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Abstract: The objective of this paper is to apply Belallah’s model in pricing of coffee futures. This caters to the 

need to price the coffee futures which will be traded at the Nairobi Securities Exchange (NSE) by the end of 

year 2017, according to a report given by the Capital Market Authority of Kenya in 2013. We apply Belallah’s 

three-factor model. The factors we consider are: the rate of interest which is assumed to be mean reverting, the 

convenience yield which is an adjustment to the pricing formula to reflect constraint in a market, in this case the 

cost of information, and the spot price. The calibration method used in this study is the L-BGFS-B model which 

reduces the number of iterations to be undertaken and also the attractive property of having boundary 

conditions. To test the efficiency and consistency of the model, we use the coefficient of determination, root 

mean squared error and root mean squared error. We also include a liquidity constraint in our pricing which 

reflects the illiquidity of the test market (Tunisian) and target market, NSE. 

 

I. Introduction 
The coffee sector in Kenya is an important economic activity in terms of income generation, 

employment creation, foreign exchange earnings and tax revenue. Over the years, the economic performance of 

coffee has had repercussions on all spheres of life in Kenya;  affecting farm input suppliers, the transport sector, 

savings and investment intermediation, consumption of goods, and households‟ ability to pay for education, 

health and other services. Even politics is affected in the race for well-paying jobs, sinecures, and contracts in 

the various institutions that serve as gravy trains in the coffee sector cash cow.Kenya produces some of the best 

coffee in the world. Being the more flavorful Coffee Arabica rather than Coffee Canephora (Robusta), the “fully 

washed mild” belongs to the top  quality  group  called  “Colombian  milds”. This is attributed to the well- 

distributed rainfall; high altitude (1,500–2,000 meters above sea level) and therefore moderate temperatures 

(averaging 20° centigrade Celsius), with characteristically high equatorial ultraviolet sunlight diffusing through 

thick clouds; and deep red volcanic soils. 

In Kenya, coffee is grown in the highland districts of Kenya: Kiambu, Muranga, Nyeri, Thika, 

Kirinyaga, Meru North, Meru Central, Meru South, Embu, Machakos, Kitui, Nakuru, West Pokot, Kajiado, 

Baringo, Kericho, Nandi, Laikipia, Transnzoia, Uasin-Gishu, Keiyo, Marakwet,  Kajiado, Bungoma, 

Kakamega, Busia, Kisii, Siaya, Kisumu, South Nyanza, and Taita. The high production zone is a triangle 

formed by Mt. Kenya, the Aberdare Range and Machakos Town (see the coffee map of Kenya in appendix 

figure 1).Coffee producing areas contain about 45 per cent of Kenya‟s population, estimated at 36.4 million. 
 

Since some of these people are as much as 40 per cent income-dependent on coffee, their lives revolve around 

the fate of coffee. Kenya coffee sector is composed of two categories of farms: the plantation sub-sector 

comprising of about 3,300 farms of Which 300 are greater than 25 hectares; and the cooperative sub-

sector of some 523 cooperative unions with about 700,000 smallholders cultivating about 120,000 hectares 

of coffee, equivalent to about 0.2 hectares apiece. It is estimated that a total of 170,000 hectare
 
are  under  

coffee  and  that  75  per  cent  of  that  total  is  organized  around smallholder cooperatives.Kenya coffee 

production increased rapidly in ripples in the two decades after independence. As shown in figure 1 below; 

total production for both estates and cooperative sub-sectors rose from 43,778 tons in 1963–64 to 128,941 

tons in1983–84. Since then, however, the coffee industry has been on a downward trend except for a brief 

spell in 1999–2000. As a result, coffee‟s contribution to incomes, employment creation and foreign exchange 

earnings has declined. 
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Figure 1: 

 
Source: Task Force Report on Coffee Marketing, Ministry of Agriculture August 2003, p.158; 

Economic Survey, 2006, Government of Kenya; and the Coffee Quarterly, Kenya Coffee Trader‟s Association, 

No. 2/2006, p.9. 

 

Table 1: tonnage and value of coffee marketed and average gross prices 2000-2005 
Year Coffee sold (tons) Value of sales (thousand KES) Average gross farm prices (KES/kg) 

2000 98000 1128200 11.51 

2001 54600 642420 11.76 

2002 45500 544110 11.96 

2003 61200 595670 9.73 

2004 49900 728450 14.60 

2005 45000 680000 15.11 

 

So why has coffee production not picked up as a result of the price increase? Could  it  be  that  the  

farmers  feel  discouraged  by production costs and marketing constraints which show up at the farm-gate in 

the net price received and the domestic terms of trade? This would lead to neglect of the coffee bushes and 

substitution of the crop with other economic activities in some areas.  

The value chain in coffee production involves the following steps: 

i. Nursery operations to produce seedlings; 

ii. farm-level operations (planting, weeding, fertilizing, pruning, spraying, picking/harvesting of red 

cherry); 

iii. Transportation of cherries to the pulpier/coffee factory 

iv. coffee  factory  primary  processing:  pulping,  fermenting,  washing  and  drying  to produce 

parchment coffee, either at a cooperative facility or in a farm-based pulpery; 

v. curing operations (removing parchment/peeling, cleaning and polishing the beans to produce green 

coffee beans), by a miller; 

vi. milling plant operations: hulling, cleaning/polishing, sorting, grading, bagging, e.g. by Kenya 

Planters Cooperative Union (KPCU) and Thika Coffee Mills; 

vii. Auctioning at the Nairobi Coffee Exchange (NCE) where dealers, roasters, marketers and exporters 

buy various grades of green coffee; 

viii. Roasting, grinding, blending and packing/packaging by roasters and marketing agents, e.g. C. 

