A Typical Sequence of + and - signs, and an Application of the Powers of Twos in the Expression of a Positive Integer in Binary Scale

Soumendra Bera
Mahishadal Raj College, Vidyasagar University, W.B., India

Abstract

The paper describes a special recurrence relation whose expansion involve with a typical sequence of plus (+) and minus (-) signs by a process of recursive substitution. The kind of a sign at any k-th place of the expansion depends on the powers of twos in the expression of k in binary scale.

Keywords: recurrence; sequence; binomial coefficient; compositions; positive integer in binary scale.

I. Introduction

We define a recurrence function by an alternating signs recurrence relation such that the solution of the function is a binomial coefficient. The recurrence relation can generate an expression of 2^{n} terms by a process of recursive substitution. The type of sign at any $k^{\text {th }}$ place of the expression depends on the powers of twos in the expression of k in a binary scale: $k=2^{h_{1}}+2^{h_{2}}+\ldots, h_{1}>h_{2}>\ldots$ The rule for the kind of sign at any $k^{\text {th }}$ place is as shown.

The lowest power	Number of powers	Sign at $k^{\text {th }}$ place
even	odd	+
even	even	-
odd	odd	-
odd	even	+

Example: Recurrence relation of each order yields an identity. From the $4^{\text {th }}$ order, we find:

$$
\begin{aligned}
\binom{k+3}{4}= & \binom{k+3}{1}\binom{k+2}{1}\binom{k+1}{1}\binom{k}{1}-\binom{k+3}{1}\binom{k+2}{1}\binom{k+1}{2}-\binom{k+3}{1}\binom{k+2}{2}\binom{k}{1} \\
& +\binom{k+3}{1}\binom{k+2}{3}-\binom{k+3}{2}\binom{k+1}{1}\binom{k}{1}+\binom{k+3}{2}\binom{k+1}{2}+\binom{k+3}{3}\binom{k}{1}-\binom{k+3}{4} .
\end{aligned}
$$

The sequence of 8 signs in 8 terms on the right is: $+-{ }^{-}+++-$. Binary expressions of the first 8 natural numbers are: $1=2^{0} ; 2=2^{1} ; 3=2^{1}+2^{0} ; 4=2^{2} ; 5=2^{2}+2^{0} ; 6=2^{2}+2 ; 7=2^{2}+2^{1}+2^{0} ; 8=2^{3}$. For $k=7=2^{2}$ $+2^{1}+2^{0}$, the lowest power among the powers of 2 s is 0 (even) and the number of powers is 3 (odd); and hence $+\operatorname{sign}$ occurs at $7^{\text {th }}$ place by the above rule in tabular form. In this way one can determine the sign of any $k^{\text {th }}$ place.

II. Recurrence Relation

Letting the initial condition: $F(1, k)=\binom{k}{1}$, we define an $(n+1)$-th order recurrence function $F(n+1, k)$ by Recurrence relation 1 :

$$
\begin{aligned}
F(n+1, k)= & \binom{n+k}{1} F(n, k)-\binom{n+k}{2} F(n-1, k)+\ldots+(-1)^{n-1}\binom{n+k}{n} F(1, k) \\
& +(-1)^{n}\binom{n+k}{n+1} .
\end{aligned}
$$

(a) Solution of the function.

The solution of the function is Theorem 3. The proof of Theorem 3 depends on the proofs of Theorem 1 and Theorem 2.

Theorem 1: For all $n \in N, F(n, 1)=1$.
Proof: The proof is short and simple. We have:

$$
\begin{aligned}
& F(1,1)=1 \\
& F(2,1)=\binom{2}{1} F(1,1)-\binom{2}{2}=2 \cdot 1-1=1 .
\end{aligned}
$$

Hence the theorem holds for $n=1$ and for $n=2$. To complete the proof, we assume that the theorem holds for all $n \in \mathbb{N}$ with $1 \leq n \leq m$. By our induction hypothesis, we have:
$F(m, 1)=F(m-1,1)=\ldots=F(1,1)=1$.
Then we deduce that

$$
\begin{aligned}
F(m+1,1)= & \binom{m+1}{1} F(m, 1)-\ldots+(-1)^{m-1}\binom{m+1}{m} F(1,1) \\
& +(-1)^{m}\binom{m+1}{m+1} \\
= & \binom{m+1}{1} \cdot 1-\ldots+(-1)^{m-1}\binom{m+1}{m} \cdot 1+(-1)^{m}\binom{m+1}{m+1} \\
= & 1 .
\end{aligned}
$$

The theorem follows.I
Theorem 2: For all $n, k \in \mathbb{N}, F(n+1, k+1)=F(n+1, k)+F(n, k+1)$.
Proof: From Recurrence relation 1, we have:

$$
\begin{aligned}
& F(2, k+1)=\binom{k+2}{1} F(1, k+1)-\binom{k+2}{2} \\
& =\left[\binom{k+1}{1}+1\right] F(1, k+1)-\left[\binom{k+1}{2}+\binom{k+1}{1}\right] \\
& =\binom{k+1}{1} F(1, k+1)+F(1, k+1)-\binom{k+1}{2}-\binom{k+1}{1} \\
& =\binom{k+1}{1}[F(1, k)+1]+F(1, k+1)-\binom{k+1}{2}-\binom{k+1}{1} \\
& =\binom{k+1}{1} F(1, k)-\binom{k+1}{2}+F(1, k+1) \\
& =F(2, k)+F(1, k+1) .
\end{aligned}
$$

