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I. Introdution 

Runge–Kutta (RK) pairs are widely used for the numerical solution of ordinary differential equations 

[Lawrence, 1985] 

𝒚′ = 𝒇 𝒙, 𝒚    , 𝜶 ≤ 𝒙 ≤  𝜷 , 𝒚 𝜶 =  𝒚𝟎 

With a given step „h‟ through the interval [α, β] successively producing approximations 𝑦𝑛   , 𝑦𝑛+1. Here deal 

exclusively with the neural networks deviation and the stability analysis of the fourth order Runge-Kutta 

Method through coverage of the derivation and analysis the reader is referred to [1,2,3,4,5]. 

 

II. Mathematical Formulation 
The function is defined as 𝑦𝑛+1 = 𝑦𝑛 + ℎ ∅ ( 𝑥, 𝑦, ℎ) 

Where ∅   𝑥, 𝑦, ℎ =  𝛽𝑖𝐾𝑖
𝑠
𝑖=1  

𝐾1 = 𝑓(𝑥, 𝑦) 

𝐾𝑖 = 𝑓  𝑥 + 𝛾𝑖ℎ , 𝑦𝑛 + ℎ  𝛼𝑖𝑗 𝐾𝑗

𝑖−1

𝑗 =1

 , 𝑖 = 2,3,4, … , 𝑖 − 1. 

𝛾𝑖 =  𝛼𝑖𝑗

𝑖−1

𝑗 =1

, 𝑤ℎ𝑒𝑛 𝑠 = 4 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝛽1𝐾1 + 𝛽2𝐾2 + 𝛽3𝐾3 + 𝛽4𝐾4) 

𝐾1 = 𝑓(𝑥, 𝑦) 

𝐾2 = 𝑓(𝑥 + 𝛾2ℎ, 𝑦𝑛 + ℎ𝛼21𝑘1) 

𝑘3 = 𝑓(𝑥 + 𝛾3ℎ, 𝑦𝑛 + ℎ 𝛼31𝑘1 + 𝛼32𝑘2 ) 

𝑘4 = 𝑓(𝑥 + 𝛾3ℎ, 𝑦𝑛 + ℎ 𝛼41𝑘1 + 𝛼42𝑘2 + 𝛼43𝑘3 ) 

 

Now functions are expanded by using a Taylor series expansion for function of two variables. To get the 

unknowns, we use the fourth order coefficients of order 4. 

𝜏1
(1) =  𝛽𝑖

𝑖

− 1 

𝜏1
(2) =  𝛽𝑖𝛾𝑖

𝑖

−
1

2
 

𝜏1
(3) =

1

2
 𝛽𝑖𝛾

2
𝑖

𝑖

−
1

6
 

𝜏2
(3) =  𝛽𝑖𝛼𝑖𝑗 𝛾𝑗 −

1

6
𝑖𝑗

 

 

𝜏1
(4) =

1

6
 𝛽𝑖𝛾

2
𝑖

𝑖

−
1

24
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𝜏2
(2) =  𝛽𝑖𝛾𝑖𝛼𝑖𝑗 𝛾𝑗

𝑖𝑗

−
1

8
 

𝜏3
(4) =

1

2
 𝛽𝑖𝛼𝑖𝑗 𝛾

2
𝑗

𝑖

−
1

24
 

 

𝜏4
(4) =  𝛽𝑖𝛼𝑖𝑗 𝛼𝑗𝑘 𝛾𝑘

𝑖𝑗

−
1

24
 

Setting the coefficients to zero, we have  

𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = 1 (1) 

 

𝛽2𝛾2 + 𝛽3𝛾3 + 𝛽4𝛾4 =
1

2
  (2) 

𝛽2𝛾
2

2
𝛽3𝛾

2
3

+ 𝛽4𝛾
2

4
=

1

3
 (3) 

𝛽3𝛼32𝛾2 + 𝛽4𝛼42𝛾2 + 𝛽4𝛾4𝛼43𝛾3 =
1

6
                                                      (4) 

