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Abstract: In this paper, we consider the nonlocal Fredholm- Volterra integral equation of the second kind, with
continuous kernels. We consider three different numerical methods,the Trapezoidal rule, Simpson rule and Col-
location method to reduce the nonlocal F-VIE to a nonlocal algebraic system of equations. The algebraic sys-
tem is computed numerically, when the historical memory of the problem (nonlocal function) takes three cases:
when there is no memory, when the memory is linear and when the memory is nonlinear. Moreover, the estimate
error, in each method and each case, is computed. Here, we deduce that, the error in the absence of memory is
larger than in the linear memory. Moreover, the error of the linear memory is larger than the nonlinear memo-
ry.
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I.  Introduction:

Many problems in mathematical physics, contact problems in the theory of elasticity and mixed boun-
dary value problems in mathematical physics are transformed into integral equations of linear and nonlinear
cases. The books edited by Green [1], Hochstadt [2], Kanwal [3] and Schiavone et al.

[4]contained many different methods to solve the linear integral equation analytically. At the same time
the sense of numerical methods takes an important place in solving the linear integral equations. More informa-
tion for the numerical methods can be found in Linz[5], Golberg [6], Delves and Mohamed[7], Atkinson[8].The
F-VIEof the first kind in one, two and three dimensions is considered in [9]. In [10-13] the authors consider
many numerical methods to solve the integral equations. In all previous work, the nonlocal term (historicalme-
mory of the problem) is considered equal zero. Now, and in the following series of work, we will consider the
memory historical term and its effect in computing the error.

Consider, in the spaceC [O,T ], the nonlocal F-VIE of the second:
1 t
up(t)=f (t)-H (t,¢(t))+ﬂjk (t,s)¢(s)ds +ﬂjv (t,s)g(s)ds. (11)
0 0
Where, the free term f (t)and the historical memory of the integral equation H (t,¢(t)) are known functions.

The two functions K (t,s)andv (t,S)are continuous kernels of FI and VI term respectively. While, ¢(t) is
unknown function represents the solution of (1.1). In addition, £ is a constant defined the kind of the integral

equation; while A has a physical meaning.
In order to guarantee the existence of a unique solution of (1.1), we assume the following

(i) For a constant £ >{/,, ¢,}, we have
@M LAO)<L0  ©)H ([LH0)-H (w0 v )
(ii) The continuous kernels k (t ,S)andv (t,S),for allt,s €[0,T | satisfies,

k(t,s) <M, |v(ts)<S, (M ,S areconstants).
(iii) The continuous function f (t)satisfies | f (t )||C org = max|f (t))=F.(F is aconstant).

Theorem 1(without proof): the nonlocal F-VIE (1. 1) has a unique solution in the spaceC [0,T Junder the
condition (£ +|A[M +T |4|S ) <|u|; maxt =T.
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The aim of this paper is using three different numerical methods, the Trapezoidal rule, Simpson rule and Collo-
cation method to reduce the nonlocal F-VIE to a nonlocal algebraic system of equations. Finally, numerical
results are calculated and the error estimate, in each method, is computed.

1. Numerical methods:
In this section, we discuss the solution of the nonlocal F-VIE (1.1) numerically using three different methods
Trapezoidal rule, Simpson rule and Collocation method, and determine the error in each method.

2.1. Trapezoidal rule:
For solving equation (1. 1) numerically, we divide the interval [0,1] into N subintervals with length

h=1/N;N canbe even or odd, wheret =t;,s =t;, 0<i,j<N.
Then the nonlocal F-VIE (1.1) reduce to the following nonlocal AS

N N
ud(t) =t (t)=H (.66 )+ 220k (.8, )8t )+ 22w v (6.t )b(t; )+ Ry - 2.1
j=0 i=0
Where RN is the error of the method and U; \W ; are the weights defined by
- h/2 j=0,i
u ="/ J=0N w =lh  0<j<i (22)
' lh 0<j<N. ! o
0 j>i.

