On Prime Ideals, Radical of a Ring and M-Systems Prime Ideals and M-Systems

Rehana Parvin ${ }^{\text {' }}$, Rashida Pervin ${ }^{2}$, Momotaz Katun ${ }^{3}$, Satrajit Kumar Saha ${ }^{4}$
${ }^{1}$ (Department of Quantitative Sciences, IUBAT- International University of Business Agriculture and Technology, Bangladesh)
${ }^{2}$ (Department of Quantitative Sciences, IUBAT- International University of Business Agriculture and Technology, Bangladesh)
${ }^{3}$ (Department of Mathematics, Bangladesh University, Bangladesh)
${ }^{4}$ (Department of Mathematics, Jahangirnagar University, Bangladesh)

Abstract

A group is a nonempty set equipped with one binary operation satisfying contain axioms while a ring is an algebraic structure with two binary operations namely addition and multiplication. We have tried to discuss Prime ideals, radical of rings and M-system in this paper.

Keywords: Prime ideals, m-system, Semi-prime ideal, n-system, Prime radical of the ring.

I. Introduction

In this paper, we have tried to discuss about prime ideals, radical of a ring and few properties of msystems. Besides these some theorems and lemma have been raised such as" If $r \in B(A)$, then there exists a positive integer n such that $r^{n} \in A$."
"If A is an ideal in the ring R, then $B(A)$ coincides with the intersection of all the prime ideals which contain A." Besides these a few theorems and lemma have been established here which are related with m -system and n -system."

1.1 Prime Ideal:

An ideal P in a ring R is said to be a prime ideal if and only if it has the following property. If A and B are ideals in R such that $A B \subset P$, then $A \subseteq P$ or $B \subseteq P$.

1.2 m-systems:

A set M of element of a ring R is said to be an m -system if and only if it has the following property: If $a, b \in M$, there exists $x \in R$ such that $a x b \in M$.

Remarks:

(1) If P is an ideal in a ring R. Let us denote by $C(P)$.The complement of P in R, that is $C(P)$ is the set of element of R which are not elements of P.
(2) From the above theorem (i) and (ii) asserts that an ideal P in a ring R is a prime ideal in R if and only if $C(P)$ is an m-system.
(3) If R is itself a prime ideal in R then clearly $C(R)=\phi$.
1.3 Prime Radical $B(A)$:

The prime radical $B(A)$ of the ideal A in a ring R is the set consisting of those elements r of R with the property that every m -system in R which contains r meets A (that is has non empty intersection with A).

Remarks:

(1) Obviously $B(A)$ is an ideal in R. Also $A \subseteq B(A)$, so any prime ideal which contains $B(A)$ necessarily contains A
(2) Let P be a prime ideal in R such that $A \subseteq P$. and $\mu r \in B(A)$ If $r \in P, C(P)$ would be an m-system containing r, and so we have $C(P) \cap A \neq \phi$.However since
$A \subseteq P, c(P) \cap P=\phi$, and this contradiction shows that $r \in P$. Hence $B(A) \subseteq P$.
Note: If $r \in R$, then the set $\left\{r^{i} I i=1,2,3, \ldots \ldots \ldots\right\}$ is a multiplicative system and hence also an m-system.

1.4 Semi-Prime Ideals:

An ideal Q in a ring ${ }^{R}$ is said to be a semi-prime ideal if and only if it has the following property. If ${ }^{A}$ is an ideal in R such that $A^{2} \subseteq Q$, then $A \subseteq Q$.

1.5 N-Systems:

A set N of elements of a ring R is said to be an n -system iff it has the following property:
If $a \in N$, there exists an element $x \in R$ such that $a x a \in N$.
Note: Clearly m-system is also an n-system.

II. The Prime Radical Of A Ring

The prime radical of the ideal in a ring R may be called the prime radical of the ring R.

2.1 Definition:

The radical of a ring R is defined as $B(R)=\{r \mathrm{I} r \in R$, every m -system in R which contains r also contains 0$\}$.

2.2 Prime ring:

A ring R is said to be a prime ring if and only if the zero ideal is a prime ideal in R. That is, a ring R is a prime iff either of the following conditions hold, if A and B are ideals in R such that $A B=(0)$ then $A=(0)$ or $B=(0) . a, b \in R$ such that $a R b=0$, then $a=0$ or $b=0$.
Remark:
If R is a commutative ring, then R is a prime ring iff it has no non zero divisors of zero.

III. Principal Left (Right) Ideal

3.1 If P is an ideal in a ring R all of the following conditions are equivalent:
(i) P is a prime ideal
(ii) If $a, b \in R$ such that $a R b \subseteq P$, then $a \in P$ or $b \in P$.
(iii) If (a) and (b) are principal ideals in R such that $(a)(b) \subseteq P$, Then $a \in P$ or $b \in P$.
(iv) If U and V are right ideals in R such that $U V \subseteq P$, then $U \subseteq P$ or $V \subseteq P$.
(v) If U and V are left ideals in R such that $U V \subseteq P$, then $U \subseteq P$ or $V \subseteq P$.

