Convex Fuzzy Set, Balanced Fuzzy Set, and Absolute Convex Fuzzy Set in a Fuzzy Vector Space

Rajesh kr. singh¹, Amitkr.Arya²&M.Z.Alam³

P.G.Dept.ofMathematics,College of Commerce,Arts&Science,Patna (Bihar) India.

Abstract: In this paper, we have studied the absolute convex fuzzy set over a fuzzy vector space. We examine the properties of absolute convex fuzzy set, and established some independent results under the linear mapping from one vector space to another one.

Keywords : Fuzzy vector space, Fuzzy subspace, convex fuzzy set, Balanced fuzzy set, and Absolute convex fuzzy set.

Introduction I.

The concept of fuzzy set was introduced by Zadeh [6], and the notion of fuzzy vector space was defined and established by KATSARAS, A.K and LIU, D.B [2]. Using the definition of fuzzy vector space, balanced fuzzy set and absolute convex fuzzy set over a fuzzy vector space, we established the elementary properties of absolute convex fuzzy set over a fuzzy vector space, using the linear mapping from one space to another one.

FUZZY VECTOR SPACE

II. **Preliminaries**

Definition 2.1: Let X be a vector space over K, where K is the space of real or complex numbers, then the vector space equipped with addition (+) and scalar multiplication defined over the fuzzy set (on X) as below is called a fuzzy vector space.

Addition (+) : Let A_1, \dots, A_n be the fuzzy sets on vector space X, let $f: X^n \to X$, such that $f(x_1, ..., x_n) = x_1 + ... + x_n$, we define

$$A_{1} + \dots + A_{n} = f(A_{1}, \dots, A_{n}), \text{ by the extension principle}$$
$$\mu_{f(A_{1}, \dots, A_{n})}(y) = \sup_{\substack{x_{1}, \dots, x_{n} \\ y = f(x_{1}, \dots, x_{n})}} \left\{ \mu_{A_{1}}(x_{1}), \dots, \mu_{A_{n}}(x_{n}) \right\}$$

Obviously, when sets A_1, \ldots, A_n are ordinary sets, the gradation function used in the sum are taken as characteristic function of the set.

Scalar multiplication (.) : If α is a scalars and B be a fuzzy set on X and $g: X \to X$, such that $g(x) = \alpha x$, then using extension principle we define αB as $\alpha B = g(B)$, where

$$\mu_{g(B)}(y) = \sup_{\substack{y=g(x)\\ y=ax}} \{\mu_B(x)\}, \text{ if } y = \alpha x \text{ holds}$$

$$\mu_{g(B)}(y) = 0, \text{ if } y \neq \alpha x, for any x \in X$$

$$\mu_{\alpha B}(y) = \sup_{x} \mu_B(x)$$

i.e , if $y \in X$ $\mu_{\alpha B}(y) = 0$, if $y \neq \alpha x$, for any x

THEOREM 2.1: If E and F are vector spaces over K, f is a linear mapping from E to F and A, B are fuzzy sets on E, then

¹Research scholar, P.G. Dept. of Mathematics, College of Commerce, Arts & Science, Patna.

²Research scholar, P.G .Dept. of Mathematics, College of Commerce, Arts & Science, Patna.

³Associate Professor, P.G .Dept. of Mathematics, College of Commerce, Arts & Science, Patna.

(i)
$$f(A+B) = f(A) + f(B)$$

(ii) $f(\alpha A) = \alpha f(A)$, for all scalars α
i.e $f(\alpha A + \beta B) = \alpha f(A) + \beta f(B)$, where α , β , are scalars
Proof: Proof is straight forward.

Definition 2.2: If A is a fuzzy set in a vector space E and $x \in X$, we define x + A as $x + A = \{x\} + A$.

