indian J.Pure Appl. Math., 13(1982), 229-236.
- [8]. Navaneethakrishnan. M., P. Periyasamy, S. Pious Missier, Between δ -I closed sets and g closed sets.
- [9]. Navaneethakrishnan, M., P.Periyasamy, S.Pious Missier, $\hat{\delta}$ -closed sets in ideal topological spaces.
- [10]. Noiri, T, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161-166.
- [11]. Sundaram P and Sheik John M, On w- closed sets in topology, Acta ciencia Indica, 4 (2000), 389-392.
- [12]. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci., 20(1945), 51-61.
- [13]. Velicko. N.V., H closed topological spaces, Amer. Math. Soc. Trans1., 78(1968), 103-118.