On Prime Ideals, Radical of a Ring and M-Systems Prime Ideals and M-Systems

Rehana Parvin¹, Rashida Pervin², Momotaz Katun³, Satrajit Kumar Saha⁴

¹ (Department of Quantitative Sciences, IUBAT—International University of Business Agriculture and Technology, Bangladesh)

² (Department of Quantitative Sciences, IUBAT—International University of Business Agriculture and Technology, Bangladesh)

³ (Department of Mathematics, Bangladesh University, Bangladesh)

⁴ (Department of Mathematics, Jahangirnagar University, Bangladesh)

Abstract: A group is a nonempty set equipped with one binary operation satisfying contain axioms while a ring is an algebraic structure with two binary operations namely addition and multiplication. We have tried to discuss Prime ideals, radical of rings and M-system in this paper.

Keywords: Prime ideals, m-system, Semi-prime ideal, n-system, Prime radical of the ring.

I. Introduction

In this paper, we have tried to discuss about prime ideals, radical of a ring and few properties of msystems. Besides these some theorems and lemma have been raised such as" If $r \in B(A)$, then there exists a

positive integer n such that $r^n \in A$."

"If A is an ideal in the ring R, then B(A) coincides with the intersection of all the prime ideals which contain A." Besides these a few theorems and lemma have been established here which are related with m-system and n-system."

1.1 Prime Ideal:

An ideal P in a ring R is said to be a prime ideal if and only if it has the following property. If A and B are ideals in R such that $AB \subset P$, then $A \subseteq P$ or $B \subseteq P$.

1.2 m-systems:

A set M of element of a ring R is said to be an m-system if and only if it has the following property: If $a, b \in M$, there exists $x \in R$ such that $axb \in M$.

Remarks:

- (1) If P is an ideal in a ring R. Let us denote by C(P). The complement of P in R, that is C(P) is the set of element of R which are not elements of P.
- (2) From the above theorem (i) and (ii) asserts that an ideal P in a ring R is a prime ideal in R if and only if C(P) is an m-system.

(3) If *R* is itself a prime ideal in *R* then clearly $C(R) = \phi$.

1.3 Prime Radical B(A):

The prime radical B(A) of the ideal A in a ring R is the set consisting of those elements r of R with the property that every m-system in R which contains r meets A (that is has non empty intersection with A).

Remarks:

(1) Obviously B(A) is an ideal in R. Also $A \subseteq B(A)$, so any prime ideal which contains B(A) necessarily contains A.

(2) Let *P* be a prime ideal in *R* such that $A \subseteq P$. and $\mu r \in B(A)$. If $r \in P$, C(P) would be an m-system containing *r*, and so we have $C(P) \cap A \neq \phi$. However since

 $A \subseteq P$, $c(P) \cap P = \phi$, and this contradiction shows that $r \in P$. Hence $B(A) \subseteq P$.

Note: If $r \in R$, then the set { $r^{i}Ii = 1, 2, 3, \dots$ } is a multiplicative system and hence also an m-system.

1.4 Semi-Prime Ideals:

An ideal Q in a ring R is said to be a semi-prime ideal if and only if it has the following property. If A is an ideal in R such that $A^2 \subseteq Q$, then $A \subseteq Q$.

1.5 N-Systems:

A set N of elements of a ring R is said to be an n-system iff it has the following property:

If $a \in N$, there exists an element $x \in R$ such that $axa \in N$.

Note: Clearly m-system is also an n-system.

II. The Prime Radical Of A Ring

The prime radical of the ideal in a ring R may be called the prime radical of the ring R. 2.1 Definition:

The radical of a ring R is defined as $B(R) = \{ rIr \in R, every \text{ m-system in } R \text{ which contains } r \text{ also contains } 0 \}.$

2.2 Prime ring:

A ring R is said to be a prime ring if and only if the zero ideal is a prime ideal in R. That is, a ring R is a prime iff either of the following conditions hold, if A and B are ideals in R such that AB = (0) then A = (0) or B = (0). $a, b \in R$ such that aRb = 0, then a = 0 or b = 0. Remark:

If R is a commutative ring, then R is a prime ring iff it has no non zero divisors of zero.

III. Principal Left (Right) Ideal

3.1 If *P* is an ideal in a ring *R* all of the following conditions are equivalent:

(i) *P* is a prime ideal

(ii) If $a, b \in R$ such that $aRb \subseteq P$, then $a \in P$ or $b \in P$.

(iii) If (a) and (b) are principal ideals in R such that $(a)(b) \subseteq P$, Then $a \in P$ or $b \in P$.

(iv) If U and V are right ideals in R such that $UV \subset P$, then $U \subset P$ or $V \subset P$.