𝛽2𝛾
3

2
+ 𝛽3𝛾

3
3

+ 𝛽4𝛾
3

4
=

1

4
                                                                    (5) 

𝛽3𝛾3𝛼32𝛾2 + 𝛽4𝛾4𝛼42𝛾2 + 𝛽4𝛾4𝛼43𝛾3 =
1

8
                                              (6) 

𝛽3𝛼32𝛾2
2

+ 𝛽4𝛼42𝛾2
2

+ 𝛽4𝛼43𝛾
2

3
=

1

12
                                                 (7) 

𝛽4𝛼43𝛼32𝛾2 =
1

24
                                                                                      (8) 

using the simplifying assumptions by Butcher [3]. 

 𝛽𝑖𝛼𝑖𝑗
𝑠
𝑖=1 = 𝛽𝑖 1 − 𝛾𝑗  ,              𝑗 = 2,3,4                                               (9) 

Which affect the expression for𝜏2
(3),𝜏3

(4) 𝑎𝑛𝑑 𝜏4
(4). 

Then 𝜏2
(3) = 𝜏1

(2) − 2𝜏1
(3) 

𝜏3
(4) = 𝜏1

(3) − 3𝜏1
 4  

𝜏4
(4) = 𝜏1

(2) − 2𝜏1
 3 − 𝜏2

(4) 

Now using equation (9) for 𝑗 = 2,3 𝑎𝑛𝑑 4 we have 

𝛽3𝛼32 + 𝛽4𝛼42 = 𝛽2(1 − 𝛾2)   (i) 

𝛽4𝛼43 = 𝛽3(1 − 𝛾2)    (ii) 

0 = 𝛽4 1 − 𝛾4 respectively.                                    (iii) 

Nowwhen𝑗 = 4 in (iii),𝛾4 = 1 𝑎𝑛𝑑 𝛽4 ≠ 0 for a four stage method. 

           By substituting𝛾4 = 1   in equations 2,3 and 5 and solve for 𝛽2, 𝛽3𝑎𝑛𝑑 𝛽4 simultaneously. Therefore 

equations 2,3 and 5 becomes. 

𝛽2𝛾2 + 𝛽3𝛾3 + 𝛽4 =
1

2
 

𝛽2𝛾
2

2
𝛽3𝛾

2
3

+ 𝛽4 =
1

3
 

𝛽2𝛾
3

2
+ 𝛽3𝛾

3
3

+ 𝛽4 =
1

4
 

Using crammer‟s rule , we first find the determinant of the coefficient matrix 

𝐷 =  

𝛾2 𝛾3 1

𝛾2
2

𝛾2
3

1

𝛾3
2

𝛾3
3

1

 = −𝛾2𝛾3(𝛾2 − 1)(𝛾2 − 𝛾3)(𝛾3 − 1) 

To solve for 𝛽2 

𝐷𝛽2
=

 

 

1

2
𝛾3 1

1

3
𝛾2

3
1

1

4
𝛾3

3
1

 

 
=

−𝛾3(𝛾3 − 1)(2𝛾3 − 1)

12
 

𝛽2 =
𝐷𝛽2

𝐷
=

−𝛾3(𝛾3−1)(2𝛾3−1)

12

−𝛾2𝛾3(𝛾2 − 1)(𝛾2 − 𝛾3)(𝛾3 − 1)
=

1 − 2𝛾3

12𝛾2(1 − 𝛾2)(𝛾3 − 𝛾2)
 

To solve for 𝛽3 
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𝐷𝛽3
=

 

 
𝛾2

1

2
1

𝛾2
2

1

3
1

𝛾3
2

1

4
1

 

 
=

𝛾2(𝛾2 − 1)(2𝛾2 − 1)

12
 

𝛽3 =
𝐷𝛽3

𝐷
=

𝛾2(𝛾2−1)(2𝛾2−1)

12

−𝛾2𝛾3(𝛾2 − 1)(𝛾2 − 𝛾3)(𝛾3 − 1)
=

1 − 2𝛾2

12𝛾3(𝛾3 − 𝛾2)(1 − 𝛾3)
 