Dormans and Nairobi Java House. Can be done locally or in the importing country;  

ix. Marketing and selling: locally, regionally, globally – packed or even in bulk – by dealers, roasters, 

marketers and exporters to supply coffee to consumers.  
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Once coffee is exported, it is traded in the international markets; it is in these markets that the local 

prices of coffee are determined. There are two markets in which coffee is traded: the physical market and the 

financial market, which sometimes is known as the futures market. The Physical market involves traders buying 

coffee from producers, and exporting this coffee to buyers. At each step in the process, physical coffee moves 

between market participants and payments are made for the physical coffee. The producers earn money by 

selling the coffee that they have grown. The trader (or intermediary / exporter) earns money by buying the 

coffee from the producers, processing the coffee and selling it to a buyer (importer). Often there will be a variety 

of intermediaries through whom the coffee passes, including primary and secondary cooperatives, processors, 

exporters, etcetera. However the physical market will always involve the trade in physical volumes of coffee 

with the ultimate purpose to deliver coffee from the producer who grows the coffee to the consumer who drinks 

the coffee. Each participant in the physical coffee supply chain aims to make money from the trade in the 

physical coffee. Futures Markets are very different from the physical market both in how they function and their 

purpose. Unlike the physical market, in the financial market contracts will only result in physical delivery of 

coffee on a limited basis. Rather these contracts are held for financial purposes and the contracts will be sold or 

terminated at, or prior to, the latest delivery date which will result in a financial settlement of the contract. 

Because such contracts are offset (buy and against sell and vice versa) they are often referred to a „paper 

contracts‟. The vast majority of contracts traded on the exchange are traded as a means of providing buyers and 

sellers of coffee (in the physical market) with opportunities to manage their exposure to price risk. These 

markets are accessed by participants from all over the world which results in an extremely large number of 

transactions every day. An added benefit of this liquidity is that by having so many market players trading 

coffee contracts in one location, the demand and supply for these contracts help buyers and sellers determine an 

aggregate price for coffee which is commonly known as the world price of coffee: in other words, „price 

discovery.‟ This price as all those in the coffee business know is used by producers, traders, exporters, and 

roasters around the world as the reference price for coffee on any given day.  

Comparing these characteristic of the physical market to those in the financial markets shows the 

characteristics main differences between the two markets: 

 Location/ Place – the physical market exists in coffee producing countries, with buyers and sellers trading 

physical or green coffee. There will also be a physical coffee market in importing countries, where physical 

coffee is traded between importers and coffee roasters. The financial market on the other hand is a global 

(often electronic) exchange where futures and options (representing coffee for delivery in different months), 

and not physical coffee, is exchanged.            

 Activities / Purposes – in the physical market, the primary activities is the buying and selling of green 

coffee between businesses that earn money from trading and moving coffee. The financial markets have a 

very different purpose and set of activities. In the financial markets, coffee contracts are traded with very 

little expectation of delivery of coffee. The primary purpose of these activities is for coffee sector 

participants to get information on current (and future) prices for coffee, and to enable them to manage their 

risk through the trading of these financial instruments.  

 Delivery Location – in local physical coffee markets, delivery is usually affected by shipment from the 

port where the coffee is exported from. All contracts on the futures are based on delivery of coffee stored in 

exchange licensed warehouses in the US and Europe.  
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 Export Terms – Local traders operating in the physical market will have contracts based on FOB (Free on 

Board) export terms whereas the financial market contracts are priced „in store‟ (also called ex dock); the 

coffee futures are priced basis „delivered licensed warehouse‟ meaning that the coffee is presumed to have 

been shipped from origin and discharged into the licensed warehouse.  

 Unit of Measurement – Local markets utilize their own units of measurement (for example Kilograms for 

East Africa / Quintales for Central America). But the New York Arabica futures markets works in pounds 

and the London Robusta futures market works in tones.  

Each of these differences will affect the basis (the differential between local prices for physical coffee 

and international prices), as they each involve different costs. Often international coffee contract (traded on the 

commodity exchanges) will have higher prices (for the same type of coffee) than local contracts. This is 

primarily due to the differences in delivery conditions 

Basis refers to the difference between the international coffee price (the futures price) and the 

local physical market coffee price. Many traders know this more commonly as the “differential” between the 

two markets. Hence some speak of “basis risk”, others of „differential risk‟ – the two mean the same.  

This basis between these two markets is determined by a number of different factors. There are a variety of 

items that can make up this difference. These include coffee quality differences between one country and 

another, the costs of transportation, interest and insurance.  

Basis can be either positive or negative. Positive basis is when the local market price for coffee expressed in 

FOB terms is greater than the international market price. When considering basis a simple way to think of it is: 

Local coffee price FOB Price of Coffee – Future Price = Basis 

The following figure shows the coffee price differential for five coffee exporting countries. 

 

II. Objective Functions 
The objectives of this paper are to: 

i. Give relevant information about coffee in Kenya and trading of coffee 

ii. Find a suitable model for pricing coffee futures in Kenya‟s Nairobi Securities Exchange 

iii. Test the model in terms of efficiency and consistency and give recommendations 

 

Figure 3: Coffee Price Differential 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Literature Survey 
The stochastic behavior of commodity prices plays a critical role in the pricing of commodity 

derivatives and in capital budgeting decisions. The traditional approach for the valuation of the investment 

projects is the net present value approach, which hugely affected budgeting decisions. An alternative to the 

traditional approach is the certainty-equivalent approach which avoids the computation of a risk-adjusted 

discount factor using instead the relevant risk-free rate of interest. Earlier studies are based on constant interest 

rates and convenience yields in the pricing of financial and real commodity derivatives. This assumption implies 

that the distribution of future spot prices has a variance that increases without bound as the horizon increases. 