(v) If U and V are left ideals in R such that $UV \subseteq P$, then $U \subseteq P$ or $V \subseteq P$.

3.2 Lemma:

If $r \in B(A)$, then there exists a positive integer n such that $r^n \in A$.

3.3 Theorem:

If A is an ideal in the ring R, then B(A) coincides with the intersection of all the prime ideals which contain A.

Proof: By our remarks, B(A) is contained in every prime ideal which contains A. If $r \notin B(A)$, then there exists a prime ideal P in R such that $r \notin P$ and $A \subseteq P$. Since $r \notin B(A)$, by definition of B(A), there exists an m-system M in R such that $r \in M$ and $M \cap A = \Phi$. Now consider the set of all ideals K in R such that $A \subseteq K$ and $M \cap K = \Phi$.

This set is not empty since A is one such ideal. The existence of a maximal ideal, say P, is to be shown. Clearly, $r \notin P$ since $r \in M$ and $M \cap P = \Phi$. We shall show that P is a prime ideal in R. Suppose that $a \notin P$ and $b \notin P$. The maximal property of P shows that the ideal P + (a) contains an element m_1 of M and similarly, P + (b) contains an element m_2 of M. Since M is an m-system, there exists an element x of R such that

 $m_1 x m_2 \in M$. Moreover, $m_1 x m_2$ is an element of the ideal (P + (a))(P + (b)).Now, if $(a)(b) \subseteq P_1$ we would have $(P + (a))(P + (b)) \subseteq P$ and it would follow that $m_1 x m_2 \in P$. But this is impossible since $m_1 x m_2 \in M$. and $MnP = \Phi$. Hence $(a)(b) \not\subset P$ and is therefore a prime ideal.

IV. Semi-Primal And Commutative Ideals

If A is an ideal in the commutative ring R, then $B(A) = \{r \mid r^n \in A \text{ for some positive integers } n\}$.

4.1 Theorem:

An ideal Q in a ring R is a semi-prime ideal in R iff the residue class ring $\frac{R}{Q}$ contains no non zero nilpotent ideals.

Proof:

Let θ be the natural homomorphism of R onto $\frac{R}{Q}$ with kernel Q. Suppose that Q is a semi-prime ideal in R and that U is a nilpotent ideal in $\frac{R}{Q}$, say $U^n = (0)$. Then $U^n \theta^{-1} = Q$ and this follows that $(UQ^{-1})^n \subseteq U^n \theta^{-1} = Q$. Since, Q is semi-prime ideal. This implies that $UQ^{-1} \subseteq Q$, and hence that U = (0). Conversely, suppose that $\frac{R}{Q}$ contains no non zero nilpotent ideals and that A is an ideal in R such that $A^2 \subseteq Q$. Then $(A\theta)^2 = A^2\theta = (0)$ and hence $A\theta = (0)$ and $A \subseteq Q$.

4.2 Theorem:

If Q is an ideal in a ring R, then all of the following conditions are equivalent.

(i) Q is a semi prime ideal.

(ii) If $a \in R$ such that $aRa \subseteq Q$, then $a \in Q$.

(iii) If (a) is a principal ideal in R such that $(a)^2 \subseteq Q$, then $a \in Q$.

(iv) If U is a right ideal in R such that $U^2 \subseteq Q$ then $U \subseteq Q$.

(v) If U is a left ideal in R such that $U^2 \subseteq Q$ then $U \subseteq Q$.

4.3 Lemma:

If N is an n-system in the ring R and $a \in N$, then there exists an m-system M in R such that $a \in M$ and $M \subseteq N$.

Proof:

Let $M = \{a_1, a_2, a_3, \dots, \dots\}$, where the elements of this sequence are defined inductively as follows: First we define $a_1 = a$. Since now $a_1 \in N$, then $a_1Ra_1 \cap N \neq \phi$, and we choose a_2 as some element of $a_1Ra_1 \cap N \cdot In$ general, if a_i has been defined with $a_i \in N$, we choose a_{i+1} as an element of $a_iRa_i \cap N$. Thus a set M is defined such that $a \in M$ and $M \leq N$. To complete the proof, we only need to show that M is an m-system. Suppose that $a_i, a_j \in M$ and , for convenience, let us assume that $i \leq j, a_{i+1} \in a_iRa_i \subseteq a_iRa_i$ and $a_{i+1} \in M \cdot A$ similar argument takes care of the case in which i > j, so

 $i \leq j, a_{j+1} \in a_j Ra_j \subseteq a_i Ra_j$ and $a_{j+1} \in M$. A similar argument takes care of the case in which i > j, so we conclude that M is indeed an m-system and this completes the proof.