After neglecting the error, and then, using the following notations
g =¢(t), f, =f (t,).H (4)=H(t.4)), ki ; =kt .t;)v;; =v(t,t;); the formula (2.1) can be re-
written in the following form:
N N
ug =t —H (4)+A2uk g +A2wy, 4, 0<i<N. (23)
j=0 j=0

The formula (2.3) represents system of (N +1) equations and (N +1) unknowns coefficients. By solving them,
we can obtain the approximation solution of (1.1).
Definition 1: The estimate local error RN of Trapezoidal rule is determined by

R, = lj[k(t,s)¢(s)ds +/1_t[v (t,s)¢(s)ds—/1iujkivj¢j —ﬂiwjvivjqﬁv , i =012,..N.

(2.4)
A, d?

5" 4z (k (ty . £)#(&))+(v (t £)(2)), <[0]

In order to guarantee the existence of a unique solution of (2.3), we assume the following:

(i ) For a constant /' >{£|1 0}, we have

@) ‘Hi (¢.)§£1‘¢. (0 ‘Hi (¢|)_Hi (‘//i )‘g[zm _‘//i|;
(ii ')supi‘ujki'j <M, sqpi‘wjvm‘sSﬁ (M’,S" are constants).

(iii ) | f ||, =sup|fi|=F",(F" is constant).
” i

Theorem 2(without proof): the nonlocal AS (2.3) has a unique solution in the space £ under the condition
(C+AM +|AS ) <|n]. ®

N N 1 t
If N o0, thengasy k, .4 +i>w J.viyjqﬁj}—>{ﬂbjk (t,s)g(s)ds +Ajv (t,s)g(s)ds}.
j=0 i=0 0 0

Thus, the solution of the nonlocal AS (2.3) becomes the solution of the nonlocal F-VIE (1.1).

Corollary 1: If the condition of theorem 2 is satisfied, then '\llim Ry =0.
—o
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2.2. Simpson rule:
For using Simpson rule to solve the nonlocal F-VIE (1.1) numerically, we divide the interval [0,1] into N sub-

intervals with lengthh =1/N ,N iseven, 0<i, j <N .Then, after approximating the integrals term and neg-

lecting the error RNN , We have

N N
pd =t —H, () + 2D ok, ¢ + 2D 9V, ¢,  0<i<N. (25)
j=0 i=0
Where the weight p; is defined as
(pj =h/3j =0,N);(,oj =4h/3, 0<j <N, jodd) and(pj =2h/3,0<j <N, jeven).WhiIe, the weight

Sj takes two forms depending on the value of i odd or even

1. If i is odd we use Trapezoidal rule and then 4 =y, (cbj =h/2,j :O,i); (cbj =h, 0<j<i) and
(aaj =0,j >i).
2. If i is even we use Simpson rule and then , = ), ( w; =h/3,j =0,i ); (a)j =(4h13),

0<j<i, jodd); (@ =(2n/3),0<j<i, jeven)and (o; =0,j >i).

Definition 2: The estimate local error R;N of Simpson rule is determined by

R, =ijk(t,S)7(5,¢(S))ds+l]v(t,s)g(S,¢( )dS—lep]ku)/J( )- Angug (4,). i =012..N 06
0 2.6
:_1;oh4dd§ (k (t )7 (£.0(8))+(v (tn ) (£,6())), £<[o]

The nonlocal AS has a unique solution, under the conditions (i ") ; (iii ') and replacing (ii ') by the following
condition

N
(i) supY-|oki | <M, supZ‘ v,
o j=0
Theorem 3(without proof): the nonlocal AS (2.5) has a unique solution in the space ¢ under the condition

( ) <lul»

2.3. Collocation method:
We present the collocation method to obtain the numerical solution of (1.1). The solution is based on approx-

, (M *,S " are constants).

imating ¢(t ) inEq. (1.1) by Q,, (t) :icg\vg(t) of (N +1) linearly independent functions