Brennan and Schwartz (1985) apply the option pricing theory for value investment projects in natural resources 

where the spot price of the commodity follows a geometric Brownian motion. The option pricing theory uses the 
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information contained in the futures prices since the prices are used in the estimation of the convenience yield. 

The approach is based on the use of the risk free rate than a risk-adjusted discount rate and allows for 

managerial flexibility in the form of options. 

Many models consider relations between prices of futures contracts and corresponding spot prices, e.g. 

Anderson (1983), Hischileifer (1989) and (1990). We also see a textbook by Duffie (1989) trying to explain the 

relationship between the prices of futures contracts and corresponding prices, but applying the concept on 

pricing of sugar. Schwartz (1997) compared three models of stochastic behavior of commodity prices: a one-

factor model and three-factor model. Schwartz (1998) developed a one-factor model that preserves the main 

characteristics of two-factor models. In this paper, we define the costs as in Black Sholes Merton (1987). For an 

introduction to the basic concepts for the pricing of derivative assets and real options under the uncertainty and 

incomplete information, we refer to Bellalah (1995), and (1999b). We use an extension of the analysis in the 

Schwartz (1997) and Schwartz (1998) to account for the effects of incomplete information as it appears in the 

models of Merton (1987) and Bellalah (2001). This paper also uses the aforementioned extension to describe the 

stochastic behavior of commodity prices in the presence of mean reversion and shadow costs of incomplete 

information. The implications of the models are studied with respect to the valuation of financial and real assets.  

 

IV. Empirical Methodology 

Model Selection 
4.1.1 The Interest Rate Model 

For the interest rate model, we use the Cox Ingersoll Ross (CIR) model which was introduced in 1985 

by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross, as an extension of the Vasicek Model. The CIR 

bond pricing model assumes that the risk natural process for the short interest rate is given by: 

𝑑𝑟𝑡 = 𝑎  𝑏 –  𝑟𝑡   𝑑𝑡 + 𝜎√𝑟𝑡𝑑𝑊𝑡       (4.1) 

𝑎 (𝑏 −  𝑟 ) is the same as in the Vasicek Model. The standard deviation factor  𝜎√𝑟𝑡, avoids the 

possibility of negative or null rates if the condition 2𝑎 ≻ 𝑏𝜎2 is met. 

Taking the integral of equation (4.1) above, we have: 

𝑟𝑡 − 𝑟𝑢 = 𝑎   ( 𝑏 −  𝑟 𝑠)𝑑𝑠
𝑡

𝑢
+ 𝜎   𝑟𝑠

𝑡

𝑢
𝑑𝑊𝑠 ,                           (4.2) 

Defining:  𝑓 (𝑥𝑡  )  =  𝑥𝑡
2  and 𝑥𝑡   =  𝑟𝑡  , and finally applying Itô‟s lemma, equation (4.2) becomes: 

𝑟𝑡
2 = 𝑟𝑢

2 +  2𝑟𝑠 𝑎 𝑏 − 𝑟𝑠 𝑑𝑠 + 𝜎 𝑟𝑠𝑑𝑊𝑠 +
1

2
 2𝜎2𝑟𝑠𝑑𝑠,
𝑡

𝑢

𝑡

𝑢

 

= 𝑟𝑢
2 +  2𝑟𝑠 𝑎𝑏𝑑𝑠 − 𝑎𝑟𝑠𝑑𝑠 + 𝜎 𝑟𝑠𝑑𝑊𝑠 +  𝜎2𝑟𝑠𝑑𝑠,

𝑡

𝑢

𝑡

𝑢

 

= 𝑟𝑢
2 +  2𝑟𝑠𝑎𝑏𝑑𝑠 − 2𝑎𝑟𝑠

2𝑑𝑠 + 2𝜎∛𝑟𝑠𝑑𝑊𝑠 +  𝜎2𝑟𝑠𝑑𝑠,
𝑡

𝑢

𝑡

𝑢

 

                                 = 𝑟𝑢
2 +   2𝑟𝑠𝑎𝑏 − 2𝑎𝑟𝑠

2 + 𝜎2𝑟𝑠 𝑑𝑠 +
𝑡

𝑢
 2𝜎 𝑟𝑠

3 𝑑𝑊𝑠 ,
𝑡

𝑢
  

  𝑟𝑡 = 𝑟𝑢
2 2𝑎𝑏 + 𝜎2  𝑟𝑠𝑑𝑠 − 2𝑎

𝑡

𝑢
 𝑟𝑠

2 + 2𝜎   𝑟𝑠
3𝑡

𝑢
𝑑𝑊𝑠

𝑡

𝑢
   (4.3) 

If µ =  0    then we have: 

                                 𝑟𝑡 = 𝑟0 + 𝑎   𝑏 − 𝑟𝑠 𝑑𝑠 + 𝜎   𝑟𝑠𝑑𝑊𝑠
𝑡

0

𝑡

0
      (4.4)      

  Thus, the unconditional mean is: 

   𝐸𝑄    𝑟𝑡   = 𝑟0 + 𝑎  𝑏𝑡 −  𝐸𝑄𝑡

0
 𝑟𝑠 𝑑𝑠      (4.5) 

Solving the equation 𝛷(𝑡)  =  𝑟0  +  𝑎  𝑏𝑡 −  𝛷 𝑠 𝑑𝑠
𝑡

0
  which can be transformed into the ODE (ordinary 

differential equation)  𝛷(𝑡)′ +  𝑎𝛷 ( 𝑡 )  =  𝑎𝑏. 