V. Semi Prime Ideals

An ideal Q in a ring R is a semi-prime ideal in R iff B(Q) = Q.

Proof:

Let Q be a semi – prime ideal in R. Then clearly $Q \leq B(Q)$. So let us assume that $Q \subset B(Q)$ and seck a contradiction. Suppose, $a \in B(Q)$ with $a \notin Q$. Hence, C(Q) is an n-system and $a \in C(Q)$. By the previous lemma, there exists an m-system M such that $a \in M \subseteq C(Q)$.

Now, $a \in B(Q)$ and by definition of B(Q) every m-system which contains a meets Q. But

 $Q \cap C(Q) = \phi$, and therefore $M \cap Q = \phi$ which is a contradiction and this contradiction gives the proof of the theorem.

5.1 Corollary:

An ideal Q in a ring R is a semi prime ideal iff Q is an intersection of prime ideals in R.

5.2 Corollary:

If A is an ideal in the ring R, then B(A) is the smallest semi-prime ideal in R which contains A.

5.3. Theorem:

If B(R) is the prime radical of the ring R, then

(i) B(R) Coincides with the intersection of all prime ideals in R.

(ii) B(R) is a semi prime ideal which is contained in every semi prime ideal in R.

5.4. Theorem:

B(R) is a nil ideal which contains every nilpotent right (left) ideal in R.

5.5. Corollary:

If R is a commutative ring. Then B(R) is the ideal consisting of all nilpotent elements of R.

VI. Condition For Prime Radical Of The Ring

6.1 Theorem:

If S is an ideal in the ring R, the prime radical of the ring S is $S \cap B(R)$.

Proof:

Here we consider the radical of S as a ring and not the radical of the ideal of S in R.

Let us denote the radical of the ring S by K, so that K is the intersection of all the prime ideals in S.

However, if P is a prime ideal in R, then $P \cap S$ is a prime ideal in S, and hence $K \subseteq S \cap B(R)$.

Conversely, if $a \in S \cap B(R)$, then every m-system in R which contains a also contains 0(zero). In particular, every m-system in S which contains a also contains 0. Hence $a \in K$ and $S \cap B(R) \subseteq K$. We have therefore shown that $k = S \cap B(R)$ and the proof is completed.

6.2 Lemma:

A ring R has zero prime radical if and only if it contains no non-zero nilpotent ideal(right ideal, left ideal).

6.3 Lemma:

If B(R) is the prime radical of the ring R, then (R/B(R)) = (0).

Proof:

Let θ be the natural homomorphism of R onto R/B(R), with kernel B(R) and suppose that $a \in R$ such that $a \theta \in (R/B(R))$. Then $a \theta$ is contained in every prime ideal in the ring R/B(R). If P is an arbitrary prime ideal in R, then it contains the kernel of the homomorphism θ and hence, we have $P = (P \theta) \theta^{-1}$. But $P \theta$ is a prime ideal in R/B(R), so $a \theta \in P \theta$ and $a \in (P \theta) \theta^{-1} = P$. This shows that a is contained in every prime ideal in R and hence that $a \in B(R)$. That is, $a \theta$ is the zero of the ring R/B(R). This shows that B(R/B(R)) = (0) which completes the proof of the theorem.

VII. Conclusion

After establishing **these** problems in difficult way 6.1 portrays that If S is an ideal in the ring R, the prime radical of the ring S is $S \cap B(R)$. Lemma 6.2 makes certain that A ring R has zero prime radical if and only if it contains no non-zero nilpotent ideal(right ideal, left ideal).

Lemma 6.3 also makes certain that If B(R) is the prime radical of the ring R, then (R / B(R)) = (0).

Hence theorem 6.1 , Lemma 6.2 and 6.3 together with $\,$ m-system and n-system prove the Radical of a Ring.

References

- Howard H.Mitchell, Proof that certain Ideals in a Cyclotomic Realm are Principal Ideals, Transactions of the American Mathematical [1] Society, Vol.19, No.2 (Apr, 1918) pp:119-126, American Mathematical Society.
- R.A. Dean,-Elements of Abstract Algebra, John Wiley and Sons, Inc , Newyork and LONDON. [2]
- [3]
- [4] [5]
- Neal H. Mccoy, -The Theory of Rings, The Macmollan Company, Newyork, LONDON. H.Paley and P.M Weichsel, -A first course in Abstract Algebra, Holt, Rinehart and Winston, Inc. P.F.Smith, Rings with Every Proper Images a Principal Ideal Rings, Proceedings of the American Mathematical Society, Vol.81, No.3 (Mar 1981). PP:347-352, American Mathematical Society.