Locally Consecutive and Semi-Consecutive Graphs

D. S. T. Ramesh ${ }^{1}$, P. Alayamani ${ }^{2}$, I. Gnanaselvi ${ }^{3}$
${ }^{1}$ Department Of Mathematics, Margoschis College, Nazareth - 628617 Tamil Nadu, India.
${ }^{2}$ Department Of Mathematics, Pope's College, Sawyerpuram-628251, Tamil Nadu, India.
${ }^{3}$ Department Of Mathematics, Sarah Tucker College (Autonomous), Tirunelveli, Tamil Nadu, India.

Abstract

A locally consecutive edge-labeling of a graph G is defined as an assignment of distinct positive integers from the set $\{1,2, \ldots, q\}$ to the edges of G where q is the number of edges of G integers so that all the edges incident at each vertex receive consecutive integers and is said to be locally semi consecutive edge labeling, so that at each vertex of G having degree at least two, at least two of the incident edges receive consecutive. In this paper, we prove that a connected locally finite graph $G=(V, E)$ is a locally consecutive graph if and only if G is either a finite or a one-way infinite locally finite caterpillar, a star graph $K_{1, n}$ is locally consecutive, $P_{n} \bullet C_{3}$ and $C_{n} \bullet K_{1}$ are locally semi-consecutive graphs.By a graph we mean a finite, undirected graph without multiple edges or loops. For graph theoretic terminology, we refer to Harary [2] and Bondy and Murty [4]. For number theoretic terminology, we refer to M. Apostal [1] and Niven and Herbert S. Zuckerman [5].

Keywords: Locally consecutive, locally semi - consecutive, caterpillar, tree, star.

Definition 1.1: An edge labeling of a graph $G=(V, E)$ is an injective function $g: E ®\{1,2, \ldots,|E|\}$ where $|E|$ denotes the cardinality of the set E. It is said to be locally consecutive, if for each vertex v with $d(v) \geq 2$, the set $g(v)=g\left(E_{v}\right)=\left\{g(e): e \in E_{v}\right\}$, where $E_{v}=\{e \hat{I} E:$ eisincident with $v\}$ consists of consecutive integers and it is said to be locally semi-consecutive graph if the set $\mathrm{g}(\mathrm{v}), d(v) \geq 2$, consists of at least two consecutive integers.
Definition 1.2: A graph which admits locally semi-consecutive edge labeling is called locally semi-consecutive graph and a graph which admits locally consecutive edge labeling is called locally consecutive graph.

An edge labeling [3] of a graph $G=(V, E)$ is an injective function $g: E ®\{1,2, \ldots,|E|\}$ where $|E|$ denotes the cardinality of the set E . It is said to be locally consecutive, if for each vertex v with $d(v) \geq 2$, the set $g(v)=g\left(E_{V}\right)=\left\{g(e): e \in E_{v}\right\}$, where $E_{v}=\{e \hat{I} E: e$ isincident with $v\}$ consists of consecutive integers and it is said to be locally semi-consecutive graph if the set $g(v), d(v) \geq 2$, consists of at least two consecutive integers.
Definition 1.3: A (one-way infinite) caterpillar is a connected graph in which the set of vertices of degree exceeding one induce a (one-way infinite) path. A graph is said to be locally finite if the degree of each vertex in the graph is finite.
Theorem 2.1: A connected locally finite graph $G=(V, E)$ is a locally consecutive graph if and only if G is either a finite or a one-way infinite locally finite caterpillar.
Proof: Let G have a locally consecutive edge labeling $g: E \rightarrow N$. Let v_{1} be the vertex for which $g\left(v_{1}\right)=\left\{1,2, \ldots, a_{1}\right\}$. Let $v_{2}, v_{3}, \ldots, v_{a_{1}+1}$ be the vertices adjacent to v_{1}. We claim that no two of them are $\operatorname{adjacent}$ and $\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)=1$ for $\mathrm{i}=2, \ldots, \mathrm{a}_{1}$. Suppose $\mathrm{v}_{\mathrm{r}} \mathrm{v}_{\mathrm{s}} \in \mathrm{E}(\mathrm{G})$ for $1<\mathrm{r}<\mathrm{s} \leq \mathrm{a}_{1}+1$. Then $\mathbf{r} \in \mathrm{g}\left(\mathrm{v}_{\mathrm{r}}\right)$ and $\mathrm{r}+1, \mathrm{r}+2, \ldots, \mathrm{~s} \in \mathrm{~g}\left(\mathrm{v}_{1}\right)$ and hence $\mathrm{r}+1, \mathrm{r}+2, \ldots, \mathrm{~s} \notin \mathrm{~g}\left(\mathrm{v}_{\mathrm{r}}\right) \quad \mathrm{a}$ contradiction to the local consecutiveness of g. This also implies that $\operatorname{deg}\left(v_{i}\right)=1$ for each $i=2,3, \ldots, a_{1}$.

