Some Results on Associative Ring with Unity

B.Sridevi ${ }^{1}$, Dr. D.V.Rami Reddy ${ }^{2}$ \& G.Rambupal Reddy ${ }^{3}$
Asst. Professor in Mathematics, Ravindra College of Engineering for Women, Kurnool
Professor in Mathematics, K.L University, Vijayawada, Andhra Pradesh, India.
Associate Professor in Mathematics, National P.G College, Nandyal, A.P, India.

Abstract: In this paper we have mainly obtained some theorems related to Associative ring with unity.
Key words: Associative ring, ring with unity

I. Introduction

Quadri Ashraf (5) generalized some results on Associative Rings. They proved that R is an associative semi prime ring in which $(x y)^{2}-y^{2} y$ is centre, then R is commutative ring, then R is Commutative. In this paper, we show that a Associative Ring with unity such that $(y x) x=(x y) x,(x y)^{2}=x y^{2} x$, for all x, y in R. Then R is commutative. Throughout the paper $Z(R)$ denotes the centre of non Associative ring R and $(x, y)=x y-y x$ for all x, y in R

Main Results; we prove the following theorems

Theorem 1: Let R be a associate ring with unity 1 such that $(y x) x=(x y) x$ for all x, y in R
Then R is commutative.
Proof: Given condition is $(\mathrm{yx}) \mathrm{x}=(\mathrm{xy}) \mathrm{x}$
Replacing x by $x+1$ in the above condition,
then $[y(x+1)](x+1)=[(x+1) y](x+1)$

$$
(y x+y)(x+1)=(x y+y)(x+1)
$$

$(y x) x+y x+y x+y=(x y) x+x y+y x+y$ (by the given condition, cancellation law)

$$
y x=x y \quad \forall x, y \in R
$$

Hence R is a commutative ring for all x, y
Theorem 2: Let R be a associate ring with unity 1 such that $(x y)^{2}=x y^{2} x$ for all x, y in R, then R is commutative.
Proof: Given condition is $(x y)^{2}=x y^{2} x$,
Replacing x by $x+1$ in the given identity, $[(x+1) y]^{2}=(x+1) y^{2}(x+1)$

$$
(x y+y)^{2}=\left(x y^{2}+y^{2}\right)(x+1)
$$

$(x y+y)(x y+y)=x y^{2} x+x y^{2}+y^{2} x+y^{2}$

$$
(x y)^{2}+x y^{2}+y x y+y^{2}=x y^{2} x+x y^{2}+y^{2} x+y^{2}
$$

by the given condition and cancellation law

$$
y x y=y^{2} x
$$

Replacing y by $y+1$ in the above result

$$
\begin{aligned}
(y+1) x(y+1) & =(y+1)^{2} x \\
(y+1) x(y+1) & =\left(y^{2}+2 y+1\right) x \\
(y x+x)(y+1) & =y^{2} x+2 y x+x \\
y x y+y x+x y+x & =y^{2} x+2 y x+x \quad b y \text { the given condition, cancellation law, } \\
x y & =y x \quad \forall x, y \in R
\end{aligned}
$$

Hence R is commutative ring for all x, y.
Theorem 3: If R is a Ring with unity satisfying $\left(x y-x^{n} y^{m}, x\right)=0$ for all $x, y \in R$ and fixed integers $m>1, n \geq 1$ then R is commutative
Proof: Given condition $\left(x y-x^{n} y^{m}, x\right)=0$ for all $x, y \in R$ and also given that $m>1, n \geq 1$
Let $\mathrm{m}=2, \mathrm{n}=1$, then given condition $\left[\mathrm{xy}-\mathrm{xy}^{2}, \mathrm{x}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in R$, That is, $\left(\mathrm{xy}-\mathrm{xy}^{2}\right) \mathrm{x}=\mathrm{x}\left(\mathrm{xy}-\mathrm{xy}^{2}\right)$.
Replacing x by $\mathrm{x}+1$ in the above result,

$$
\left[(x+1) y-(x+1) y^{2}\right](x+1)=(x+1)\left[(x+1) y-(x+1) y^{2}\right]
$$

$$
\left[x y+y-x y^{2}-y^{2}\right](x+1)=(x+1)\left[x y+y-x y^{2}-y^{2}\right]
$$

$$
x y x+x y+y x+y-x y^{2} x-x y^{2}-y^{2} x-y^{2}=x^{2} y+x y-x^{2} y^{2}-x y^{2}+x y+y-x y^{2}-y^{2}
$$

by cancellation law
$\left(x y-x y^{2}\right) x+y x-y^{2} x=x\left(x y-x y^{2}\right)+x y-x y^{2}$
$y x-y^{2} x=x y-x y^{2}$ (From the given condition)
$y x=x y \quad \forall x, y \in R \quad\left(\right.$ by the theorem $\left.y^{2} x=x y^{2}\right)$ Hence R is a commutative ring for all x, y

References

[1]. G. Yuanchun, Some commutativity theorems of rings, Acta Sci. Natur. Univ. Jilin 3 (1983)
[2]. I.N. Herstein, Topics in Algebra, Wiley India (P) Ltd, 2nd Edition 2006.
[3]. K.V.R. Srinivas and V.V.S. Ramachandram, Invertible and complement elements in a ring, IJMR 3 (1) (2011), 53-57. For rings, Amer. Math. Monthly 95 (4) (1988), 336-339.
[4]. R.N. Gupta, A note on commutativity of rings, Math. Student 39 (1971).
[5]. M. Ashraf, M.A. Quadri and D. Zelinsky, Some polynomial identities that imply commutative

