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Abstract: In this research, an attempt is made to derive a self starting block procedure for some K-step linear 

multi-step methods (for K=1, 2 and 3), using Chebyshev polynomial as the basis function. The continuous 

interpolant were derived and collocated at grid and off-grid points to give the discrete methods used in block 

and applied simultaneously for the solution of non stiff initial value problem.The regions of absolute stability of 

the methods are plotted and are shown to be A (α) stable. The methods for K=2 and K=3 were experimented on 

initial value problems and the results reveal that the newly constructed block methods have good error stability 

and are efficient.  
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I. Introduction 
We consider the general first order initial value problem 
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We then seek discrete methods to solve (1.1) at a sequence of nodal points 

0nx x nh           (1.2) 

where h>0 is the step-length or grid-size defined by 

1n nh x x          (1.3) 

and y(x) denotes the true solution to (1.1) while the approximate solution is denoted by 

 1( ) , ,....,n n Nx y y yy


         (1.4) 

 

1.1 Important Definitions 

1.11 Linear Multi Step Methods  

Consider the initial value problem for a single first order ordinary differential equation; 

);,(1 yxfy    ay  (1.5)
 

We seek for solution in the range bxa  , where a and b are finite, and we assume that f satisfies a theorem 

which guarantees that the problem has unique continuously differentiable solution, which is indicated as y(x). 

Consider the sequence of points  nx  defined by ,0 nhxxn  ,...2,1n . The parameter h, which will 

always be recognized as constant, is called the step length. An essential property of the majority of 

computational methods for the solution of (5) is that of discretization; that is we seek for an approximate 

solution, not on the continuous interval bxa  , but on the discrete point set   habnxn /,.....;1,0/  . 

Let ny  be an approximation to the theoretical solution at nx , that is )( nxy , and let  nn yxff , . If a 

computational method for determining the sequence  ny  takes the form of a linear relationship between 

,,......,1,0,, kjfy jnjn  we call it a linear k-step. The general linear multi-step method may thus be written 

as 
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Where j  and j  are constants; we assume that  0k  and that both 0  and 0  are zero. Since (6) can be 

multiplied on both sides by the same constant without altering the relationship, the coefficients j  and j  are 

arbitrary to the extent of a constant multiplier. We remove this arbitrariness by assuming throughout that

1k ,Williams (1972). 

 

1.12. Order And Error Constants  

Given a general linear multi-step methods  
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The order of (7) defined as p can be determined if and only if.   
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For 2q  . It follows that 1 0pC    is the error constant.  

 

1.13. Theorem (Due Dahlquist) 

 The necessary and sufficient conditions for a linear multistep method to be convergent are that it be 

consistent and zero stable, Dahlquist, G and A. B Jorch,(1974).  Consistency controls the magnitude of the local 

truncation error committed at each stage of the calculation whole zero stability controls the manner in which this 

error is propagated.  

 

1.14. Region Of Absolute Stability  

The stability polynomial of the methods is defined by  

    hhrhrphr  );(,   (1.9) 

To obtain the boundary focus curve of these methods, we get  
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Lambert J.D (1973). 

 

1.15 Hybrid Schemes 

Linear multi-step methods though generally effective for a given function evaluations per steps have 

poor stability property as the step number increases. The desire to increase the order without increasing the step 

number of the linear multistep methods and thus without reducing the stability interval led to hybrid schemes 

because they posses some properties of linear multi-step methods and Runge-Kutta methods. Jain (1979). 

 

1.16 Block Schemes 

To ease computational efforts and to avoid the use of starting values while solving initial value 

problems, a set of discrete methods are used simultaneously on problems which gives solutions of more than 

one step per computation. These set of discrete schemes are known as block schemes or methods. 
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II. The Derivation Of The New Methods 
In this research work, an attempt is made based on a perturbed collocation method. The power series 

method is used as the basis for collocation approximation with the Chebyshev polynomials as the perturbation 

term. 

Consider the problem 
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             (2.1)

 

The exact solution of the perturbed form of (2.1) is given by 
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Is the power series  

From (2.1) and (2.2) 
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where  xTk  is the Chebyshev polynomial of degree k, valid in knn xxx   and τ is a parameter Fox and 

Parker(1972). 

In particular, we shall be dealing with cases k=1, 2, 3 and 4 in (2.1) and (2.2). 

 

2.1 The Chebyshev Polynomial And Transformation 

The Chebyshev polynomials denoted by  kT x obtained by the recurrence relation 

     1 12k k kT x xT x T x  
         (2.4) 

are obtained as follows: 
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While the transformation is given as 

 2
; 1,2,3,4.
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2.2 Case K=1 

Taking the polynomial  kT x x  

We use (2.6) in   xxT 1
 and collocating at nx  and 1nx , we have 
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From equation 2.2b 
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Putting equation (2.7) into (2.3), we obtain 

   1 1,a f x y T x 
         (2.8)

 

Now collocating (2.8) at xn+j, j=0, 1 and interpolate (2.2) at x=xn, we get a system of three equations with aj (j=0, 

1) and parameter τ 
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Which gives the matrix 
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Solving the matrix above gives the value 
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From (2.2), we have 

  0 1y x a a x 
         (2.9)

 

Collocating (2.9) at x=xn+1 gives 

 1 1
2

n n n n

h
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        (2.10)

 

This is the well known trapezoidal rule. 