=0
Yo (t ),\yl (t ),...,\VN (t) on the interval [O,l].Using the principal basic of the collocation method, see [7, 8],
we can obtain
ﬂicg\vg(ﬁ)ﬂi - (Zc v (& )]+AZUJ ,JZC;\yg(tj)+Aiwjvi‘jicg\y;(tj), 0<i <N. 2.7)
The formula (2.7) represents system of (N +1) nonlinear equations for (N +1) unknownsC,C,,...,Cy . By
solving them we can obtainC,C,,...,C, and then we get the approximate solutionQ (t )

Definition 3: The estimate error R . of the collocation method is given by

:ijl.k(t,s)¢(s)ds+ij'v(t,s s)ds — iZu]k,Jch\u( )- EZWJV,]ZCN( )-
L2 d? [ (ty . gz%% J+[v(tN,§)ZCg\ug(§)J, £elo,1].

" o

i=0,12,.,N.
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The existence of a unique solution of the nonlocal AS (2.7) in the space ¢ _ can be proved directly after replacing
the condition (i ') in theorem 2 by the following condition
(i*) For the function h; (Q; \ ), we assume

(a)‘Hi (Qi,N )‘ ng,i Qi,N ; (b) ‘Hi (Qi,N )_Hi (Qil,N )‘Sﬁ’;,i Qi,,N _Qi,,N
Theorem 4.(without proof): the nonlocal AS (2.7) has a unique solution in the Banach space £ under the con-
dition (¢; +[A/M "+|4[S" ) < |4, £; = max {¢;;, 05,3 @

’

I11.  Numerical Examples

Consider the nonlocal F-VIE:

pp(t)=f (t)-H (t.4(t ))m]t s2¢(s)ds +z]ts¢(s)ds, (£=0.001, 2=001, 0<t<T <1). (3.1)

We use the Trapezoidal metho(:j, Simpson met(tjmd and collocation method to obtain the numerical solution of
(3.1) for different value of z=0.1,0.5and1 whenH (t,4(t)) =0, and for different value of h =0.25, 0.125
and 0.0625. When H (t,4(t)) takes two values tg(t), and ¢ (t ), where 4 =0.01, (exact solution is

é(t ) =t?) as following:

(1) When there is no memory term (H (t , ¢(t )) =0). Here we solve, numerically (3.1) for different value of
u#=(0.1, 05,1), A=0.01,and h =0.625.

case | (F-VIE) : Trapezoidal method when H (t,¢(t )) =0,4=0.01,h =0.625.
4 #=01h=0.625 N =16 #=0.5h=0.625 N =16 #=1h=0.625 N =16
t
¢Tr ETI’ ¢T|' ETr ¢Tr ETr
0 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.25354E-02 | 3.54000E-05 | 6.25069E-02 | 6.90000E-06 | 6.25034E-02 | 3.40000E-06
0.5 2.50000E-01 | 2.50080E-01 | 8.00000E-05 | 2.50016E-01 | 1.60000E-05 | 2.50008E-01 | 8.00000E-06
0.75 | 5.62500E-01 | 5.62644E-01 | 1.44000E-04 | 5.62528E-01 | 2.80000E-05 | 5.62514E-01 | 1.40000E-05
1 1.00000E+00 | 1.00024E+00 | 2.40000E-04 | 1.00005E+00 | 5.00000E-05 | 1.00002E+00 | 2.00000E-05
Table (1)
10
10
a8
08
a6
06
04
04
02 02
02 04 06 08 10 02 04 06 08 10

Fig. (1-i) 4=0.1h=0.625

Fig. (1-ii) 4=05h=0625
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1.0 -

0.8 -

0.6 -

0.4 -

0.2

S ¢Tr

0.2

I I I
0.4 0.6 0.8 1.0 ¢

Fig.((1-iii) =1 h=0625

(1-1) Figs. (1) describe the relation between the exact solution and numerical solution, when H (t,¢(t )) ==0,

using Trapezoidal method, with (l =0.01, h =0.652, and N :16) at 4£=0.1in Fig. (1.i), £=0.5in Fig