Next, because of the local consecutiveness of the edge labeling g we see that $g\left(v_{a_{1}+1}\right)=\left\{a_{1}, a_{1}+1, \ldots, a_{2}\right\}$. Let $v_{a_{1}+2}, v_{a_{1}+3}, \ldots, v_{a_{1}+a_{2}-1}$ be the vertices adjacent to $v_{a_{1}+1}$. Again, we can show similarly as before that no two of these (new) vertices are adjacent in G as also $\operatorname{deg}\left(\mathrm{V}_{\mathrm{a}_{1}+j}\right)=1$
for $\mathrm{j}=2,3, \ldots, \mathrm{a}_{1}+\mathrm{a}_{2}-2$, except possibly $v_{a_{1}+a_{2}-1}$. We can continue this process indefinitely until, of course, all the vertices would have been exhausted.

The above procedure renders the graph G with the property that the set of vertices of degree exceeding one induces a (possibly one-way infinite) path in G. This implies that G must be either a finite or a one-way infinite locally finite caterpillar.

Conversely, if G is either a finite, or a one-way infinite locally finite caterpillar then it can be represented on the plane as a bipartite graph with a bipartition $\{\mathrm{A}, \mathrm{B}\}$ such that no two vertices within the set A or the set B are adjacent in the graph and also such that no two edges of G cross each other. Then one labels the edges of G with natural numbers starting from the 'top' of the plane representation of the caterpillar going down sequentially, possibly indefinitely, towards its 'bottom'. The resulting labeling of the edges of G is obviously a locally consecutive edge-labeling of G, and the proof is complete.

Theorem 2.2: A star graph $\mathrm{K}_{1, \mathrm{n}}$ is locally consecutive.
Proof: Let $G(V, E)=K_{1, n}$, the star graph. Let $V=\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set where u is the centre vertex and v_{i} 's are pendant vertices and
$\mathrm{E}=\left\{\mathrm{uv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the edge set of G .
Define $\mathrm{f}: \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{n}\}$ by $\mathrm{f}(\mathrm{uv})=\mathrm{i}$
The vertex u is the only one with degree >1 and the other n vertices $\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ are pendant vertices. The vertices adjacent with u are $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and the labels of the corresponding edges $\mathrm{uv}_{1}, \mathrm{uv}_{2}, \ldots, \mathrm{uv}_{\mathrm{n}}$ are the first n natural numbers 1 , $2, \ldots, \mathrm{n}$ which are consecutive integers. Hence a star graph is a locally consecutive graph.

The locally consecutive numbering of $\mathrm{K}_{1,7}$.
Theorem 2.3: The graph $P_{n} \bullet C_{3}$ is a locally semi-consecutive graph.
Proof: Let $G(V, E)=P_{n} \bullet C_{3}$.
Let $V=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}: 1 £ \mathrm{i} £ \mathrm{n}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, \mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
the edge set of G. G has $3 n$ vertices and $3 n+3$ edges.
Define a function f : $\mathrm{E} \rightarrow\{1,2, \ldots, 3 \mathrm{n}+3\}$ by

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=6 \mathrm{i}-5 & 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=6 \mathrm{i}-4 & 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=6 \mathrm{i}-3 & 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}\right)=6 \mathrm{n}-7 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=6 \mathrm{i}-2 & 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=6 \mathrm{i}-1 & 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=6 \mathrm{n}-3 \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}\right)=6 \mathrm{i} & 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array}
$$

The edges incident at the vertex u_{1} are $\mathrm{u}_{1} \mathrm{v}_{1}, \mathrm{u}_{1} \mathrm{w}_{1}$ and $\mathrm{u}_{1} \mathrm{u}_{2}$ and the labels given are respectively 1,3 and 4. (3 and 4 are consecutive integers). The edges incident at the vertex u_{i} for $2 £ i £ n-1$ are
$u_{i} v_{i}, u_{i} W_{i}, u_{i-1} u_{i}$ and $u_{i} u_{i+1}$. The labels given are respectively 6i-5, 6i-3, 6(i-1)-2 = 6i-8 and 6i-2 and of them
$6 \mathrm{i}-3$ and $6 \mathrm{i}-2$ are consecutive integers. The edges incident at the vertex u_{n} are $\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}$ and $\mathrm{u}_{\mathrm{n}-1} \mathrm{u}_{\mathrm{n}}$ and the labels given are respectively $6 n-5,6 n-7$ and $6 n-8$. ($6 n-7$ and $6 n-8$ are consecutive integers).

The edges incident at the vertex v_{1} are $\mathrm{u}_{1} \mathrm{v}_{1}, \mathrm{v}_{1} \mathrm{~W}_{1}$ and $\mathrm{v}_{1} \mathrm{v}_{2}$ and the labels given are respectively 1, 2 and 5. (1 and 2 are consecutive integers). The edges incident at the vertex v_{i} for $2 £ i £ n-1$ are $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}$ and $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}$. The labels given are respectively $6 \mathrm{i}-5,6 \mathrm{i}-4,6(\mathrm{i}-1)-1=6 \mathrm{i}-7$ and $6 \mathrm{i}-1$ and of them 6i-5 and 6i-4 are consecutive integers. The edges incident at the vertex v_{n} are $\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}$ and $\mathrm{v}_{\mathrm{n}-1} \mathrm{~V}_{\mathrm{n}}$ and the labels given are respectively $6 \mathrm{n}-5,6 \mathrm{n}-4$ and $\quad 6 \mathrm{n}-3$. $(6 \mathrm{n}-5,6 \mathrm{n}-4$ and $6 n-3$ are consecutive integers).

