Correlation between the Arithmetic-Geometric Indices of n-Heptane Alkane Isomers

Shigehalli V.S¹, RachannaKanabur²

¹DepartmentofMathematics,RaniChannammaUniversity, Vidyasangama,Belagavi – 591156,Karnataka, India. ²DepartmentofMathematics,RaniChannammaUniversity, Vidyasangama, Belagavi – 591156, Karnataka, India.

Abstract: In this paper, the correlation abilities of nine vertex-degree-based AG (Arithmetic-Geometric) indices occurring in the physico-chemical properties of boiling point, density and refractive index of n-heptane alkane isomers is presented.

Keywords: Arithmetic-Geometric Index, graph theory, n-heptane alkane isomers.

I. Introduction

Let G be a simple graph with n vertices and m edges, with vertex set $V(G)=\{v_1, v_2, ..., v_n\}$ and edge set E(G). The edge connecting the vertices v_i and v_j will be denoted by $v_i v_j$. The degree of the vertex v_i , denoted by d_i , is the number of first neighbors of v_i in the underlying graph.

A topological index is a structural descriptor (derived from molecular graph) that represents an efficient way to express in a numerical form the size, shape, cyclicity and branching. The topological indices of molecular graphs are widely used for establishing correlations between the structure of a molecular compound and its physico-chemical properties or biological activity[5].

II. Arithmetic-Geometric Index

One of the important degree based topological indices is Arithmetic-Geometric (AG) index of G

Where, AG index is considered for distinct vertices.

The above equation is the sum of the ratio of the Arithmetic mean and Geometric mean of u and v. where du (or dv) denote the degree of the vertex u (or v)[6,7,8].

III. Data Sources

Boiling point, Density and Refractive index of n-Heptane alkane isomers are taken from Lecture 6(Structural Isomers).

IV. Figures and Tables

Table1. The values of Boiling point, Density, Refractive index and AG index of n-Heptane alkane isomers.

S.No.	C7H16 alkane isomers name	Boiling point (⁰ C)	Density(g/cm ³) Y_2	RefractiveIndexY ₃	AG(G)
		Y ₁			
I.	Heptane	98	0.684	1.3878	6.3034
II.	2-methylhexane	90	0.677	1.3848	6.3367
III.	3-methylhexane	92	0.686	1.3887	6.3365
IV.	2,2-dimethylpentane	79	0.674	1.3822	6.3713
V.	3,3-dimethylpentane	86	0.694	1.3909	6.3713
VI.	2,3-dimethylpentane	90	0.695	1.3919	6.3700
VII.	2,4-dimethylpentane	81	0.673	1.3815	6.3700
VIII.	3-ethylpentane	94	0.698	1.3934	6.3367
IX.	2,2,3-trimethylbutane	81	0.690	1.3894	6.4047

 Table2.Comparison between experimental and predicted values of boiling point with respect to n-heptane alkane isomers.

S.No.	C7H16 alkane isomers name	Experimental boiling point (⁰ C) Y ₁	Predicted boiling point(⁰ C) Y ₁ ¹
I.	Heptane	98	97.2523
II.	2-methylhexane	90	91.282
III.	3-methylhexane	92	91.3179
IV.	2,2-dimethylpentane	79	85.0786

Figure1. The graph showing the n-Heptane alkane isomers versus Boiling point Y_1 and Y_1^1 values.

 Table3. Comparison between experimental and predicted values of Density with respect to n-heptane alkane isomers.

S.No.	C7H16 alkane isomers name	ExperimentalDensity(g/cm ³)Y ₂	Predicted Density(g/cm ³)Y ₂ ¹
I.	Heptane	0.684	0.687
II.	2-methylhexane	0.677	0.686
III.	3-methylhexane	0.686	0.686
IV.	2,2-dimethylpentane	0.674	0.685
V.	3,3-dimethylpentane	0.694	0.685
VI.	2,3-dimethylpentane	0.695	0.685
VII.	2,4-dimethylpentane	0.673	0.686
VIII.	3-ethylpentane	0.698	0.686
IX.	2,2,3-trimethylbutane	0.690	0.683

Figure2 The graph showing the n-Heptane alkane isomers versus Density Y_2 and Y_2^{-1} values.

 Table4. Comparison between experimental and predicted values of Refractive index with respect to n-heptane alkane isomers.