 

2.3 Case K=2 

Following the same procedure as in case k=1, we collocate the continuous scheme 

  2

0 1 2y x a a x a x  
         (2.11)

 

at grid and off grid points 1
2

,n n
x x x x


   and 2nx x  and this gives the block scheme below; 
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 2.4 Case K=3 

For case k=3, we collocate the continuous scheme 

  2 3

0 1 2 3y x a a x a x a x   
        (2.13)
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at 1 1
2

, ,n nn
x x x x x x 
    and 3nx x   yields 
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Mathematical Analysis Of The Block Schemes 
The order, error constant, convergence and Region of Absolute Stability analysis of the new block 

schemes where examined and the summary of the results is given in the table 1.1 below. 

 

Table 1.1: Summary of Mathematical Analysis 
STEP METHOD ORDER ERRORCONSTANT CONVERGENCE  RAS 
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Fig 1, Fig 2 and Fig 3 below shows the plotted regions of the three new block schemes of Case K=1, Case K=2 

and Case K=3 respectively, plotted with the aid of Maple and Mathlabsoftwares. 

 

Fig 1: Region of Absolute Stability for Block-Scheme K=1 
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Fig 2: Region of Absolute Stability for Block-Scheme K=2

 
  

Fig 3: Region of Absolute Stabilty for Block-Scheme K=3 

 
The block schemes k=2 and k=3 are seen to be A-Stable.  

 

III. Numerical Experiment 
The newly derived methods K=2 and K=3 are applied to two first order initial value problems 

1. 0, 0.1, 1y y h y     with the theoretical solution   xy x e , see table 1  and table 2 for absolute 

errors. (Non-Stiff Problem) 

2.    1000 sin ; 0 0; 0.1y x y y h     with the exact solution 

   10001
sin 0.001cos

1.001

xy x x x e    see table 3 and table 4 for absolute errors (Non-Stiff 

Problem). 
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Table 1: Errors Of Example 1 Using The Method K=2 
X Y(x) Block LMM K=2 Exact Solution Absolute Error 

0.0 Y0 1.00000000000 1.000000000 0.000000000 

0.1 Y1 0.90583599177 0.904837418 9.521759*10-4 

0.2 Y2 0.8195658302 0.8187307531 8.350771*10-4 

0.3 Y3 0.7423921660 0.7408182207 1.5739453*10-3 

0.4 Y4 0.6716881501 0.670320046 1.3681041*10-3 

0.5 Y5 0.6084392519 0.6065306597 1.908592*10-3 

0.6 Y6 0.5504926565 0.5488116361 1.6810204*10-3 

0.7 Y7 0.4986560206 0.4965853038 2.0707168*10-3 

0.8 Y8 0.4511649711 0.4493289641 1.836007*10-3 

0.9 Y9 0.4086814356 0.4065696597 2.1117759*10-3 

1.0 Y10 0.3697593941 0.3678794412 1.8799529*10-3 

1.1 Y11 0.3349413401 0.3328710837 2.0702564*10-3 

1.2 Y12 0.3030421648 0.3011942119 1.8479529*10-3 

1.3 Y13 0.2745064775 0.272531793 1.974684*10-3 

1.4 Y14 0.2483630034 0.2465969639 1.7660395*10-3 

1.5 Y15 0.2249761291 0.2231301601 1.845969*10-3 

1.6 Y16 0.2035498311 0.201896518 1.6533131*10-3 

1.7 Y17 0.1843827481 0.1826835241 1.699224*10-3 

1.8 Y18 0.1668224863 0.1652988882 1.5235981*10-3 

1.9 Y19 0.1511138000 0.1495686192 1.5451808*10-3 

2.0 Y20 0.1367220095 0.1353352832 1.3867263*10-3 

 

Table 2: Errors Of Example 1 Using The Method K=3 
X Y(x) Block LMM K=3 Exact Solution Absolute Error 