(Lii) and =1 in Fig. (L.ii) .

case | (F-VIE) : Simpson method when H (t,¢(t))=0, 4 =0.01h =0.625.
y u=01h=0625N =16 u=05h=0625N =16 #=1h=0625N =16
t
¢s ES ¢s ES ¢s ES
0 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.25003E-02 | 3.28764E-07 | 6.25000E-02 | 2.09546E-08 | 6.25000E-02 | 7.77174E-09
05 | 250000E-01 | 2.50001E-01 | 6.78743E-07 | 2.50000E-01 | 4.26915E-08 | 2.50000E-01 | 1.57370E-08
0.75 | 5.62500E-01 | 5.62501E-01 | 1.22643E-06 | 5.62500E-01 | 7.20683E-08 | 5.62500E-01 | 2.56043E-08
1 | 1.00000E+00 | 1.00000E+00 | 2.65702E-06 | 1.00000E+00 | 1.35847E-07 | 1.00000E+00 | 4.40445E-08
Table (2)
10 10
08 08
06 06
04 04
02 02
02 04 06 08 10 02 04 06 08 10
Fig. (2-1) 4=01,h=0625 Fig. (2-i1) 4=05h=0.625
1.0 -
0.8 |-
0.6 -
0.4 -
0.2 - S
— ¢
0‘2 O.‘A 0‘6 0‘8 1.‘0 ¢

Fig. (2-ii) =1 h=0625
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(1-2) Figs. (2) describe the relation between the exact solution and numerical solution, when H (t ,¢(t )) ==0,

using Simpson method, With(/’t =0.01, h =0.652, and N :16) at 4£=0.1in Fig. (2.i), £ =0.5in Fig (2.ii)
and x =1 inFig. (2.iii).

case | (F-VIE): collocation method when H (t Bt )) =0,4=0.01,h =0.625.
p #=01h=0.625 N =16 #=0.5h=0.625 N =16 #=1h=0.625 N =16
t
¢Co E Co ¢Co E Co ¢C0 E Co
0 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.25354E-02 | 3.54000E-05 | 6.25069E-02 | 6.90000E-06 | 6.25034E-02 | 3.40000E-06
0.5 2.50000E-01 | 2.50080E-01 | 8.00000E-05 | 2.50016E-01 | 1.60000E-O5 | 2.50008E-01 | 8.00000E-06
0.75 | 5.62500E-01 | 5.62644E-01 | 1.44000E-04 | 5.62528E-01 | 2.80000E-05 | 5.62514E-01 | 1.40000E-05
1 1.00000E+00 | 1.00024E+00 | 2.40000E-04 | 1.00005E+00 | 5.00000E-05 | 1.00002E+00 | 2.00000E-05
Table (3)
10
10
08
08
06
06
04
04
02 02
02 04 06 08 10 02 04 06 08 10

Fig. (3-1) x=01,h=0625

0.6 -

Fig. (3-i1) 4 =05h=0.625

— ¢C0

0.2

I
0.4

0.6

I
0.8

1.0

Fig. (3-iii) =1 h=0625
(1-3) Figs. (3) describe the relation between the exact solution and numerical solution, when H (t,¢(t )) =0,
using Collocation method, with (4 =0.01, h =0.652, and N =16)at x=0.1in Fig. (3.i), 2= 0.5in Fig
(3.ii) and x =1 in Fig. (3.iii).