THEOREM 2.2: If $f_x: E \to E$ (vector space) such that $f_x(y) = x + y$, then if B is a fuzzy set in E and A is an ordinary subset of E, the following holds

$$x + B = f_x(B)$$

$$\mu_{x+B}(z) = \mu_B(z-x)$$

$$A + B = \bigcup_{x \in A} (x+B)$$

Proof : Proof is straight forward.

THEOREM 2.3: If A_1, \ldots, A_n are fuzzy sets in vector space E and $\alpha_1, \ldots, \alpha_n$ are scalars

$$\alpha_{1}A_{1} + \dots \alpha_{n}A_{n} \subset A, \text{ iffor all } x_{i,\dots,x_{n},inE,we have}$$
$$\mu_{A}(\alpha_{1}x_{1} + \dots + \alpha_{n}x_{n}) \geq \min\left\{\mu_{A_{1}}(x_{1}),\dots,\mu_{A_{n}}(x_{n})\right\}$$
Proof : Proof is obvious.

III. Fuzzy Subspace

Definition 3.1: A fuzzy set F in a vector space E is called fuzzy subspace of E if (i) $F + F \subset F$ (ii) $\alpha F \subset F$, for every scalars α .

THEOREM 3.1: If F is a fuzzy set in a vector space E, then the followings are equivalent

- (i) F is a subspace of E
- (ii) For all scalars $k,m, kF + mF \subset F$
- (iii) For all scalars k,m, and all $x, y \in E$
- $\mu_F(kx+my) \ge \min\{\mu_F(x), \mu_F(y)\}$

Proof : It is obvious

THEOREM 3.2: If *E* and *F* are vector spaces over the same field and *f* is a linear mapping from *E* to *F* and *A* is subspace of *E*. Then f(A) is a subspace of *F* and if *B* is a subspace of *F*. Then $f^{-1}(B)$ is a subspace of *E*.

Proof : Let k, m, be scalars and f is a linear mapping from E to F, then for any fuzzy set A in E

$$kf(A) + mf(A) = f(kA) + f(mA) = f(kA + mA) \subset f(A)$$

As k A + m A \subset A, since A is a subspace.
 $\therefore f(A)$ is a subspace of F
 $\mu_{f^{-1}(B)}(kx + my) = \mu_B(f(kx + my))$
Also,
 $\mu_{f^{-1}(B)}(kx + my) = \mu_B(kf(x) + mf(y))$, since f is a linear mapping
 $\mu_{f^{-1}(B)}(kx + my) \ge \min \{\mu_B(f(x)), \mu_B(f(y))\}$, as B is a subspace.
 $\mu_{f^{-1}(B)}(kx + my) \ge \min \{\mu_{f^{-1}(B)}(x), \mu_{f^{-1}(B)}(y)\}$
i.ef¹(B), is a subspace of F

THEOREM 3.3: If A, B, are fuzzy subspace of E and K is a scalars. Then A + B and K A are fuzzy subspaces. **Proof:** Proof is obvious.

IV. **Convex Fuzzy Set**

Definition 4.1: A fuzzy set A in a vector space E is said to be convex if for all $\alpha \in [0,1]$, $\alpha A + (1 - \alpha)A \subset A$.

THEOREM 4.1 :Let A be a fuzzy set in a vector space E. Then the following assertions are equivalent (i)

- A is convex
- $\mu_{A}(\alpha x + (1-\alpha)y) \ge \min \{\mu_{A}(x), \mu_{A}(y)\}, \text{ for all } x, y \in E, \text{ and for all } \alpha \in [0,1],$ (ii)
- For each $\alpha \in [0,1]$, the crisp set $A_{\alpha} = \{x \in E : \mu_A(x) \ge \alpha\}$, is convex (iii) Proof is obvious.