The edges incident at the vertex w_{1} are $\mathrm{u}_{1} \mathrm{w}_{1}, \mathrm{v}_{1} \mathrm{w}_{1}$ and $\mathrm{w}_{1} \mathrm{w}_{2}$ and the labels given are respectively 3,2 and 6 . (3 and 2 are consecutive integers).

The edges incident at the vertex w_{i} for $2 £ \mathrm{i} £ \mathrm{n}-1$ are $\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}-1} \mathrm{w}_{\mathrm{i}}$ and $\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}$. The labels given are respectively $6 \mathrm{i}-3,6 \mathrm{i}-4$, $6(\mathrm{i}-1)=6 \mathrm{i}-6$ and 6 i and of them $6 \mathrm{i}-3$ and $6 \mathrm{i}-4$ are consecutive integers. The edges incident at the vertex w_{n} are $\mathrm{u}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}$ and $\mathrm{w}_{\mathrm{n}}-1 \mathrm{~W}_{\mathrm{n}}$ and the labels given are respectively $6 \mathrm{n}-7,6 \mathrm{n}-4$ and $6 \mathrm{n}-6$. ($6 \mathrm{n}-7$ and $6 \mathrm{n}-6$ are consecutive integers).

Hence $\mathrm{P}_{\mathrm{n}} \bullet \mathrm{C}_{3}$ is a locally semi-consecutive graph.

Locally semi-consecutive labeling of $\mathrm{P}_{6} \bullet \mathrm{C}_{3}$
Theorem 2.4: The graph $C_{n} \bullet K_{1}$ is a locally semi-consecutive graph.
Proof: Let $G(V, E)=C_{n} \bullet K_{1}$ be the graph with a cycle C_{n} and to each vertex of the cycle C_{n}, a pendant vertex is attached. $G(V, E)$ is a graph with $2 n$ vertices and $2 n$ edges. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set of C_{n} and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of pendent vertices. That is, $V=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $E=\left\{u_{1} u_{n}\right\} \dot{E}\left\{u_{i} u_{i+1}: 1 £ i £ n-1\right\} \dot{E}\left\{u_{j} v_{j}: 1 £ j £ n\right\}$.

Define $\mathrm{f}: \mathrm{E} \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ by $f\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{i}, 1 £ \mathrm{i} £ \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{1}\right)=2 \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{V}_{\mathrm{j}}\right)=2 \mathrm{j}-1,1 £ \mathrm{j} £ \mathrm{n}$
The labels of those edges incident on each cycle vertex $\mathrm{u}_{\mathrm{i}}, i \neq 1 \operatorname{deg}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, are $2 \mathrm{i}-2,2 \mathrm{i}-1$ and 2 i and the labels on the edges incident on u_{1} are 1,2 and $2 n$.Therefore any vertex of degree greater than or equal to two atleast two edge labels are consecutive integers. Hence $\mathrm{C}_{\mathrm{n}} \bullet \mathrm{K}_{1}$ is a locally semi-consecutive graph.

Locally semi-consecutive labeling of $\mathrm{C}_{6} \bullet \mathrm{~K}_{1}$.
Remark: Cycle is an example of a graph which is not locally semi consecutive.
Theorem 2.5: Let G be a unit cyclic graph consisting of a unique triangle with vertices v_{1}, v_{2}, v_{3} with $\operatorname{deg} \mathrm{v}_{2}=\operatorname{deg} \mathrm{v}_{3}=2$, a path $\mathrm{p}=\left(\mathrm{v}_{1}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ of length n and k pendant vertices $\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}}\right)$ adjacent to v_{1}. Then G is locally semi-consecutive graph.

Proof: Let $G(V, E)$ be the given graph. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup$ $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the vertex set and $E=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}, v_{1} u_{1}\right\}$
$\grave{E}\left\{u_{i} u_{i+1}: 1 £ i £ n-1\right\} \grave{E}\left\{\mathrm{v}_{1} \mathrm{w}_{\mathrm{j}}: 1 £ j £ \mathrm{k}\right\}$ be the edge set of G .
Then $|V|=n+k+3$ and $|E|=n+k+3$
Define $\mathrm{f}: \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{k}+3\}$ by
$\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=2 ; \mathrm{f}\left(\mathrm{v}_{3} \mathrm{v}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{1}\right)=4$ and
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{1} \mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+3+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{k}$
By the above function at least two edges incident on any vertex get consecutive integers as labels. Hence $G(V, E)$ is a locally semi-consecutive graph.

References

[1]. M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second edition, 1991.
[2]. J. A. Bondy and U. S. R. Murty, Graph Theory with applications, Macmillan press, London (1976)
[3]. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of combinatorics (2014).
[4]. F. Harary, Graph Theory Addison - Wesley, Reading Mars., (1968)
[5]. I. Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, Wiley Eastern Limited, Third edition, 1991.