¢

(11) When the memory in a linear form (H (t B(t )) =tg(t)).Here we solve, numerically (3.1) for different
value of h =(0.25, 0.125, 0.625), 4 =0.01,and x=0.001.

case Il (F-VIE): Trapezoidal method when H (t Bt )) =tg(t),4=0.01 1 =0.001

h=025N =4 h=0.125,N =8 h =0.0625,N =16
t ¢ ¢Tl' ETr ¢Tl’ ETI’ ¢Tr ETr
0 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.27171E-02 | 2.17058E-04 | 6.25545E-02 | 5.44981E-05 | 6.25136E-02 | 1.36391E-05
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0.5 | 2.50000E-01 | 2.50247E-01 | 2.46952E-04 | 2.50062E-01 | 6.19713E-05 | 2.50016E-01 | 1.55074E-05
0.75 | 5.62500E-01 | 5.62796E-01 | 2.96311E-04 | 5.62574E-01 | 7.43101E-05 | 5.62519E-01 | 1.85921E-05
1 1.00000E+00 | 1.00037E+00 | 3.65434E-04 | 1.00009E+00 | 9.15896E-05 | 1.00002E+00 | 2.29118E-05
Table (4)
1o 10
08 08
06 06
04 04
02 02
02 04 06 08 10 02 04 06 08 10

(11-1) Figs. (4) describe the relation between the exact solution and numerical solution, when

Fig. (4-i) h=0.25N =4

1.0

0.8

0.6

0.4

0.2

Fig. (4-ii) h=0.125N =8

0.2

0.4

0.6

0.8

Fig. (4-iii) h =0.0625N =16

1.0

— ¢Tr
¢

H (t.4(t)) ==t4(t), using Trapezoidal method, with 2 =0.01, 12 =0.001 at h =0.25(N =4);
h =0.25(N =8);h =0.625(N =16) in Fig. (4.i), Fig (4.ii) and Fig.(4.iii), respectively.

case Il (F-VIE) : Simpson method when H (t Bt )) =tg(t), 2 =0.001 2 =0.01.

h=025N =4 h=0125N =8 h =0.0625,N =16

t ¢ ¢S E S ¢S E S ¢S E S
0 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.25151E-02 | 1.51032E-05 | 6.25004E-02 | 3.74939E-07 | 6.25000E-02 | 3.32442E-08
0.5 2.50000E-01 | 2.50005E-01 | 5.39734E-06 | 2.50000E-01 | 3.79457E-07 | 2.50000E-01 | 3.42676E-08
0.75 | 5.62500E-01 | 5.62593E-01 | 9.32632E-05 | 5.62500E-01 | 3.96161E-07 | 5.62500E-01 | 3.84272E-08
1 1.00000E+00 | 1.00001E+00 | 5.64260E-06 | 1.00000E+00 | 4.40716E-07 | 1.00000E+00 | 4.95787E-08

Table (5)
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10

08

06

04

02

10

08

06

04

02

(11-2) Figs. (5) describe the relation between the exact solution and numerical solution, when

02

04

06

Fig. (5-i) h=o.25,N =4

08

10

02

04

06

08 10

Fig. (5-ii) h=0.125N =8

_¢5

0.2

0.4

0.6 0.8

1.0

Fig. (5-iii) h =0.0625,N =16

¢

H (t.4(t)) ==t4(t), using Simpson method, with 4 =0.01,2=0.001 at h =0.25(N =4);
h =0.25(N =8);h =0.625(N =16) in Fig. (5.i), Fig (5.ii) and Fig.(5.iii), respectively.

10

08

06

04

02

10

08

06

04

02

case Il (F-VIE) : collocation method when H (t Bt )) =tg(t), n=0.001, 2 =0.01.
h=0.25N =4 h=0.125N =8 h =0.0625,N =16

t ¢ ¢CO g Co ¢C0 g Co ¢CO g Co

0 0.00000E+00 | 1.41790E-30 | 1.41790E-30 | 1.00536E-27 | 1.00536E-27 | 1.24261E-18 | 1.24261E-18
0.25 | 6.25000E-02 | 6.27171E-02 | 2.17100E-04 | 6.25545E-02 | 5.45000E-05 | 6.25136E-02 | 1.36000E-05
0.5 2.50000E-01 | 2.50247E-01 | 2.47000E-04 | 2.50062E-01 | 6.20000E-05 | 2.50016E-01 | 1.60000E-05
0.75 | 5.62500E-01 | 5.62796E-01 | 2.96000E-04 | 5.62574E-01 | 7.40000E-05 | 5.62519E-01 | 1.90000E-05