3.2 Lemma:

If $r \in B(A)$, then there exists a positive integer n such that $r^{n} \in A$.

3.3 Theorem:

If A is an ideal in the ring R, then $B(A)$ coincides with the intersection of all the prime ideals which contain A.

Proof: By our remarks, $B(A)$ is contained in every prime ideal which contains A.If $r \notin B(A)$, then there exists a prime ideal P in R such that $r \notin P$ and $A \subseteq P$. Since $r \notin B(A)$, by definition of $B(A)$, there exists an m-system M in R such that $r \in M$ and $M \cap A=\Phi$. Now consider the set of all ideals K in R such that $A \subseteq K$ and $M \cap K=\Phi$
This set is not empty since ${ }^{A}$ is one such ideal. The existence of a maximal ideal, say ${ }^{P}$, is to be shown.
Clearly, $r \notin P$ since $r \in M$ and $M \cap P=\Phi$. We shall show that P is a prime ideal in R. Suppose that $a \notin P$ and $b \notin P$. The maximal property of P shows that the ideal $P+(a)$ contains an element m_{1} of M and similarly, $P+(b)$ contains an element m_{2} of ${ }^{M}$. Since ${ }^{M}$ is an m-system, there exists an element x of R such that
$m_{1} x m_{2} \in M$. Moreover, $m_{1} x m_{2}$ is an element of the ideal $(P+(a))(P+(b))$.Now, if $(a)(b) \subseteq P_{1}$ we would have $(P+(a))(P+(b)) \subseteq P$ and it would follow that $m_{1} x m_{2} \in P$. But this is impossible since $m_{1} x m_{2} \in M$. and $M n P=\Phi$.Hence $(a)(b) \not \subset P$ and is therefore a prime ideal.

IV. Semi-Primal And Commutative Ideals

If A is an ideal in the commutative ring R, then $B(A)=\left\{r \mathrm{I} r^{n} \in A\right.$ for some positive integers $\left.n\right\}$.

4.1 Theorem:

An ideal Q in a ring ${ }^{R}$ is a semi-prime ideal in R iff the residue class ring R / Q contains no non zero nilpotent ideals.

Proof:

Let θ be the natural homomorphism of R onto R / Q with kernel Q. Suppose that Q is a semi-prime ideal in R and that U is a nilpotent ideal in R / Q, say $U^{n}=(0)$. Then $U^{n} \theta^{-1}=Q$ and this follows that $\left(U Q^{-1}\right)^{n} \subseteq U^{n} \theta^{-1}=Q$. Since, Q is semi-prime ideal. This implies that $U Q^{-1} \subseteq Q$, and hence that $U=(0)$. Conversely, suppose that R / Q contains no non zero nilpotent ideals and that A is an ideal in R such that $A^{2} \subseteq Q \cdot$ Then $(A \theta)^{2}=A^{2} \theta=(0)$ and hence $A \theta=(0)$ and $A \subseteq Q$.

4.2 Theorem:

If Q is an ideal in a ring ${ }^{R}$, then all of the following conditions are equivalent.
(i) Q is a semi prime ideal.
(ii) If $a \in R$ such that $a R a \subseteq Q$, then $a \in Q$.
(iii) If (a) is a principal ideal in R such that $(a)^{2} \subseteq Q$, then $a \in Q$.
(iv) If U is a right ideal in R such that $U^{2} \subseteq Q$ then $U \subseteq Q$.
(v) If U is a left ideal in R such that $U^{2} \subseteq Q$ then $U \subseteq Q$.

4.3 Lemma:

If N is an n -system in the ring R and $a \in N$, then there exists an m-system M in R such that $a \in M$ and $M \subseteq N$.

Proof:

Let $M=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots\right\}$, where the elements of this sequence are defined inductively as follows: First we define $a_{1}=a$. Since now $a_{1} \in N$, then $a_{1} R a_{1} \cap N \neq \phi$, and we choose a_{2} as some element of $a_{1} R a_{1} \cap N$. In general, if a_{i} has been defined with $a_{i} \in N$, we choose a_{i+1} as an element of $a_{i} R a_{i} \cap N$. Thus a set M is defined such that $a \in M$ and $M \leq N$. To complete the proof, we only need to show that M is an m-system. Suppose that $a_{i}, a_{j} \in M$ and, for convenience, let us assume that $i \leq j, a_{j+1} \in a_{j} R a_{j} \subseteq a_{i} R a_{j}$ and $a_{j+1} \in M . A$ similar argument takes care of the case in which $i>j$, so we conclude that M is indeed an m-system and this completes the proof.