So, the unconditional mean becomes:  

    𝐸𝑄  (𝑟𝑡  )  =  𝑏 +    𝑟0  −  𝑏  𝑒−𝑎𝑡  which can also be written as: 

   𝐸𝑄𝑟𝑡|𝐹𝑢  = 𝑟𝑢𝑒
−𝑎(𝑡−𝑢) + 𝑏 1 − 𝑒−𝑎(𝑡−𝑢)       (4.6) 

Similarly, we can write equation (4.6) as: 

  𝐸𝑄 𝑟𝑡
2 = 𝑟0

2  2𝑎𝑏 +  𝜎2     𝐸𝑄 𝑟𝑠
2 𝑑𝑠 − 2𝑎   𝐸𝑄 𝑟𝑠

2 𝑑𝑠
𝑡

0

𝑡

0
,     (4.7) 

Substituting the value of 𝐸𝑄(𝑟𝑡) into (4.3) and applying second derivative, then we can get can get variance:  

   𝑉𝑎𝑟 𝑟𝑡 =
𝜎2

𝑎
 1 − 𝑒−𝑏𝑡  𝑟0𝑒

−𝑏𝑡 +
𝑏

2
 1 − 𝑒−𝑏𝑡   ,     (4.8) 

or 

  𝑉𝑎𝑟 𝑟𝑡|𝐹𝑢  =
𝑟𝑢 𝜎

2 𝑒−𝑎 𝑡−𝑢 −𝑒−2𝑎 𝑡−𝑢   

𝑎
+

𝑏𝜎2 1−𝑒−𝑎 𝑡−𝑢  
2

2𝑎
     (4.9) 

The instantaneous short rate dynamics corresponds to a continuous time first-order autoregressive 

process where the randomly moving interest rate is elastically pulled toward a central location or long term 
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value, b, which leads to mean reversion property. If 𝜎2 > 2𝑎𝑏 then 𝑟𝑡  can be zero.  If  𝜎2 ≤ 2𝑎𝑏 then  the  

upward  drift  is  sufficiently  large  to  make  the  original inaccessible. 

So from (4.8) equation we get that there is no explicit form for the solution to the CIR model. It is known that 

the model has unique positive solution. If the interest rate reaches zero then it can subsequently become positive. 

More generally, when the rate is low (close to zero), then the standard deviation also becomes close to zero. 

 

4.1.2 The Pricing Model 

This section presents the model of commodity prices and the formulas for futures contracts. These 

models are closed form solutions for futures prices. 

 

4.1.2.1 Model 1 

In this model, Schwartz (1997) assumed that the commodity spot price follows the stochastic process:  

dS = κ μ − ln S Sdt + σSdz       (4.10) 

Where dz is an increment to a standard Brownian motion and κ refers to the speed of adjustment; 

when X = ln S, and applying lto‟s lemma to characterize the log price by an Ornstein-Uhlenbeck stochastic 

process, we have: 

dX = κ α − X dt + σdz       (4.11) 

With  

α = μ −
σ2

2κ
         

 (4.12) 

Where κ measures the degree of mean reversion to the long run mean log price α. Under standard 

assumptions, Schwartz (1997) gives the following dynamics of the Ornstein-Uhlenbeck stochastic process under 

the equivalent martingale measure  

dX = κ α∗ − X dt + σdz∗        (4.13) 

Where α∗ = α − λ where λ is the market price of risk; from equation (4.13), the conditional distribution of X at 

time T under the equaivalent martingale measure is normal. The mean and variance of X is: 

E0 X(T) = e−κTX 0 + (1 − eκT)α∗  

Var X T  =
σ2

2κ
(1 − e−2κT)       (4.14) 

When the interest rate is constant, the futures or the forward price of commodity corresponds to the expected 

price of the commodity for the maturity 𝑇. Using the properties of the long-normal distribution, the futures or 

the forward price given by: 

𝐹 𝑆,𝑇 = 𝐸 𝑆 𝑇  = 𝑒𝑥𝑝  𝐸0 𝑋 𝑇  +
1

2
𝑉𝑎𝑟0 𝑋 𝑇       (4.15) 

And  

F S, T = exp  e−κT ln S +  1 − e−κT α∗ +
σ2

4κ
 1 − e−2κT     (4.16) 

This equation can be written in a log form as  

ln F S, T = e−κT ln S + (1 − e−κT) α∗ +
σ2

4κ
(1 − e−2κT)    (4.17) 

Equation (4.16) is solution to the partial differential equation 

.
1

2
σ2S2FSS + (κ μ− λ − ln S + 1 + (1 − eκT)α ∗ +

σ2

4k
 1 − e−2κT       (4.18) 

Under the terminal boundary condition F S, 0 = S 

 

4.1.2.2 Model 2  

In this two factor model, the first factor corresponds to the spot price of the commodity with the 

following dynamics. 

𝑑𝑆 =  𝜇 − 𝛿 𝑆𝑑𝑡 + 𝜎1𝑆𝑑𝑧1       

 (4.19) 

Where 𝛿 is the instantaneous convenience yield which can be seen as the cash flow of services to the 

holder of the commodity rather than the buyer of the futures contract. 

The second factor corresponds to the convenience yield with the following dynamics  

𝑑𝛿 = 𝜅 𝛼 − 𝛿 𝑑𝑡 + 𝜎2𝑑𝑧2       

 (4.20) 

Where  

𝑑𝑧1𝑑𝑧2 = 𝜌𝑑𝑡         (4.21) 

Hence equation (4.19) allows for stochastic convenience yield, which follows and Ornstein-Uhlenbeck 

stochastic process. When 𝛿 is the deterministic function of 𝑆, 𝛿 𝑆 = 𝜅 𝑙𝑛 𝑆, this model reduces to model 1. 