It follows that the theorem is true for $n=1$ and a fixed positive integer k. We assume that the theorem is true for all $n \in \mathbb{N}$ with $1 \leq n \leq m$ and a fixed k. Then we deduce that

$$
\begin{aligned}
F & (m+2, k+1)=\binom{m+k+2}{1} F(m+1, k+1)-\binom{m+k+2}{2} F(m, k+1)+\ldots \\
& +(-1)^{m}\binom{m+k+2}{m+1} F(1, k+1)+(-1)^{m+1}\binom{m+k+2}{m+2} \\
= & {\left[\binom{m+k+1}{1}+1\right] F(m+1, k+1)-\left[\binom{m+k+1}{2}+\binom{m+k+1}{1}\right] F(m, k+1)+\ldots } \\
& +(-1)^{m}\left[\binom{m+k+1}{m+1}+\binom{m+k+1}{m}\right] F(1, k+1)+(-1)^{m+1}\left[\binom{m+k+1}{m+2}+\binom{m+k+1}{m+1}\right] \\
= & \binom{m+k+1}{1} F(m+1, k+1)-\binom{m+k+1}{2} F(m, k+1)+\ldots+(-1)^{m}\binom{m+k+1}{m+1} F(1, k+1) \\
& +(-1)^{m+1}\binom{m+k+1}{m+2}+F(m+1, k+1)-F(m+1, k+1) \\
= & \binom{m+k+1}{1}[F(m+1, k)+F(m, k+1)]-\binom{m+k+1}{2}[F(m, k)+F(m-1, k+1)]+\ldots \\
& +(-1)^{m}\binom{m+k+1}{m+1}[F(1, k)+1]+(-1)^{m+1}\binom{m+k+1}{m+2} .
\end{aligned}
$$

[By induction hypothesis and initial condition of Recurrence relation 1]
$=F(m+2, k)+F(m+1, k+1)$.
Thus we have the theorem by induction on n. Yet k can be given any positive integer-value to obtain the above result. It follows that the theorem holds for all $n, k \in \mathbb{N}$. I
Theorem 3: For all $n, k \in \mathbb{N}, F(n, k)=\binom{n+k-1}{n}$.
Proof: From Theorem 2, we have:

$$
\begin{aligned}
& \sum_{i=1}^{k}[F(n+1, i+1)-F(n+1, i)]=\sum_{i=1}^{k} F(n, i+1) \\
& \Rightarrow F(n+1, k+1)-F(n+1,1)=\sum_{i=1}^{k} F(n, i+1) .
\end{aligned}
$$

Immediately by Theorem 1,

$$
F(n+1, k+1)=\sum_{i=1}^{k+1} F(n, i) .
$$

Then

$$
\begin{aligned}
F(2, k+1) & =F(1, k+1)+\ldots+F(1,1) \\
& =(k+1)+\ldots+1=\binom{k+2}{2} \\
F(3, k+1) & =F(2, k+1)+\ldots+F(2,1) \\
& =\binom{k+2}{2}+\ldots+\binom{2}{2}=\binom{k+3}{3} ;
\end{aligned}
$$

Proceeding thus we get: For all $n, k \in \mathbb{N}$,

$$
F(n, k+1)=\binom{n+k}{n} .
$$

Then by Theorem 1, we have: For all $n, k \in \mathbb{N}$,

$$
F(n, k)=\binom{n+k-1}{n}
$$

This completes the proof. I

(b) A binomial coefficient identity

From Recurrence relation 1, its initial condition and Theorem 3, we get:

$$
\begin{align*}
& \binom{n+k-1}{n}=\sum_{i=1}^{n}(-1)^{i-1}\binom{n+k-1}{i}\binom{n+k-1-i}{n-i} \\
& \Rightarrow \text { For } m \geq n \geq 1, \quad\binom{m}{n}=\sum_{i=1}^{n}(-1)^{i-1}\binom{m}{i}\binom{m-i}{n-i} \tag{1}
\end{align*}
$$

III. A Typical Sequence of + and - signs

(i) The initial condition of Recurrence relation 1is:

$$
\begin{equation*}
F(1, k)=\binom{k}{1} . \tag{2.1}
\end{equation*}
$$

Now we plan to carry out a process of recursive substitution involving Recurrence relation 1 and Theorem 3 as shown.
(ii) From Recurrence relation 1 for $n=1$, Theorem 3 and (2.1), we get the expression of 2 terms for $F(2, k)$:

$$
\begin{equation*}
F(2, k)=\binom{k+1}{2}=\binom{k+1}{1}\binom{k}{1}-\binom{k+1}{2} \tag{2.2}
\end{equation*}
$$