To solve for 𝛽4 

𝐷𝛽4
=

 

 
𝛾2 𝛾3

1

2

𝛾2
2

𝛾2
3

1

3

𝛾3
2

𝛾3
3

1

4

 

 
=

−𝛾2𝛾3(𝛾2 − 𝛾3)(3 − 4𝛾2 − 4𝛾3 + 6𝛾2𝛾3)

12
 

𝛽4 =
𝐷𝛽4

𝐷
=

−𝛾2𝛾3(𝛾2−𝛾3)(3−4𝛾2−4𝛾3+6𝛾2𝛾3)

12

−𝛾2𝛾3(𝛾2 − 1)(𝛾2 − 𝛾3)(𝛾3 − 1)
=

6𝛾2𝛾3 − 4 𝛾2 + 𝛾3 + 3

12(1 − 𝛾2)(1 − 𝛾3)
 

Now to solve for  𝛼43  , we use equation(ii) when 𝑗 = 3 

Hence , we have   

⇒ 𝛼43 =
𝛽3(1 − 𝛾3)

𝛽4
=

(1 − 𝛾3)(1 − 𝛾3)12(1 − 𝛾2)(1 − 𝛾3)

12𝛾3 𝛾3 − 𝛾2  1 − 𝛾3 6𝛾2𝛾3 − 4 𝛾2 + 𝛾3 + 3
 

𝛼43 =
(1 − 𝛾3)(1 − 𝛾2)(2𝛾2 − 1)

𝛾3 𝛾2 − 𝛾3 (6𝛾2𝛾3 − 4 𝛾3 + 𝛾2 ) + 3
 

To solve for 𝛼32and 𝛼42 , we use equation (i) and (8) when𝑗 = 2 

𝛽3𝛼32 + 𝛽4𝛼42 = 𝛽2(1 − 𝛾2)                 (i) 

𝛽4𝛼43𝛼32𝛾2 =
1

24
                                    (8) 

From equation (8) above, 

𝛼32 =
1

24𝛾2
×

1

𝛽4
×

1

𝛼43
=

1

24𝛾2
×

12(1 − 𝛾2)(1 − 𝛾3)

6𝛾2𝛾3 − 4 𝛾3 + 𝛾2 + 3
×

𝛾3 𝛾2 − 𝛾3 (6𝛾2𝛾3 − 4 𝛾3 + 𝛾2 ) + 3

(1 − 𝛾3)(1 − 𝛾2)(2𝛾2 − 1)
 

𝛼32 =
𝛾3(𝛾2 − 𝛾3)

2𝛾2(2𝛾2 − 1)
 

Substituting this value (i), we have 

𝛼42 =
𝛽2 1 − 𝛾2 − 𝛽3𝛼32

𝛽4
 

𝛼42 =  
1 − 2𝛾3

12𝛾2(1 − 𝛾2)(𝛾3 − 𝛾2)
×  1 − 𝛾2 −

1 − 2𝛾2

12𝛾3(1 − 𝛾3)(𝛾3 − 𝛾2)
×

𝛾3(𝛾2 − 𝛾3)

2𝛾2(2𝛾2 − 1)
 

×
12(1 − 𝛾2)(1 − 𝛾3)

6𝛾2𝛾3 − 4 𝛾2 + 𝛾3 + 3
 

𝛼42 =
 1 − 𝛾2  2 1 − 𝛾3  1 − 2𝛾3 − (𝛾2 − 𝛾3) 