When 𝑋 = 𝑙𝑛 𝑆, applying lto‟s Lemma allows to characterize the log price as: 
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𝑑𝑋 =  𝜇 − 𝛿 −
1

2
𝜎1

2 𝑑𝑡 + 𝜎1𝑑𝑧1       (4.22) 

The commodity is viewed as an asset paying a stochastic dividend yield 𝛿 and the risk adjusted drift of 

the commodity is (𝑟 + 𝜆𝑆 − 𝛿) where 𝜆𝑆 refers to an information cost for the asset 𝑆. In fact, it can be shown as 

in Bellalah (2001) that under the equivalent martingale measure, the stochastic processes for the two factors can 

be written as 

𝑑𝑆 =  𝑟 + 𝜆𝑆 − 𝛿 − 𝜆]𝑑𝑡 + 𝜎1𝑑𝑧1
∗      

 (4.23) 

𝑑𝛿 =  𝜅 𝛼 − 𝛿 − 𝜆 𝑑𝑡 + 𝜎2𝑑𝑧2
∗       (4.24) 

𝑑𝑧1
∗𝑑𝑧1

∗ = 𝜌𝑑𝑡         (4.25) 

Where 𝜆 refers in this model to the market price of convenience yield risk. Using the same approach as 

in Bellalah (2001), Futures prices satisfy the following PDE 
1

2
𝜎1

2𝑆2𝐹𝑆𝑆 +
1

2
𝜎2

2𝐹𝛿𝛿 + 𝜎1𝜎2𝜌𝑆𝐹𝑆𝛿 +  𝑟 + 𝜆𝑆 − 𝛿 𝑆𝐹𝑆 +  𝜅 𝛼 − 𝛿 − 𝜆 𝐹𝛿 − 𝐹𝑇 = 0  

        (4.26) 

Under the terminal boundary condition 𝐹 𝑆, 𝛿, 0 = 𝑆; As in Schwartz (1997), the solution is given by: 

𝐹 𝑆,𝛿,𝑇 = 𝑆 𝑒𝑥𝑝  −𝛿
1−𝑒−𝜅𝑇

𝜅
+ 𝐴(𝑇)       (4.27) 

This can be written in the log form as: 

𝑙𝑛 𝐹 𝑆, 𝛿,𝑇 = 𝑙𝑛 𝑆 − 𝛿
1−𝑒−𝜅𝑇

𝜅
+ 𝐴(𝑇)      (4.28) 

Where: 

𝐴 𝑇 =  𝑟 + 𝜆𝑆 − 𝛼 +
1

2

𝜎2
2

𝜅2 −
𝜎1𝜎2𝜌

𝜅
 𝑇 +

1

4
𝜎2

2 1−𝑒−2𝜅𝑇

𝜅3 + (𝛼 𝜅 + 𝜎1𝜎2𝜌 −
𝜎2

2

𝜅
)

1−𝑒−2𝜅𝑇

𝜅2   

𝛼 = 𝛼 −
𝜆

𝜅
         

 (4.29) 

The main difference between this solution and that in Schwartz (1997) concerns the discount rate in 

𝐴(𝑇) which appears to be the interest rate plus the information cost on the asset 𝑆 rather than that interest rate 

only. 

 

4.1.2.3 Model 3 

In this three-factor model, the three factors are the spot price of the commodity, the instantaneous 

convenience yield, and the instantaneous interest rate. When the interest rate follows a mean reverting process 

as in Vasicek (1997), using equations (4.23) and (4.24), the joint stochastic process for the three factors under 

the equivalent martingale measure can be written as 

𝑑𝑆 =  𝑟 + 𝜆𝑆 − 𝛿 𝑆𝑑𝑡 + 𝜎1𝑆𝑑𝑧1
∗       (4.30) 

𝑑𝛿 = 𝜅 𝛼 − 𝛿 𝑑𝑡 + 𝜎2𝑑𝑧2
∗       

 (4.31) 

𝑑𝑟 = 𝑎 𝑚∗ − 𝑟 𝑑𝑡 + 𝜎3𝑑𝑧3
∗       

 (4.32) 

Where 𝑑𝑧1
∗𝑑𝑧2

∗ = 𝜌1𝑑𝑡, 𝑑𝑧2
∗𝑑𝑧3

∗ = 𝜌2𝑑𝑡, 𝑑𝑧1
∗𝑑𝑧3

∗ = 𝜌3𝑑𝑡    (4.33) 

Where 𝛼 and 𝑚∗ refer respectively to the speed of adjustment coefficient and the risk adjusted mean 

short rate of the interest rate process. In the context, futures prices must satisfy the following PDE. 
1

2
𝜎1

2𝑆2𝐹𝑆𝑆 +
1

2
𝜎2

2𝐹𝛿𝛿 +
1

2
𝜎3

2𝐹𝑟𝑟 + 𝜎1𝜎2𝜌1𝑆𝐹𝑆𝛿 + 𝜎2𝜎3𝜌2𝐹𝛿𝑟 + 𝜎1𝜎3𝜌3𝑆𝐹𝑆𝑟 +  𝑟 + 𝜆𝑆 −

𝛿𝑆𝐹𝑆+𝜅𝛼−𝛿𝐹𝛿+𝑎(𝑚∗−𝑟)𝐹𝑟−𝐹𝑇=0   (4.34) 

Under the terminal boundary condition 𝐹 𝑆,𝛿, 𝑟, 0 = 𝑆; Following the analysis in Schwartz (1997), the 

solution is given by: 