V. **Balanced Fuzzy Set**

Definition 5.1: A fuzzy set A in a vector space E is said to be balanced if $\alpha A \subset A$, for all scalars α with $I \alpha I \leq A$

THEOREM 5.1: Let A be a fuzzy set in a vector space E. Then the following assertions are equivalent. (i) A is balanced

 $\mu_A(\alpha x) \ge \mu_A(x), \text{ for all scalars } \alpha \text{ with I } \alpha \text{ I} \le 1$ For each $\alpha \in [0,1]$, the ordinary set A_α given by (ii) (iii) $A_{\alpha} = \left\{ x \in E : \mu_A(x) \ge \alpha \right\}_{\text{is balanced}}$

Proof: (i) \Rightarrow (ii) Suppose A is balanced i.e $\alpha A \subset A$, for all scalars α with I $\alpha I \leq 1$. i.e $\mu_A(x) \ge \mu_{\alpha A}(x)$, for all scalars α with I α I \le 1, taking α x for x $i.e\mu_A(\alpha x) \ge \mu_A(x)$, for all scalars α , with I $\alpha I \le 1$ and $x \in E$ If $\alpha = 0$, from (i) $\mu_{A}(\alpha x) \ge \mu_{\alpha A}(\alpha x) = \mu_{0A}(0x) = \sup_{y \in E} \mu_{A}(y)$ $\therefore \mu_A(\alpha x) \ge \mu_A(x)$, where $\alpha = 0$ Suppose, (ii) \Rightarrow (iii) $i.e\mu_A(\alpha x) \ge \mu_A(x)$, for all α with I α I \le 1 and $x \in E$ $A_{\alpha} = \left\{ x \in E : \mu_A(x) \ge \alpha \right\}, \alpha \in [0,1]$ Now, $tA_{\alpha} = \{tx : x \in A_{\alpha}\}$, with I t I ≤ 1 , let $x \in A_{\alpha}$ Since $\mu_A(\alpha x) \ge \mu_A(x) \ge \alpha$, with I α I ≤ 1 $tx \in A_{\alpha}$, when $I t I \leq I$ $\therefore tA_{\alpha} \subset A_{\alpha}, \text{ with I t I} \leq 1$ $\Rightarrow^{A_{\alpha}}$. is balanced (iii) \Rightarrow (i) Let $x \in E$, and let $\mu_A\left(\frac{x}{k}\right) = \alpha$, where I k I ≤ 1 $\therefore \frac{x}{k} \in A_{\alpha}$, where $A_{\alpha} = \{y : \mu_A(y) \geq \alpha\}$

Now
$$kA_{\alpha} = \{kx : x \in A_{\alpha}\}_{,\text{Since}} \frac{x}{k} \in A_{\alpha}, k \cdot \frac{x}{k} \in A_{\alpha}_{i.e} x \in A_{\alpha} \because kA_{\alpha} \subset A_{\alpha}_{, \text{ as }} A_{\alpha}_{i.e} \text{ is balanced}$$

$$\mu_{kA}(x) \ge \mu_{A}\left(\frac{x}{k}\right) = \alpha$$

$$\therefore \mu_{kA}(x) \le \mu_{A}(x)_{, \text{ for all scalars k with I k I \le 1, and x \in E}}$$

$$\therefore kA \subset A, \text{ A is balanced.}$$

THEOREM 5.2 : Let E, F be vector spaces over k and let $f: E \to F$ be a linear mapping. If A is balanced fuzzy set in E. Then f(A) is balanced fuzzy set in F. Similarly $f^{-1}(B)$ is balanced fuzzy set in E, whenever B is balanced fuzzy set in F.

Proof : Let E, F be vector spaces over k and f : E → F be a linear mapping. Suppose A is balanced fuzzy set in E. Now α.f (A) = f (αA) ⊂ f(A), for all scalars α with I α I ≤ 1 i.e α f(A) ⊂ f(A),hence f(A) is balanced [∵ α A ⊂ A] Again suppose B is a balanced fuzzy set in F ∴α B ⊂ B, for all scalars α with I α I ≤ 1 Now, let M = α f¹(B), therefore, f(M) = f (α f¹(B)) = α f (f¹(B)) ⊂ α B ⊂ B ∴ M ⊂ f¹(B), hence α f¹(B) ⊂ f¹(B), therefore f¹(B) is balanced fuzzy set in E.