2𝛾2(𝛾2 − 𝛾3) 6𝛾2𝛾3 − 4 𝛾2 + 𝛾3 + 3 
 

Let 𝛾2 ≠ 0,1    ,   𝛾3 ≠ 0,1  𝛾2 ≠ 𝛾3 , 𝛾2 ≠
1

2
 

By choosing  two free parameters,𝛾2 =
1

3
  𝑎𝑛𝑑 𝛾3 =

2

3
 

Substituting these values into 𝛽4 , 𝛽3𝑎𝑛𝑑 𝛽2we have:𝛽4 =
6 

1

3
  

2

3
 −4 

2

3
+

1

3
 +3

12 1−
1

3
  1−

2

3
 

=
4

3
−1

8

3

=
1

8
 

𝛽3 =
1 − 2  

1

3
 + 3

12  
2

3
  1 −

2

3
  

2

3
−

1

3
 

=

1

3
8

9

=
3

8
 

𝛽2 =
1 − 2  

2

3
 

12  
1

3
  1 −

1

3
  

1

3
−

2

3
 

=
−

1

3

−
8

9

=
3

8
 

Using equation (1) we get  

𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = 1 

⇒𝛽1 = 1 − 𝛽2 − 𝛽3 − 𝛽4 =
1

8
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Also 𝛾2 = 𝛼21 =
1

3
 

Using equation (ii) when  𝑗 = 3, 

𝛽4𝛼43 = 𝛽3(1 − 𝛾3) 

𝛼43 =
𝛽3(1 − 𝛾3)

𝛽4
=

3

8
×  1 −

2

3
 ×

8

1
= 1 

Also 

𝛼42 =
 1 − 𝛾2  2 1 − 𝛾3  1 − 2𝛾3 − (𝛾2 − 𝛾3) 

2𝛾2(𝛾2 − 𝛾3) 6𝛾2𝛾3 − 4 𝛾2 + 𝛾3 + 3 
= −1 

Using equation (2) we can obtain 𝛾4 as  

𝛽4𝛾4 =
1

2
− 𝛽2𝛾2 − 𝛽3𝛾3 

⇒𝛾4 =
1

2
−𝛽2𝛾2−𝛽3𝛾3

1

8

= 1 

Hence 𝛾4 = 𝛼41 + 𝛼42 + 𝛼43  

⇒𝛼41 = 𝛾4 − 𝛼42 − 𝛼43 = 1 
also 

𝛼42 =
𝛾3(𝛾2 − 𝛾3)

2𝛾2(2𝛾2 − 1)
= 1 

From 𝛾3 = 𝛼31 + 𝛼32  

⇒𝛼31 = 𝛾3 − 𝛼32 = −
1

3
 

Finally , we know that 𝛾1 = 𝛼11 = 0 

Therefore, we have determined all the unknowns in the method and can be written in Butcher‟s Tableu  as 

 

 

0 0 0 0 0 

 
1

3
 

 

1

3
 

0 0 0 

2

3
 

−1

3
 

1 0 0 

 1

8
 

3

8
 

3

8
 

1

8
 

Which has the form 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

8
 𝑘1 + 3𝑘2 + 3𝑘3 + 𝑘4  

Where  

𝑘4 = 𝑓 𝑥𝑛 + 𝛾4ℎ, 𝑦𝑛 + ℎ(𝛼41𝑘1 + 𝛼42𝑘2 + 𝛼43𝑘3 = 𝑓 𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ(𝑘1 − 𝑘2 + 𝑘3)  
 

Rk Neural Network 

The literature combining numerical analysis of fourth order Runge-KuttaMethod and NNs is limited. 

Lagaris et al. [11] presented a Neural-Network approach of solving fourth order Runge-Kutta Method, but they 

do not give comparisons with the traditional multistep or RK methods. Multistep methods depending directly 

and linearly on a set of points give extremely accurate results. In [11] ten points are used and it seems 

theoretically difficult to compete multistep methods with minimizations requiring repeated calls of and 

evaluations or even inversions of Jacobians. Recent literature has answered for the most of the claimed there 

drawbacks of discrete methods. For example RK can be combined with continuous [13] or highly differentiable 

solution [12]. Perhaps their technique is promising in parallel computers or stiff systems where an ordinary 

differential equation has to be solved anyway. RecentlyWang and Lin [14] proposed the so called RK NNs. 