𝐹 𝑆,𝛿, 𝑟,𝑇 = 𝑆 exp  
−𝛿(1−𝑒−𝜅𝑇 )

𝜅
+

 𝑟+𝜆𝑆  (1−𝑒−𝛼𝑇 )

𝛼
+ 𝐶(𝑇)     (4.35) 

This can be written in a log form as  

𝑙𝑛 𝑆,𝛿, 𝑟,𝑇 = 𝑙𝑛 𝑆 −
𝛿(1−𝑒−𝑘𝑇 )

𝜅
+

 𝑟+𝜆𝑆  (1−𝑒−𝑘𝑇 )

𝛼
𝐶(𝑇)]    (4.36) 

Where  

𝐶 𝑇 =
 𝜅𝛼 +𝜎1𝜎2𝜌1  1−𝑒−𝜅𝑇  −𝜅𝑇 ]

𝜅2 −
𝜎2

2(4 1−𝑒−𝜅𝑇  − 1−𝑒−2𝜅𝑇  −2𝜅𝑇

4𝜅3 −
 𝑎𝑚 ∗+𝜎1𝜎3𝜌3 [ 1−𝑒−𝑎𝑇  −𝑎𝑇 ]

𝑎2 −

𝜎3
2(4 1−𝑒−𝑎𝑇  − 1−𝑒−2𝑎𝑇  −2𝑎𝑇

4𝑎3 + 𝜎2𝜎3𝜌2
 1−𝑒−𝜅𝑇  + 1−𝑒−𝑎𝑇  −(1−𝑒− 𝜅+𝑎 𝑇)

𝜅𝛼 (𝜅+𝑎)
+

𝜅2 1−𝑒−𝑎𝑇  +𝑎2 1−𝑒−𝑘𝑇  −𝜅𝑎2𝑇−𝑎𝜅2𝑇)

𝜅2𝑎2(𝜅+𝑎)
       (4.37) 
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V. Liquidity-Weighting and Optimization Functions 
Most African securities markets are illiquid. Subramanian (2001) suggests a liquidity weighted 

objective function, which hypothesizes that a weighted error function (with weights based on liquidity) would 

lead to better estimation that equal weights to the squared errors of all securities. We therefore model the 

liquidity using a function with two factors: the volume of trade in a security and the number of trades in that 

security.  

The weight of the 𝑖𝑡ℎ  security 𝑊𝑖  is given by:  

𝑊𝑖 =
  1−𝑒

−
𝑣𝑖

𝑣𝑚𝑎𝑥  + 1−𝑒
− 

𝑛𝑖
𝑛𝑚𝑎𝑥   

 𝑊𝑖𝑖
=  1 − 𝑒

−
𝑣𝑖

𝑣𝑚𝑎𝑥  +  1 − 𝑒
− 

𝑛𝑖
𝑛𝑚𝑎𝑥      (4.38) 

𝑊𝑖 =
 𝑡𝑎𝑛ℎ −

𝑣𝑖
𝑣𝑚𝑎𝑥

 +𝑡𝑎𝑛 ℎ − 
𝑛𝑖

𝑛𝑚𝑎𝑥
  

 𝑊𝑖𝑖
= 𝑡𝑎𝑛ℎ  −

𝑣𝑖

𝑣𝑚𝑎𝑥
 + 𝑡𝑎𝑛ℎ  −  

𝑛 𝑖

𝑛𝑚𝑎𝑥
    (4.39) 

Where  𝑣𝑖  and 𝑛𝑖 are the volume of trade and the number of trades in the 𝑖𝑡ℎ  security respectively, while 

𝑣𝑚𝑎𝑥  and 𝑛𝑚𝑎𝑥  are the maximum number of trades among all the securities traded for the day respectively. 

As given in the equations (4.38) and (4.39) above, it ensures that the weights of the relative liquid securities 

would not be significantly different from each other. For the illiquid securities, however the weights would fall 

quickly as liquidity decreased. 

The final error-minimizing function, which should equal to zero, is given by: 

𝑀𝑖𝑛 𝑤𝑖(𝑃𝑖 − 𝐵𝑖)
2𝑛

𝑖=1 = 𝑀𝑖𝑛 𝑤𝑖𝜀𝑖
2𝑛

𝑖=1 = 0      (4.40) 

Where 𝑃𝑖  is the observed futures price and 𝐵𝑖  the model-generated future‟s price 

 

VI. Test Statistics 
In academic literature, there are two distinct approaches used to indicate the term structure fitting 

performance. One is the flexibility of the curve (accuracy), and the other focuses on smoothness of the yield 

curve. Although there are numerical methods proposed to estimate the term structure, any method developed has 

to grapple with deciding the extent of the above trade-off. Hence it becomes a crucial issue to investigate how to 

reach a compromise between the flexibility and smoothness. 

Three simple summary statistics which can be calculated for the flexibility of the estimated yield curve 

are the coefficient of determination, root mean squared percentage error, and root mean squared error . These are 

calculated as: 

 

The Coefficient of Determination (𝐑𝟐) 

𝑅2 = 1 −
 (𝑃𝑖−𝐵𝑖 )2 (𝑛−𝑘) 𝑛
𝑖=1

 (𝑃𝑖−𝑃𝑖 )2 (𝑛−1) 𝑛
𝑖=1

        

 (4.41) 

Where 𝑃  is the mean average price of all observed futures prices, 𝐵𝑖  is the model price of a futures 𝑖, 𝑛 

the number of futures traded and 𝑘 is the number of parameters needed to be estimated.  