THEOREM 5.3: If A, B are balanced fuzzy sets in a vector space E over K. Then A + B is balanced fuzzy set in E.

Proof : Let A,B are balanced fuzzy sets in E. Therefore $\alpha A \subset A$, and $\alpha B \subset B$, for all scalars α with I α I ≤ 1 , Now $\alpha (A + B) = \alpha A + \alpha B \subset A + B$, hence A + B is balanced fuzzy set in E.

THEOREM 5.4 : If $\{A_i\}_{i \in I}$, is a family of balanced fuzzy sets in vector spaces E. Then $A = \bigcap A_i$, is balanced fuzzy set in E

Proof : Since $\{A_i\}_{i \in I}$, is a family of balanced fuzzy sets in E $\alpha A_i \subset A_i$, for all scalars α with I $\alpha I \leq 1$ that is, $\mu_{A_i}(\alpha x) \geq \mu_{A_i}(x)$, for all scalars α with I $\alpha I \leq 1$ Now let, $A = \cap A_i$ $\mu_A(y) = \inf_{i \in I} \mu_{A_i}(y)$, for all $y \in E$ $\therefore \mu_A(\alpha x) = \inf_{i \in I} \mu_{A_i}(\alpha x)$, take $y = \alpha x$ $\mu_A(\alpha x) \geq \inf_{i \in I} \mu_{A_i}(x) = \mu_A(x)$, for all scalars α with I $\alpha I \leq 1$, and $x \in E$ $\therefore A = \bigcap_{i \in I} A_i$, is balanced fuzzy set in E

VI. Absolute Convex Fuzzy Set

Definition 6.1: A fuzzy set A in a vector space E is said to be absolutely convex if it is both convex and balanced.

THEOREM 6.1:Let A be a fuzzy set in a vector space E. Then the following are equivalent

- (i) A is absolutely convex
- (ii) $\alpha A + \beta A \subset A$, for all scalars α, β with $|\alpha| + |\beta| \le 1$
- (iii) $\mu_A(\alpha x + \beta y) \ge \min\{\mu_A(x), \mu_A(y)\}$, for all $x, y \in E$ and all scalars α, β with $|\alpha| + |\beta| \le 1$
- (iv) For each $\alpha \in [0,1]$, the crisp set $A_{\alpha} = \{x \in E : \mu_A(x) \ge \alpha\}$ is absolutely convex fuzzy set in E.