1 1.00000E+00 | 1.00037E+00 | 3.70000E-04 | 1.00009E+00 | 9.00000E-05 | 1.00002E+00 | 2.00000E-05

Table (6)

02

04

06

Fig. (6-i) h=025N =4

08

10

02

04

06

08 10

Fig. (6-ii) h=0.125N =8
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(111) When the memory in a nonlinear form (H (t,¢(t)) = ¢*(t)).Here we solve, numerically (3.1) for dif-

— ¢CO

0.2

I
0.4

I I I
0.6 0.8 1.0 (p

Fig. (6-iii) h =0.0625,N =16
(11-2) Figs. (6) describe the relation between the exact solution and numerical solution, when
H (t,4(t)) ==t4(t), using Collocation method, with 2 =0.01, 2 =0.001 at h =0.25(N =4);

h =0.25(N =8);h =0.625(N =16) in Fig. (6.i), Fig (6.ii) and Fig.(6.iii), respectively.

ferent value of h =(0.25, 0.125, 0.625), 4 =0.01, and x =0.001

case Ill (F-VIE) : Trapezoidal method when H (t,¢(t )) =¢? (t),#=0.001, 2=0.1
4 h=025N =4 h=0.125N =8 h =0.0625,N =16
t
¢Tr ETI’ ¢T|' ETr ¢Tr ETr
0 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.29304E-02 | 4.30400E-04 | 6.26084E-02 | 1.08400E-04 | 6.25271E-02 | 2.71000E-05
0.5 2.50000E-01 | 2.50247E-01 | 2.47000E-04 | 2.50062E-01 | 6.20000E-05 | 2.50016E-01 | 1.60000E-05
0.75 | 5.62500E-01 | 5.62697E-01 | 1.97000E-04 | 5.62550E-O1 | 5.00000E-05 | 5.62512E-01 | 1.20000E-05
1 1.00000E+00 | 1.00018E+00 | 1.80000E-04 | 1.00005E+00 | 5.00000E-05 | 1.00001E+00 | 1.00000E-05
Table (7)
10
10
08
08
06
06
04 04
02 -
02 04 06 08 10 02 04 06 08 10

Fig. (7-i) h=0.25N =4

1.0

0.8

0.6

0.2 F

Fig. (7-ii) h=0.125,N =8

0.2

0.4

I
0.6 0.8

Fig. (7-iii) h =0.0625,N =16
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(111-1) Figs. (7) describe the relation between the exact solution and numerical solution, when
H (t.4(t))==4*(t), using Trapezoidal method, with 4 =0.01, 2 =0.001 at h =0.25(N =4);

h =0.25(N =8);h =0.625(N =16) in Fig. (7.i), Fig (7.ii) and Fig.(7.iii), respectively.

case Ill (F-VIE) : Simpson method when H (t,¢(t )) =¢*(t),£=0.001, =01
4 h=025N =4 h=0.125N =8 h =0.0625,N =16
t
¢S E S ¢S E S ¢5 E S
0 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
0.25 | 6.25000E-02 | 6.25300E-02 | 2.99743E-05 | 6.25007E-02 | 7.11923E-07 | 6.25001E-02 | 5.69003E-08
0.5 2.50000E-01 | 2.50005E-01 | 5.35208E-06 | 2.50000E-01 | 3.63095E-07 | 2.50000E-01 | 2.98265E-08
0.75 | 5.62500E-01 | 5.62562E-01 | 6.21480E-05 | 5.62500E-01 | 2.51097E-07 | 5.62500E-01 | 2.20679E-08
1 1.00000E+00 | 1.00000E+00 | 2.75999E-06 | 1.00000E+00 | 2.01083E-07 | 1.00000E+00 | 1.97067E-08
Table (8)
10 10
08 08
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02 04 06 08 10 02 04 06 08 10
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Fig. (8-iii) h =0.0625,N =16.
(111-2) Figs. (8) describe the relation between the exact solution and numerical solution, when
H (t.4(t))==¢?(t), using Simpson method, with 2 =0.01, 2 =0.001 at h =0.25(N = 4);

h =0.25(N =8);h =0.625(N =16) in Fig. (8.i), Fig (8.ii) and Fig.(8.iii), respectively.