V. Semi Prime Ideals

An ideal Q in a ring R is a semi-prime ideal in R iff $B(Q)=Q$.

Proof:

Let Q be a semi - prime ideal in R. Then clearly $Q \leq B(Q)$. So let us assume that $Q \subset B(Q)$ and seck a contradiction. Suppose, $a \in B(Q)$ with $a \notin Q$. Hence, $C(Q)$ is an n- system and $a \in C(Q)$. By the previous lemma, there exists an m-system M such that $a \in M \subseteq C(Q)$.
Now, $a \in B(Q)$ and by definition of $B(Q)$ every m-system which contains a meets Q. But
$Q \cap C(Q)=\phi$, and therefore $M \cap Q=\phi$ which is a contradiction and this contradiction gives the proof of the theorem.

5.1 Corollary:

An ideal Q in a ring R is a semi prime ideal iff Q is an intersection of prime ideals in R.

5.2 Corollary:

If A is an ideal in the ring R, then $B(A)$ is the smallest semi-prime ideal in R which contains A.

5.3. Theorem:

If $B(R)$ is the prime radical of the ring R, then
(i) $\quad B(R)$ Coincides with the intersection of all prime ideals in R.
(ii) $B(R)$ is a semi prime ideal which is contained in every semi prime ideal in R.

5.4. Theorem:

$B(R)$ is a nil ideal which contains every nilpotent right (left) ideal in R.

5.5. Corollary:

If R is a commutative ring. Then $B(R)$ is the ideal consisting of all nilpotent elements of R.

VI. Condition For Prime Radical Of The Ring

6.1 Theorem:

If S is an ideal in the ring R, the prime radical of the ring S is $S \cap B(R)$.

Proof:

Here we consider the radical of S as a ring and not the radical of the ideal of S in R.
Let us denote the radical of the ring S by K, so that K is the intersection of all the prime ideals in S.
However, if P is a prime ideal in R, then $P \cap S$ is a prime ideal in S, and hence $K \subseteq S \cap B(R)$.
Conversely, if $a \in S \cap B(R)$, then every m-system in R which contains a also contains 0 (zero).In particular, every m-system in S which contains a also contains 0 .Hence $a \in K$ and $S \cap B(R) \subseteq K$. We have therefore shown that $k=S \cap B(R)$ and the proof is completed.

6.2 Lemma:

A ring R has zero prime radical if and only if it contains no non-zero nilpotent ideal(right ideal, left ideal).

6.3 Lemma:

If $B(R)$ is the prime radical of the ring R, then $(R / B(R))=(0)$.
Proof:
Let θ be the natural homomorphism of R onto $R / B(R)$, with kernel $B(R)$ and suppose that $a \in R$ such that $a \theta \in(R / B(R))$.Then $a \theta$ is contained in every prime ideal in the ring $R / B(R)$.If P is an arbitrary prime ideal in R, then it contains the kernel of the homomorphism θ and hence, we have $P=(P \theta) \theta^{-1}$. But $P \theta$ is a prime ideal in $R / B(R)$, so $a \theta \in P \theta$ and $a \in(P \theta) \theta^{-1}=P$. This shows that a is contained in every prime ideal in R and hence that $a \in B(R)$. That is, $a \theta$ is the zero of the ring $R / B(R)$. This shows that $B(R / B(R))=(0)$ which completes the proof of the theorem.

VII. Conclusion

After establishing these problems in difficult way 6.1 portrays that If S is an ideal in the ring R, the prime radical of the ring S is $S \cap B(R)$. Lemma 6.2 makes certain that A ring R has zero prime radical if and only if it contains no non-zero nilpotent ideal(right ideal, left ideal).

Lemma 6.3 also makes certain that If $B(R)$ is the prime radical of the ring R, then $(R / B(R))=(0)$.

Hence theorem 6.1 , Lemma 6.2 and 6.3 together with m-system and n-system prove the Radical of a Ring.

References

[1] Howard H.Mitchell,Proof that certain Ideals in a Cyclotomic Realm are Principal Ideals,Transactions of the American Mathematical Society, Vol.19,No. 2 (Apr, 1918) pp:119-126, American Mathematical Society.
[2] R.A. Dean,-Elements of Abstract Algebra, John Wiley and Sons, Inc, Newyork and LONDON.
[3] Neal H. Mccoy ,-The Theory of Rings, The Macmollan Company, Newyork,LONDON.
[4] H.Paley and P.M Weichsel, -A first course in Abstract Algebra, Holt,Rinehart and Winston, Inc.
[5] P.F.Smith, Rings with Every Proper Images a Principal Ideal Rings,Proceedings of the American Mathematical Society, Vol.81, No. 3 (Mar 1981). PP:347-352, American Mathematical Society.