Their approach is from system identification point of view and they are interested in estimating the function by 

an NN. They used a classical RK method [10] of fourth order with constant step size because it is easier to prove 

some theoretical results. From practical consideration we might observe better results when using newer higher 

order methods with variable step size implementation. Perhaps some modification is needed for the learning 

𝑘1 = 𝑓 𝑥𝑛 , 𝑦𝑛   

𝑘2 = 𝑓 𝑥𝑛 + 𝛾2ℎ, 𝑦𝑛 + ℎ𝛼21𝑘1 = 𝑓  𝑥𝑛 +
ℎ

3
, 𝑦𝑛 +

ℎ𝑘1

3
  

𝑘3 = 𝑓 𝑥𝑛 + 𝛾3ℎ, 𝑦𝑛 + ℎ(𝛼31𝑘1 + 𝛼32𝑘2) = 𝑓  𝑥𝑛 +
2ℎ

3
, 𝑦𝑛 + ℎ(−

𝑘1

3
+ 𝑘2)  
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algorithms reported there, since the simplification of dealing with scalar problems does not work for RK of 

ordersexceeding 3 [14, p. 173]. 

In this paper, we neither indent to solve fourth order Runge-KuttaMethod nor to verify the function. I am 

interested in deriving better RK pairs of a prescribed order using stages. Thus I introduce a feed forward NN 

consisted from hidden layers and each one contains neurons. 

 

Analysis Of The Method 

The stability polynomial is given by 𝑅 ℎ = 1 + ℎ  𝛽𝑇 𝐼 − ℎ 𝐴 
−1

𝑒 and it is required that 𝑅(ℎ) < 1 for absolute 

stability. Now for the Runge kutta fourth order method,  

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

8
 𝑘1 + 3𝑘2 + 3𝑘3 + 𝑘4  

The Butcher‟s tableu is 

 

               0                 0               0                0                0 

 
1

3
 

 

1

3
 

              0                0                0 

2

3
 

−1

3
 

               1                0                0 

 1

8
 

3

8
 

3

8
 

1

8
 

 

𝐴 =

 
 
 
 
 

0 0 0 0
1

3
0 0 0

−
1

3
1 0 0

1 −1 1 0 
 
 
 
 

,        𝐼 − ℎ 𝐴 =

 
 
 
 
 

1 0 0 0

−
ℎ 

3
1 0 0

ℎ 

3
−ℎ 1 0

ℎ ℎ −ℎ 1 
 
 
 
 

 

ℎ 𝛽𝑇 = ℎ  
1

8

3

8

3

8

1

8
 =  

ℎ 

8

3ℎ 

8

3ℎ 

8

ℎ 

8
  

𝑅 ℎ  = 1 + ℎ 𝛽𝑇 𝐼 − ℎ 𝐴 
−1

𝑒 = 1 +  
ℎ 

8

3ℎ 

8

3ℎ 

8

ℎ 

8
 

 
 
 
 
 
 

1 0 0 0

−
ℎ 

3
1 0 0

ℎ 

3
−ℎ 1 0

ℎ ℎ −ℎ 1 
 
 
 
 
 
−1

 

1
1
1
1

  

= 1 +  
ℎ 

8

3ℎ 

8

3ℎ 

8

ℎ 

8
 

 
 
 
 
 
 
 
 

1 0 0 0
ℎ 

3
1 0 0

−
ℎ 

3
+

ℎ 2

3
ℎ 1 0

ℎ −
2ℎ    2

3
−

ℎ 3

3
ℎ + ℎ 2 ℎ 1 

 
 
 
 
 
 
 

 

1
1
1
1

  

= 1 +

 
 
 
 
 
 
 
 
 
ℎ 

8
+

ℎ 2

8
+

3ℎ    

8
 −

ℎ 

3
+

ℎ 2

3
 +

ℎ 

8
 ℎ −

2ℎ    2

3
+

ℎ 3

3
 

3ℎ    

8
+

3ℎ    2

8
+

ℎ 

8
 −ℎ + ℎ 2 

3ℎ    

8
+

ℎ 2

8
ℎ 

8  
 
 
 
 
 
 
 
 

 

1
1
1
1
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= 1 +

 
 
 
 
 
 
 
 