S.No.	C7H16 alkane isomers name	Experimental RefractiveIndexY ₃	PredictedRefractiveIndexY ₃ ¹
I.	Heptane	1.3878	1.3921
II.	2-methylhexane	1.3848	1.3895
III.	3-methylhexane	1.3887	1.3895
IV.	2,2-dimethylpentane	1.3822	1.3867
V.	3,3-dimethylpentane	1.3909	1.3867
VI.	2,3-dimethylpentane	1.3919	1.3868
VII.	2,4-dimethylpentane	1.3815	1.3868
VIII.	3-ethylpentane	1.3934	1.3895
IX.	2,2,3-trimethylbutane	1.3894	1.3841

Figure3.The graph showing the n-Heptane alkane isomers versus Refractive index Y_3 and Y_3^1 values.

 Table5. Comparison between predicted values of Refractive index and Density with respect to n-heptane alkane isomers.

S.No.	C7H16 alkane isomers name	Y_3^1	Y_2^{-1}
I.	Heptane	1.3921	0.687
II.	2-methylhexane	1.3895	0.686
III.	3-methylhexane	1.3895	0.686
IV.	2,2-dimethylpentane	1.3867	0.685
V.	3,3-dimethylpentane	1.3867	0.685
VI.	2,3-dimethylpentane	1.3868	0.685
VII.	2,4-dimethylpentane	1.3868	0.686
VIII.	3-ethylpentane	1.3895	0.686
IX.	2,2,3-trimethylbutane	1.3841	0.683

Figure 4. The graph showing the n-Heptane alkane isomers versus predicted Refractive index (Y_3^1) and Density (Y_2^1) values.

V. Conclusion

Fig.1.n-Heptane alkane isomers are considered here to evaluate the correlation of boilingpoint and a comparison with the experimental value is carried out. Y_1 is the experimental boiling point and Y_1^1 is the boiling point determined using AG index. It can be seen that the both compound values $(Y_1 \text{ and } Y_1^1)$ are near to each other.

The above observation shows that the AG index derived can be used to determine the boiling point of n-heptane alkane isomers.

Fig.2: n-Heptane alkane isomers are considered here to evaluate the correlation of density and a comparison with the experimental value is carried out. Y_2 is the experimental density and Y_2^1 is the density determined using AG index. It can be seen that the both compound values (Y_2 and Y_2^1) are near to each other.

The above observation shows that the AG index derived can be used to determine the density of n-heptane alkane isomers.

Fig.3: n-Heptane alkane isomers are considered here to evaluate the correlation of refractive index and a comparison with the experimental value is carried out. Y_3 is the experimental refractive index and Y_3^{1} is the refractive index determined using AG index. It can be seen that the both compound values (Y_3 and Y_3^{1}) are near to each other.

The above observation shows that the AG index derived can be used to determine the refractive index of n-heptane alkane isomers.

Fig.4: n-Heptane alkane isomers are considered here to evaluate the correlation of refractive index and a comparison with the density value is carried out. Y_3^{-1} is the refractive index and Y_2^{-1} is the density determined using AG index. It can be seen that the both compound values $(Y_3^{-1} \text{ and } Y_2^{-1})$ difference is nearly 0.7.

References

- Ivan Gutman and JelenaTosovic, Testing the equality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc.78(6)805-810(2013).
- Ivan Gutman, Boris Furtula and Clive Elphick, Three New/Old Vertex-Degree-Based Topological Indices, MATCH Commun.Math. Comput.chem.72(2014) 617-632.
- [3] Ivan Gutman, Degree-based topological indices, Croat.Chem.Acta,86(4)(2013)251-361.
- [4] MojtabaShamshipur, BahramHemmateenejad and MortezaAkhond, Highly correlating Distance/Connectivity-Based Topological Indices. 1: QSPR Studies of Alkane, Bull.Korean Chem.Soc.2004, Vol.25, NO.2, 253-259.
- [5] N.K.Raut, Degree Based Topological Indices of Isomers of Organic Compounds, International Journal of scientific and Research Publications, Volume 4, Issue 8, August 2014.
- [6] Shegehalli.V.S and Rachanna.Kanabur, Arithmetic-Geometric indices of Path Graph, Journal of Computer and Mathematical sciences, Vol.6(1),19-24,(January 2015).
- [7] Shegehalli.V.S and Rachanna.Kanabur, Arithmetic-Geometric indices of Graphs with vertices attached to the middle vertices of path P_n , Journal of Computer and Mathematical sciences, Vol.6(2),67-72,(February 2015).
- [8] Shegehalli.V.S and Rachanna.Kanabur, Degree Based Topological Indices Of n-Heptane Isomers, JAMAL ACADEMIC RESEARCH JOURNAL: An Interdisciplinary Special Issue(February 2016), pp:235-238.