case |11 (F-VIE) : collocation method when H (t Bt )) =¢° (t),#=0.001, 2=0.1
¢ h=025N =4 h=0.125N =8 h =0.0625,N =16
t
¢C0 E Co ¢CO E Co ¢CO E Co

0 0.00000E+00 | -3.83633E-31 | 3.83633E-31 | 2.17138E-27 | 2.17138E-27 | 4.72070E-17 | 4.72070E-17
0.25 | 6.25000E-02 6.29304E-02 | 4.30392E-04 | 6.26084E-02 | 1.08383E-04 | 6.25271E-02 | 2.71466E-05
0.5 2.50000E-01 2.50247E-01 | 2.46629E-04 | 2.50062E-01 | 6.19371E-05 | 2.50016E-01 | 1.55025E-05
0.75 | 5.62500E-01 5.62697E-01 | 1.97397E-04 | 5.62550E-01 | 4.95274E-05 | 5.62512E-01 | 1.23935E-05

1 1.00000E+00 | 1.00018E+00 | 1.82484E-04 | 1.00005E+00 | 4.57528E-05 | 1.00001E+00 | 1.14468E-05

Table (9)
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Fig. (9-)) h=0.25N =4 Fig. (9-ii) h=0.125N =8
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Fig. (9-iii) h =0.0625,N =16
(111-3) Figs. (9) describe the relation between the exact solution and numerical solution, when
H (t.4(t))==¢°(t), using Collocation method, with 4 =0.01, 2 =0.001 at h =0.25(N =4);

h =0.25(N =8);h =0.625(N =16) in Fig. (9.i), Fig (9.ii) and Fig.(9.iii), respectively.

In all figures the y-axis represents the exact and numerical solution with respect to each method and x-axis
represents the time.

IV.  Conclusions
From the above results and others results we obtained, we can see that the proposed methods are efficient and
accurate, also we notes the following

1- The value of absolute error is decreasing when the value of h decreases in the three methods.
2-The smallest error is obtained, with respect to the three methods, when the nonlocal function in the nonlinear
form when £ <0.001.

3-The error of the Simpson method is smaller than the corresponding error of the other two methods. So, the
Simpson method is the best method in this studied
4-The error of the Trapezoidal method is close of the error of the collocation method.

5-The absolute value of the error when the memory term H (t,gzﬁ(t )) takes a nonlinear form is less than the cor-

responding error of the linear form in the three method.
6- When the memory term H (t B(t )) =0, the absolute value of the error is large when z < 0.001 (2 <<1).

7- The value of absolute error is decreasing when the value of u increases when the memory term
H (t B(t )) =0, in the three methods.

7- In the nonlocal integral equations  is called the phase-lag of the integral equations.
8. The Max. E and Min. E. in all cases in the three methods are given as follow

(). First: when the memory term vanishes
1- For the Trapezoidal method without the non- local term H (x ,t,¢(x ,t))we have Max. E and Min. E. as

follow:
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eln Table (1) when(h = 0.625) , £ =0.1: (at t=1) 2.40000E-0O4and (at t=0) 0.00000E+00, respectively. when
4 =0.5: (at t=1) 5.00000E-05 and (at t=0) 0.00000E+00, respectively. when x =1:(at t=1) 2.00000E-05 and
(at t=0) 0.00000E+00, respectively.

2- For the Simpson method without the non- local term H (x t ,¢(x t )) we have

Max. E and Min. E. as follow:

eln Table (2) when (h :0.625) , #=0.1: (at t=1) 2.65702E-06 and (at t=0) 0.00000E+00, respectively .when
4 =0.5: (at t=1) 1.35847E-07and (at t=0) 0.00000E+00, respectively. when x=1: (at t=1) 4.40445E-08 and
(at t=0) 0.00000E+00, respectively.