 
ℎ 

8
+

ℎ 2

8
−

3ℎ 2

24
+

3ℎ 3

24
+

ℎ 2

8
−

2ℎ    3

24
+

ℎ 4

24
3ℎ    

8
+

3ℎ    2

8
−

ℎ 2

8
+

ℎ 3

8
3ℎ    

8
+

ℎ 2

8
ℎ 

8  
 
 
 
 
 
 
 
 

 

1
1
1
1

 = 1 +

 
 
 
 
 
 
 
 
 
ℎ 

8
+

ℎ 2

8
+

ℎ 3

24
+

ℎ 4

24
3ℎ    

8
+

ℎ 2

4
+

ℎ 3

8
3ℎ    

8
+

ℎ 2

8
ℎ 

8  
 
 
 
 
 
 
 
 

 

1
1
1
1

  

= 1 +
ℎ 

8
+

ℎ 2

8
+

ℎ 3

24
+

ℎ 4

24
+

3ℎ    

8
+

ℎ 2

4
+

ℎ 3

8
+

3ℎ    

8
+

ℎ 2

8
+

ℎ 

8
= 1 + ℎ +

ℎ 2

2
+

ℎ 3

6
+

ℎ 4

24
 

For absolute stability −1 <  1 + ℎ +
ℎ 2

2
+

ℎ 3

6
+

ℎ 4

24
 < 1 

Taking the R.H.S 

 1 + ℎ +
ℎ 2

2
+

ℎ 3

6
+

ℎ 4

24
 < 1 

 

ℎ +
ℎ 2

2
+

ℎ 3

6
+

ℎ 4

24
< 0 

 Consider 3 cases as in [1] 

Case 1: 

When ⋋ is real and ⋋< 0, 
The roots are -2.785 and 0 

Hence the stability internal is ℎ ∈  −2.7,0 . 

Case 2: 

When ⋋h is pure and imaginary, 

We set ⋋= 𝑖𝑦 in the stability polynomial to get  

 1 + 𝑖 𝑦ℎ −
 𝑦ℎ 2

2
− 𝑖

 𝑦ℎ 3

6
+

 𝑦ℎ 4

24
 < 1 

⇒ 

 1 + 𝑖 𝑦ℎ −
 𝑦ℎ 2

2
− 𝑖

 𝑦ℎ 3

6
+

 𝑦ℎ 4

24
 < 1 

Let 𝑡 = 𝑦ℎ and take magnitude  

⇒ 1 −
𝑡2

2
+

𝑡4

24
 

2

+  𝑡 −
𝑡3

6
 < 1 

 1 −
𝑡2

2
+

𝑡4

24
−

𝑡2

2
+

𝑡4

4
−

𝑡6

48
+

𝑡4

24
−

𝑡6

48
+

𝑡8

578
 +  𝑡2 −

𝑡4

6
−

𝑡4

6
+

𝑡6

36
 < 1 

Simplifying, we get  

1 −
𝑡6

72
+

𝑡8

576
< 1 ⇒

𝑡6

72
+

𝑡8

576
< 0 

The equation is satisfied for  𝑡 < 2.8 

i.e. 𝑡 < 2 2 

Hence the stability interval is 0 < ℎ < 2 2 i.e.ℎ ∈  0,2 2  

Case 3: 

when⋋ is complex with Re ⋋ > 0, we let 𝑥 + 𝑖𝑦 in  

 1 +  ⋋ ℎ +
 ⋋ ℎ 2

2
+

 ⋋ ℎ 3

6
+

 ⋋ ℎ 4

24
 < 1 

and plot the boundary of the region by plotting the real and imaginary parts. 

Figure 
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III. Conclusion 

In this paper,the use of fourth order Runge-Kutta Method in NeuralNetworks for ordinary differential 

equation to exist the value. We are interested in deriving better RK pairs of a prescribed order using cases. Thus 

we introduce a feedforward NN consisted from hidden layers and each one contains neurons. By simplifying 

ordinary differential equationin NeuralNetworks for the derivation and analysis of the fourth order Runge-Kutta 

method. It exists in the above furnishedModel Plot under its stability region. We also reduce the complexity of 

the method by proposing a step deviation approach for easy reference to students. 
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