0.0 Y0 1.00000000000 1.000000000 0.000000000 

0.1 Y1 0.9040064249 0.904837418 8.309931*10-4 

0.2 Y2 0.8179589124 0.8187307531 7.718407*10-4 

0.3 Y3 0.7341463701 0.7408182207 6.6718506*10-3 

0.4 Y4 0.6636730354 0.670320046 0.6470106*10-3 

0.5 Y5 0.6005015664 0.6065306597 6.0290933*10-3 

0.6 Y6 0.5389708928 0.5488116361 9.8407433*10-3 

0.7 Y7 0.4872331499 0.4965853038 9.3521539*10-3 

0.8 Y8 0.4408560452 0.4493289641 8.7429189*10-3 

0.9 Y9 0.3956835245 0.4065696597 1.08861352*10-2 

1.0 Y10 0.3577004484 0.3678794412 1.01789928*10-2 

1.1 Y11 0.3236528654 0.3328710837 9.2182183*10-3 

1.2 Y12 0.2904896233 0.3011942119 1.07045886*10-3 

1.3 Y13 0.2626044858 0.272531793 9.9273072*10-3 

1.4 Y14 0.2376085763 0.2465969639 8.9883876*10-3 

1.5 Y15 0.2132619025 0.2231301601 9.8682576*10-3 

1.6 Y16 0.192790130 0.201896518 9.106388*10-3 

1.7 Y17 0.1744394738 0.1826835241 8.2440503*10-3 

1.8 Y18 0.1565654516 0.1652988882 8.7334366*10-3 

1.9 Y19 0.1415361742 0.1495686192 8.032445*10-3 

2.0 Y20 0.1280641065 0.1353352832 7.27142218*10-3 

 

Table 3: Errors Of Example 2 Using The Method K=2 
X Y(x) Block LMM K=2 Exact Solution Absolute Error 

0.0 Y0 0.00000000000 0.000000000 0.000000000 

0.1 Y1 0.0978775889867 0.09873967281 8.6377414*10-4 

0.2 Y2 0.19861212422 0.1974917724 1.1203518*10-3 

0.3 Y3 0.29367612312 0.2942705996 5.944765*10-4 

0.4 Y4 0.38934896897 0.3881091721 1.2397968*10-3 

0.5 Y5 0.47772734451 0.4780698862 3.425417*10-4 

0.6 Y6 0.56460315135 0.5632538839 1.3492674*10-3 

0.7 Y7 0.64269516396 0.642810035 5.405187*10-4 

0.8 Y8 0.71738482110 0.7159434407 1.4413804*10-3 

0.9 Y9 0.78200576059 0.7819233763 8.23842*10-4 

1.0 Y10 0.84160024414 0.8400905919 1.5096522*10-3 

1.1 Y11 0.89010794667 0.8898639 2.440466*10-4 

1.2 Y12 0.93229476301 0.9307459822 1.5487808*10-3 

1.3 Y13 0.96269451333 0.9623283582 3.661551*10-4 

1.4 Y14 0.9858502866 0.9842954674 1.5548192*10-3 

1.5 Y15 0.99687395667 0.9964278216 4.46135*10-3 

1.6 Y16 1.00012952163 0.9986041984 1.5253226*10-3 

1.7 Y17 0.99128576765 0.9908028521 4.829155*10-4 

1.8 Y18 0.97456117814 0.9731017312 1.4594469*10-3 
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1.9 Y19 0.94615467059 0.9456776996 4.769709*10-4 

2.0 Y20 0.91013061087 0.9088047689 1.3258419*10-3 

 

Table 4: Errors Of Example 2 Using The Method K=3 
X Y(x) Block LMM K=3 Exact Solution Absolute Error 

0.0 Y0 0.00000000000 0.000000000 0.000000000 

0.1 Y1 0.09802901344 0.09873967281 7.1056937*10-4 

0.2 Y2 0.19847783725 0.1974917724 9.860648*10-4 

0.3 Y3 0.29368162270 0.2942705996 5.899769*10-4 

0.4 Y4 0.38371780158 0.3881091721 4.391370*10-3 

0.5 Y5 0.48270433091 0.4780698862 4.6344447*10-3 

0.6 Y6 0.55875508031 0.5632538839 4.4987946*10-3 

0.7 Y7 0.6371420762 0.642810035 5.6679634*10-3 

0.8 Y8 0.72185960939 0.7159434407 5.9161686*10-3 

0.9 Y9 0.77610924220 0.7819233763 5.8141341*10-3 

1.0 Y10 0.83179160723 0.8400905919 8.2989847*10-3 

1.1 Y11 0.89833508817 0.8898639 8.4711881*10-3 

1.2 Y12 0.92205574559 0.9307459822 8.6902367*10-3 

1.3 Y13 0.95390775209 0.9623283582 8.4206062*10-3 

1.4 Y14 0.99285695777 0.9842954674 8.5614903*10-3 

1.5 Y15 0.98766446748 0.9964278216 8.7633542*10-3 

1.6 Y16 98909399908 0.9986041984 9.5101994*10-3 

1.7 Y17 0.98421678021 0.9908028521 6.5860719*10-3 

1.8 Y18 0.963121140957 0.9731017312 9.9805903*10-3 

1.9 Y19 0.93756011157 0.9456776996 8.1175881*10-3 

2.0 Y20 0.91691006316 0.9088047689 8.1052942*10-3 

 

IV. Discussion Of Results And Conclusion 
We have presented three new Block-Schemes (K=1, K=2  and K=3)  that are convergent, absolutely 

stable, two (K=2 and K=3) of which were tested on non-stiff initial value problems.The computational results 

reveal that the new block schemes work well on non-stiff problems, with good error stability and as such are 

seen to also be efficient for solving initial value problems. 
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