Roughly speaking, with the same analysis in regression, we associate a high value of 𝑅2 with a good fit of the 

observed prices and associate a low 𝑅2  with a poor fit. 

 

Root Mean Squared Error (RMSE) 

Denoted as the RMSE, a low value for this measure is assumed to indicate that the model is flexible, on 

average, and is able to fit the observed prices. 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
  𝑃𝑖 − 𝐵𝑖  

2𝑛
𝑖=1         

 (4.42) 

Root Mean Squared Percentage Error (RMSPE) 

Denoted as the RMSPE, a low value for this measure is also assumed to indicate that the model is 

flexible, on average, and is able to fit the observed futures prices. 

𝑅𝑀𝑆𝑃𝐸 =  1

𝑛
  

𝑃𝑖−𝐵𝑖 

𝑃𝑖
 

2

∗ 100%𝑛
𝑖=1        (4.43) 

VII. Empirical Results  

Data   
The data used in this study is from Tunisian market the source being Bloomberg. This is because NSE 

has not yet started trading in the futures.Data and information to enable analyses of the problems were gathered 

mostly from secondary sources, mainly the publications of the Coffee Board of Kenya (CBK), the Central 

Bureau of Statistics and the government printer. Some data were collected from brief field visits and the 

author‟s knowledge of the sector. 



Pricing Coffee Futures In A Market With Incomplete Information: A Case Of Nairobi Securities … 

DOI: 10.9790/5728-12217989                                    www.iosrjournals.org                                            87 | Page 

VIII. Calibration results 
To calibrate parameter values in the above models, we use both the L-BGFS-B and Gaussian 

approximation, which is made possible by noting that transition densities solve parabolic PDEs (the 

Kolmongorov equation). The latter is very useful when it comes to calibrating and approximating the terms in 

the CIR model, while the former, with combination of numerical methods make it possible to calibrate the other 

parameters in the equations.It is also possible to use a double grid search routine to estimate the state variables S 

and δ, which minimize the squared deviation between model and market prices. The terms F1, F2… correspond 

to futures contracts with different maturities. The calibrated values for the parameters are as follows (with the 

standard errors indicated in the brackets): 

 

Table 2: Calibrated Parameters values 
Period 1/15/99-5/16/09 

Contracts F1, F3, F5, F7, F9 

Number of observations 347 

𝜇 0.326 (0.0110) 

𝜅 1.156 (0.041) 

𝛼 0.248 (0.098) 

𝜎1 0.274 (0.012) 

𝜎2 0.280 (0.017) 

𝜎3 0.281 (0.016) 

𝜌1 0.818 (0.020) 

𝜆 0.256 (0.0114) 

𝜌2 0.0621 (0.0124) 

 

Table 3: Test Statistics Results 
  RMSPE RMSE 𝑅2 

mean 0.0131 1.4914 0.9693 

Std.dev 0.0061 0.7299 0.0368 

 

IX. Results and Discussion 
From the table 3 above, we see that the coefficient of determination is greater than 95% which is an 

indication of a good fit of observed prices to the model. The model applied in this study was model 3, which is a 

three factor model.We also see that the root mean squared percentage error is lower than 2%, another indication 

of model‟s attractiveness and fitness to the observed data.For all the three test statistics, we find that the 

standard deviation is less than 1.0, which is an indication that the average observed prices do not deviate much 

from the model‟s generated prices.In conclusion, we feel that Bellalah‟s three factor model is good enough to be 

applied in markets with incomplete information, such as Nairobi Securities Exchange. 
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X. APPENDIX I: The L-BFGS-B Algorithm 
A.1.1. Introduction 

The problem addressed is to find a local minimizer of the non-smooth minimization problem. 
𝑚𝑖𝑛
𝑥𝜖ℝ𝑛  𝑓(𝑥)          (A1) 

𝑠. 𝑡.  𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖    
𝑖 = 1,… . , 𝑛.  

Where𝑓:ℝ𝑛 → ℝ is continuous but not differentiable anywhere and 𝑛 is large. 𝑙𝑖  and 𝑢𝑖  are 

respectively an upper limit and; lower limit parameters. 𝑓 𝑥  is NLS (Non Linear Schrödinger)  function of 

residual functions of Nelson-Siegel model class and 𝑥 is a parameter of the Nelson-Siegel model class.  

The L-BFGS-B algorithm by Richard (1995) is a standard method for solving large instances of  
𝑚𝑖𝑛
𝑥𝜖ℝ𝑛  𝑓(𝑥) when 𝑓 is a smooth function, typically twice differentiable. The name BFGS stands for Broyden, 

Fletcher, and Goldfarb and Shanno, the originators of the BFGS quasi-Newton algorithm for unconstrained 

optimization discovered and published independently by them in 1970  [Broyden (1970), Fletcher (1970), 

Goldfarb (1970) and Shanno (1970)]. This method requires storing and updating a matrix which approximates 

the inverse of the Hessian ∇2𝑓(𝑥) and hence requires 𝒪(𝑛2) operations per iteration. According to Nocedal 

(1980), the L-BFGS variant where the L stands for “Limited-Memory” and also for “Large” problems, is based 

on BFGS but requires only 𝒪(𝑛) operations per iteration, and less memory. Instead of storing the 𝑛 × 𝑛 Hessian 

approximations, L-BFGS stores only 𝑚 vectors of dimesion 𝑛, where 𝑚 is a number much smaller than 𝑛. 

Finally, the last letter B in L-BFGS stands for bounds, meaning the lower and upper bounds 𝑙𝑖  and 𝑢𝑖 . The L-

BFGS-B algorithm is implemented in a FORTRAN software package, according to Zhu et al (2011). We discuss 

how to modify the algorithm for non-smooth functions. 