Proof : $(i) \Rightarrow (ii)$ Let A is absolutely convex fuzzy set in E i.e A is convex as well as balanced. $\alpha A \subset A$ (I) for all scalars α with $|\alpha| \leq 1$ And $\alpha A + (1-\alpha)A \subset A$(II) for all scalars α with $0 \le \alpha \le 1$ Now putting $\alpha = \frac{1}{2}$ in (II) we get $\frac{1}{2}A + \frac{1}{2}A \subset A$(III) Now for all scalars α', β' with $|\alpha'| + |\beta'| \le 1$ we have $|\alpha'| \le 1$ and $|\beta'| \le 1$ From (I) $\alpha A \subset A$ and $\beta A \subset A$ $\frac{1}{2}\alpha' A \subset A$ $\frac{1}{2}\beta' A \subset A$(a) Also Adding (a) we get $\frac{1}{2}\alpha' A + \frac{1}{2}\beta' A \subset \frac{1}{2}A + \frac{1}{2}A \subset A \quad \dots \quad \text{from (III)}$ Let $\alpha = \frac{1}{2}\alpha'$ and $\beta = \frac{1}{2}\beta'$ then $|\alpha| \le 1$ and $|\beta| \le 1$ $\therefore \alpha A + \beta A \subset A$ for all scalars α, β with $|\alpha| + |\beta| \le 1$ $(ii) \Rightarrow (iii)$ This follows from theorem 3.1 $(iii) \Rightarrow (iv)$ Suppose $\mu_A(\alpha x + \beta y) \ge \min \{\mu_A(x), \mu_A(y)\}$ for all $x, y \in E$ and all scalars α, β with $|\alpha| + |\beta| \le 1$ We take $\alpha \in [0,1]$ and $\beta = 1 - \alpha$ then $|\alpha| + |\beta| = 1$ $\therefore \mu_A(\alpha x + \beta y) \ge \min \{\mu_A(x), \mu_A(y)\} \text{ for all } x, y \in E \text{ with } \alpha \in [0,1] \text{ and } \beta = 1 - \alpha \dots (b)$ Let $A_{\alpha} = \{x \in E : \mu_A(x) \ge \alpha\} \ \alpha \in [0,1]$ If $x \in A_{\alpha}$ and $y \in A_{\alpha}$ $\Rightarrow \mu_{A}(x) \ge \alpha \text{ and } \mu_{A}(y) \ge \alpha$ (c) $\therefore \mu_A(\alpha x + \beta y) \ge \min \{\mu_A(x), \mu_A(y)\} \ge \alpha, \text{ from (a) & (b)}$ $\therefore \mu_{A}(\alpha x + \beta y) \ge \alpha$ $\Rightarrow \alpha x + \beta y \in A_{\alpha}$ i.e $\alpha x + (1 - \alpha) y \in A_{\alpha}$ $\therefore A_{\alpha}$ is convex. Again putting $\alpha = 0, \beta = 0$ in $\mu_{A}(\alpha x + \beta y) \geq \min\{\mu_{A}(x), \mu_{A}(y)\}$ $\mu_{A}(0) \geq \min \left\{ \mu_{A}(x), \mu_{A}(y) \right\}$ i.e. $\mu_A(0) \ge \mu_A(x)$, for all $x \in E$ If we put y=0 in $\mu_A(\alpha x + \beta y) \ge \min \{\mu_A(x), \mu_A(y)\}$ $\therefore \mu_A(\alpha x) \ge \min \{ \mu_A(x), \mu_A(0) \}, \ |\alpha| \le 1$

 $\mu_{A}(\alpha x) \ge \mu_{A}(x) \ge \alpha \text{, for all } x \in A_{\alpha} \text{ and for all scalars } |\alpha| \le 1$ $\therefore \alpha x \in A_{\alpha} \therefore \alpha A_{\alpha} \subset A_{\alpha} \text{ with } |\alpha| \le 1$

Hence A_{α} is balanced.

i.e. A_{α} is convex as well as balanced, implies that A_{α} is absolutely convex.

$$(iv) \Rightarrow (i)$$

Since $A_{\alpha} = \{x \in E : \mu_A(x) \ge \alpha\}$, is convex for every $\alpha \in [0,1]$. Therefore fuzzy set A is convex by theorem 4.1. Again A_{α} is balanced for every $\alpha \in [0,1]$. Therefore fuzzy set A is balanced by

theorem 5.1. Hence A_{α} is absolutely convex.

Theorem 6.2: Every fuzzy subspace F of a vector space E is absolutely convex (i.e. convex as well as balanced)

Proof : Suppose F is a fuzzy subspace $\therefore F + F \subset F$ And $\alpha F \subset F$ for all scalars α $\therefore (1-\alpha)F \subset F$ $\Rightarrow \alpha F + (1-\alpha)F \subset F + F \subset F$, with $|\alpha| \le 1$

Then F is convex, since $\alpha F \subset F$, for all scalars α with $|\alpha| \leq 1$

 \therefore F is balanced, therefore F is absolutely convex as it is convex as well as balanced.