3- For the Collocation method without the non- local term H (x ,t,¢(x ,t))we have Max. E_and Min. E. as

follow:

eln Table (3) when (h = 0.625) , #=0.1: (at t=1) 2.40000E-04and (at t=0) 0.00000E+00, respectively .when
4 =0.5: (at t=1) 5.00000E-05 and (at t=0) 0.00000E+00, respectively. when x=1: (at t=1) 2.00000E-05 and
(at t=0) 0.00000E+00, respectively.

(I1).Second: when the memory termis linear

1- For the Trapezoidal method and the linear non- local term H (x ,t,gzﬁ(x ,t))we haveMax. E_and Min.
E. as follow:

eln Table (4) when h =0.25: (at t=1) 3.65434E-04 and (at t=0) 0.00000E+00, respectively. whenh =0.125:
(at t=1) 9.15896E-05 and (at t=0) 0.00000E+00, respectively._ when h =0.625: (at t=1) 2.29118E-05and (at
t=0) 0.00000E+00, respectively.

2- For the Simpson method and the linear non- local term H (x ,t,gﬁ(x t ))we have

Max. E and Min. E. as follow:

eln Table (5) when h =0.25: (at t=0.75) 9.32632E-05 and (at t=0) 0.00000E+00, respectively .whenh =0.125
. (at t=1) 4.40716E-07 and (at t=0) 0.00000E+00, respectively. when h =0.625 : (at t=1) 4.95787E-08 and (at
t=0) 0.00000E+00, respectively.

3- For the Collocation method and the linear non- local term H (x ,t,¢(x ,t))we have Max. E and Min. E. as

follow:

eln Table (6) when h =0.25: (at t=1) 3.70000E-04and (at t=0) 1.41790E-30, respectively.whenh =0.125: (at
t=1) 9.00000E-05and (at t=0) 1.00536E-27, respectively._ when h =0.625: (at t=1) 2.00000E-05and (at t=0)
1.24261E-18, respectively.

(1. Third: when the memory term is nonlinear.

1- For the Trapezoidal method and the nonlinear non- local term H (x tp(xt ))We have Max. E_and Min. E.
as follow:

eln Table (7) when h = 0.25: (at t=0.25) 4.30400E-04and (at t=0) 0.00000E+00, respectively.

when h =0.125: (at t=0.25) 1.08400E-04 and (at t=0) 0.00000E+00, respectively. when h =0.625 : (at t=0.25)
2.71000E-05 and (at t=0) 0.00000E+0Q0, respectively.

2- For the Simpson method and the nonlinear non- local term H (x t ,¢(x t ))We have

Max. E and Min. E. as follow:

eln Table (8) when h=0.25: (at t=0.75) 6.21480E-05 and (at t=0) 0.00000E+00, respectively .when
h=0.125: (at t=0.25) 7.11923E-07 and (at t=0) 0.00000E+00, respectively._ when h =0.625: (at t=0.25)
5.69003E-08 and (at t=0) 0.00000E+00, respectively.

3- For the Collocation method and the nonlinear non- local term H (x L 8(x ,t))we have Max. E and Min. E.

as follow:

eln Table (9) when h=0.25: (at t=0.25) 4.30392E-04 and (at t=0) 3.83633E-31, respectively .when
h =0.125: (at t=0.25) 1.08383E-04and (at t=0) 2.17138E-27, respectively._ whenh =0.625: (at t=0.25)
2.71466E-05 and (at t=0) 4.72070E-17, respectively.

Future work

DOI: 10.9790/5728-11650618 www.iosrjournals.org 17 | Page



Numerical treatments to nonlocal Fredholm —Volterra integral equation with continuous kernel

In the next paper, we consider the integral terms in the nonlinear cases. The historical memory and the nonlinear
integral terms will be considered.
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