 

A.1.2. BFGS  

BFGS is standard tool for optimization of smooth functions. It is a line search method. The search 

direction is of type𝑑 = −𝐵𝑘∇𝑓(𝑥𝑘) where 𝐵𝑘  approximation to the inverse Hessian of 𝑓. This 𝑘𝑡ℎ  step 

approximation is calculated via the BFGS formula.  

𝐵𝑘+1 =  𝐼 −
𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

 𝐵𝑘  𝐼 −
𝑦𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

 +
𝑠𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

      (A2) 

Where 𝑦𝑘 = ∇𝑓 𝑥𝑘+1 − ∇𝑓(𝑥𝑘) and 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘. BFGS exhibits super-linear convergence on 

generic problems but it requires 𝒪(𝑛2) operations per iteration, according to Wright (1999). In the case of non-

smooth functions, BFGS typically succeeds in finding a local minimizer, as indicated by Overton (2013). 

However, this requires some attention to the line search conditions. This conditions are known as the Armijo 

and weak Wolfe line search conditions and they are a set of inequalities used for computation of an appropriate 

step length that reduces the objective function” sufficiently”  

 

A.1.3. L-BFGS 

L-BFGS stands for Limited-memory BFGS. This algorithm approximates BFGS using only a limited 

amount of computer memory to update an approximation to the inverse of the Hessian of 𝑓. Instead of storing a 

dense 𝑛 × 𝑛 matrix, L-BFGS keeps a record of the last 𝑚 is a small number that is chosen in advance. For this 

reason the first 𝑚 iterations of BFGS and L-BFGS produce exactly the same search directions if the initial 

approximation of 𝐵0 is set to the identity matrix.  Because of this construction, the L-BFGS algorithm is less 

computationally intensive and requires only 𝒪(𝑚𝑛) operations per iteration. So it is much better suited for 

problems where the number of dimensions 𝑛 is large.  

A.1.4. L-BFGS-B 

Finally L-BFGS-B is an extension of L-BFGS. The B stands for the inclusion of Boundaries. L-BFGS-

B requires two extra steps on top of L-BFGS. First, there is a step called gradient projection that reduces the 

dimensionality of the problem. Depending on the problem, the gradient projection could potentially save a lot of 

iterations by eliminating those variables that are on their bounds at the optimum reducing the initial 

dimensionality of the problem and the number of iterations and running time. After this gradient projection 

comes to second step of subspace minimization. During the subspace minimization phase, an approximate 

quadratic model of (A1) is solved iteratively in a similar way that the original L-BFGS algorithm is solved. The 

only difference is that the step length is restricted as much as necessary in order to remain within the lu-box 

defined by equation (A1). 
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A.1.5. Gradient Projection  

The L-BFGS-B algorithm was designed for the case when n is large and 𝑓 is smooth. Its first step is the 

gradient projection similar to the one outlined in Conn (1988) and Toraldo (1989 ), which is used to determine 

an active set corresponding to those variables that are on either their lower or upper bounds. The active set is 

defined at point 𝑥∗ is: 

𝒜 𝑥∗ =  𝑖 𝜖 1… . 𝑛 \𝑥𝑖
∗ = 𝑙𝑖  𝑥𝑖

∗ = 𝑢𝑖       (A3) 

Working with this active set is more efficient in large scale problems. A pure line search algorithm 

would have to choose to step length short enough to remain within the box defined by 𝑙𝑖  and 𝑢𝑖 . So if at the 

optimum, a large number ℬ of variables are either on the lower or upper bound, as many as ℬ of iterations might 

be needed. Gradient projection tries to reduce this number of iterations. In the best case, only one iteration is 

needed instead of 𝓑. 

Gradient projections works on the linear part of the approximation model: 

𝑚𝑘 𝑥 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇(𝑥 − 𝑥𝑘) +
(𝑥−𝑥𝑘 )𝑇𝐻𝑘 (𝑥−𝑥𝑘)

2
    (A4) 

Where 𝐻𝑘  is a L-BFGS-B approximation to the Hessian ∇2𝑓 stored in the implicit way defined by L-

BFGS.In this first stage of the algorithm a piece-wise linear path starts at the current point 𝑥𝑘 in the 

direction−∇𝑓(𝑥𝑘). Whenever this direction encounters one of the constraints the path runs corners in order to 

remain feasible. The path is nothing but feasible piece-wise projection of the negative gradient direction on the 

constraint box determined by the values 𝑙 and 𝑢. At the end of this stage, the value of 𝑥 that minimizes 𝑚𝑘(𝑥) 

restricted to this piece-wise gradient path is known as the “Cauchy point” 𝑥𝑐 .From this description of the 

estimation and optimization, following steps can be summarized: 

 Find the residual function (r) of each model. 

 Find NLS estimation, i.e. 𝑓(𝑥𝑖) =
1

2
Σ𝑖=1
𝑝

[𝑥𝑖]
2, of each model. 

 Find the 𝑝 × 𝑝 matrix value for 𝐵1 = 𝐼, 𝑝 is the number of parameters estimated in each model. 

 Find the initial value of parameter vector with rank 𝑝 × 1, 𝑝 is the number of parameters estimated in 

each model.  

 Find gradient from step 2 with every parameter in models. e.g. ∇𝑓(𝑥𝑖)𝑖  
 Substitute the initial value of the parameter (step 3) to gradient of step 5 with result. e.g. 𝛻𝑓(𝑥1). 

 Find the value of 𝑝1 

 Find the value of 𝑓(𝑥1) so it will obtain of 𝑑1 and 𝑠1. 

 

XI. Appendix II: Coffee Map Of Kenya 

 