Theorem 6.3 : If A, B are absolutely convex fuzzy sets in a vector space E. Then A + B is absolutely convex fuzzy sets in a vector space E

Proof : Let A,B are absolutely convex fuzzy sets in a vector space E **i.e.** A, B are convex as well as balanced fuzzy sets in a vector space E Since A, B are convex fuzzy sets in E

 $\therefore \alpha A + (1 - \alpha) A \subset A$, where $\alpha \in [0, 1]$

Also $\alpha B + (1-\alpha)B \subset B$, for all scalars $\alpha \in [0,1]$ Now, $\alpha (A+B) + (1-\alpha)(A+B) = \alpha A + (1-\alpha)A + \alpha B + (1-\alpha)B$ $\Rightarrow \alpha (A+B) + (1-\alpha)(A+B) \subset (A+B)$

 $\therefore (A+B)$ is convex fuzzy set in a vector space E.

Also, A,B are balanced fuzzy sets in a vector space E

 $\therefore \alpha A \subset A$, for all scalars α with $|\alpha| \leq 1$

And $\alpha B \subset B$, for all scalars α with $|\alpha| \leq 1$

$$\therefore \alpha (A+B) = \alpha A + \alpha B \subset A + B$$

i.e.
$$\alpha(A+B) \subset A+B$$

 \Rightarrow (*A*+*B*), is absolutely convex fuzzy sets in a vector space E, since it is convex as well as balanced.

Theorem 6.4 : If $\{A_i\}_{i \in I}$ is a family of absolutely convex fuzzy sets in a vector space E. Then $A = \bigcap_{i \in I} A_i$ is also absolutely convex fuzzy set in E

Proof: Since $\{A_i\}_{i \in I}$ is a family of absolutely convex fuzzy sets in a vector space E. This means that $\{A_i\}_{i \in I}$ is a family of convex as well as balanced fuzzy sets in E. Let $\{A_i\}_{i \in I}$ be a family of convex fuzzy sets in E Then $\alpha A_i + (1-\alpha)A_i \subset A_i$, for all $\alpha \in [0,1]$ i.e. $\mu_A \left(\alpha x + (1 - \alpha) y \right) \ge \min \left\{ \mu_A \left(x \right), \mu_A \left(y \right) \right\}$ Now let, $A = \bigcap_{i=1}^{n} A_i$, Then $\mu_A(y) = \inf_{i=1}^{n} \mu_{A_i}(y)$ for all $y \in E$ $\therefore \mu_A(\alpha x + (1 - \alpha) y) = \inf_{i \neq I} \mu_{A_i}(\alpha x + (1 - \alpha) y)$ $\therefore \mu_{A}(\alpha x + (1-\alpha)y) \ge \inf_{i \in I} \left\{ \min(\mu_{A_{i}}(x), \mu_{A_{i}}(y)) \right\} = \min \left\{ \inf_{i \in I} \mu_{A_{i}}(x), \inf_{i \in I} \mu_{A_{i}}(y) \right\}$ $\therefore \mu_A(\alpha x + (1 - \alpha) y) \ge \min\{\mu_A(x), \mu_A(y)\}$ Hence $A = \bigcap_{i \in I} A_i$ is convex fuzzy set in E. Also $\{A_i\}_{i \in I}$ is a family of balanced fuzzy sets in E $\therefore \alpha A_i \subset A_i$, for all scalars α with $|\alpha| \leq 1$ i.e. $\mu_{A_i}(\alpha x) \ge \mu_{A_i}(x)$, for all scalars α with $|\alpha| \le 1$ (i) Now let $A = \bigcap A_i$ $\therefore \mu_A(y) = \inf_{i \in I} \mu_{A_i}(y), \text{ for all } y \in E$ $\therefore \mu_A(\alpha x) = \inf_{i \in I} \mu_{A_i}(\alpha x)$, take $y = \alpha x$ From (i) $\mu_A(\alpha x) \ge \inf_{i \in I} \mu_{A_i}(x) = \mu_A(x)$, for all scalars α with $|\alpha| \le 1$, and $x \in E$ $\therefore A = \cap A_i$ is balanced fuzzy set in E, hence $A = \cap A_i$ is absolutely convex fuzzy set in E. **Theorem 6.5 :** Let E, F are fuzzy vector space over K and $f: E \rightarrow F$ be a linear mapping If A is absolutely convex fuzzy set in E. Then f(A) is absolutely convex fuzzy set in F. (i) If B is absolutely convex fuzzy set in F . Then $f^{-1}(B)$ is an absolutely convex fuzzy set in (ii) *E* .

Proof (i) :Let A be absolute convex fuzzy set in E, i.e. A is convex as well as balanced fuzzy set in E. Let $\alpha \in [0, 1]$ and A be convex fuzzy set in E, then

$$\alpha f(A) + (1 - \alpha) f(A) = f(\alpha A + (1 - \alpha) A) \subset f(A)$$

Hence f(A) is convex fuzzy set in F

Again A is balanced fuzzy set in E

 $\therefore \alpha f(A) = f(\alpha A) \subset f(A), \text{ for all scalars } \alpha \text{ with } |\alpha| \le 1$

 $\therefore f(A)$ is balanced fuzzy set in F

Therefore f(A) is convex as well as balanced fuzzy set in F, hence f(A) is absolutely convex fuzzy set in F.

(ii) let B is absolute convex fuzzy set in a vector space F implies that B is convex as well as balanced fuzzy set in F

Since *B* is a convex fuzzy set in *F* and let $\alpha \in [0,1]$

$$M = \alpha f^{-1}(B) + (1-\alpha) f^{-1}(B)$$

Then $f(M) = \alpha f(f^{-1}(B)) + (1-\alpha) f^{-1}(B)$
 $f(M) = \alpha B + (1-\alpha) B \subset B$
Hence $M \subset f^{-1}(B)$ is convex fuzzy set in E
Again B is a balanced fuzzy set in F
 $\therefore \alpha B \subset B$ for all scalars α with $|\alpha| \le 1$
Now let $M = \alpha f^{-1}(B)$
 $\therefore f(M) = \alpha f(f^{-1}(B)) \subset \alpha B \subset B$
 $\therefore M \subset f^{-1}(B)$
i.e. $\alpha f^{-1}(B) \subset f^{-1}(B)$
 $\therefore f^{-1}(B)$ is balanced fuzzy set in E

Therefore, $f^{-1}(B)$ is convex as well as balanced fuzzy set in E i.e., $f^{-1}(B)$ is absolutely convex fuzzy set in E.

References

- KANDEL, A and BAYATT, W.J. (1978)."Fuzzy sets, Fuzzy algebra and Fuzzy statistics. "Proceeding of ILEE, Vol.66, and No.12 [1]. PP.1619-1639.
- KATSARAS,A.K. and LIU,D.B.(1977)."Fuzzy vector spaces and Fuzzy topological vector spaces". J.Math.Anal.Appl.58, PP. 135-[2]. 146.
- [3]. LAKE, J. (1976)."Sets, Fuzzy sets, multisets, and Functions."Journal of London Mathematical Society, 12. PP.323-326.
- NAGUYEN,H.T.(1978)."A note on the extension principle for fuzzy sets."UCE/ERL MEMO M-611.UNIV.OF CALIFORNIA,BERKELEY. [Also in J.Math.Anal.Appl.64,No.2,PP.369-380.] [4].
- [5]. RUDIN, W."FunctionalAnalysis", MCGraw-Hill Book Company, New York, 1973.
- [6].
- ZADEH,L.A. "Fuzzy sets"Inform.Control,8.(1965),PP. 338-353. ZADEH,L.A.(1975)."The concept of a linguistic variable and its application to approximate Reasoning". Inform.Sci.8, (1975), 199-[7]. 249, 301-357, 9 (1975), 43-80.