(iii) From Recurrence relation 1 for $n=2$, Theorem 3, (2.1) and (2.2), we get the expression of $(2+1+1)$ or 4 terms for $F(3, k)$:

$$
\begin{equation*}
F(3, k)=\binom{k+2}{3}=\binom{k+2}{1}\binom{k+1}{1}\binom{k}{1}-\binom{k+2}{1}\binom{k+1}{2}-\binom{k+2}{2}\binom{k}{1}+\binom{k+2}{3} \tag{2.3}
\end{equation*}
$$

(iv) Similarly from Recurrence relation 1for $n=2$, Theorem 3, (2.1), (2.2) and (2.3), we get the expression of (4 $+2+1+1)$ or 8 terms for $F(4, k)$:

$$
\begin{align*}
F(4, k)= & \binom{k+3}{4}=\binom{k+3}{1}\binom{k+2}{1}\binom{k+1}{1}\binom{k}{1}-\binom{k+3}{1}\binom{k+2}{1}\binom{k+1}{2}-\binom{k+3}{1}\binom{k+2}{2}\binom{k}{1} \\
& +\binom{k+3}{1}\binom{k+2}{3}-\binom{k+3}{2}\binom{k+1}{1}\binom{k}{1}+\binom{k+3}{2}\binom{k+1}{2}+\binom{k+3}{3}\binom{k}{1}-\binom{k+3}{4} \tag{2.4}
\end{align*}
$$

The sequence of two signs in (2.2) is: +- ; this of four signs in (2.3) is: +--+ ; this of eight signs in (2.4) is: +--+-++- ; .. Now the problem is: What is the general rule for the above sequences of signs? Confining our attention to the sequences of signs, we can define a simple and reduced form of Recurrence relation lin the following way.

Letting $R_{1}=C_{1}$ as the initial condition, we define a recurrence function R_{n+1} by Recurrence relation 2 :

$$
\begin{equation*}
R_{n+1}=R_{n}-R_{n-1}+\ldots+(-1)^{n-1} R_{1}+(-1)^{n} C_{n+1} \tag{3}
\end{equation*}
$$

We have:

$$
\begin{equation*}
R_{1}=C_{1} . \tag{3.1}
\end{equation*}
$$

Then by the process recursive substitution, we get:

$$
\begin{align*}
R_{2} & =C_{1}-C_{2} . \tag{3.2}\\
R_{3} & =C_{1}-C_{2}-C_{1}+\mathrm{C} 3 \tag{3.3}\\
R_{4} & =\left(C_{1}-C_{2}-C_{1}+C_{3}\right)-\left(C_{1}-C_{2}\right)+C_{1}-C_{4} \\
& =C_{1}-C_{2}-C_{1}+C_{3}-C_{1}+C_{2}+C_{1}-C_{4} \tag{3.4}
\end{align*}
$$

The number of terms of the expressions (3.2), (3.3), (3.4), \ldots, are: $(1+1),(2+1+1),\left(2^{2}+2+1+1\right), \ldots$, or 1 , $2,2^{2}, 2^{3}, \ldots$ in succession. The terms of (3.2), (3.3) \ldots are composed of C_{1}, C_{2}, \ldots; and for convenience, we name these expressions as C_{k} - expressions. Then C_{k} - expression of R_{n} is (3.n) which has 2^{n-1} terms. On the other hand R_{n} has an alternating signs expression of n terms according to (3).

We have: $R_{1}=C_{1} ; R_{2}=R_{1}-C_{2}$; and then for $n \geq 3$,

$$
\begin{align*}
R_{n} & =R_{n-1}-\left\{R_{n-2}-\ldots+(-1)^{n-3} R_{1}+(-1)^{n-2} C_{n}\right\} \\
& \left.=\left\{R_{n-2}-\ldots+(-1)^{n-3} R_{1}+(-1)^{n-2} C_{n-1}\right)\right\}-\left\{R_{n-2}-\ldots+(-1)^{n-3} R_{1}+(-1)^{n-2} C_{n}\right\} \\
& =A-B, \text { say } . \tag{4}
\end{align*}
$$

Each of two parts of (4) is the alternating signs expression of $n-1$ terms such that the first $n-2$ terms contain R_{n-2}, \ldots, R_{1} in succession. C_{k}-expression of R_{n-1} is the C_{k} - expression of part A and has 2^{n-2} terms. From the forms of A and B, it follows that C_{k}-expression of B has also 2^{n-2} terms such that the sequences of 2^{n-2} signs in the C_{k} - expressions of both A and B are same. The successive sequences of signs are as shown.
(i) One sign in (3.1) is + .
(ii) Sequence of 2 signs in (3.2) is: +- .
(iii) Sequence of 4 signs in (3.3)

$$
\begin{aligned}
& =[\text { Sequence of } 2 \text { signs in }(3.2)]-[\text { Sequence of } 2 \text { signs in }(3.2)] \\
& =[+-]-[+-] \\
& =+--+.
\end{aligned}
$$

(iv) Sequence of 8 signs in (3.4)

$$
\begin{aligned}
& =\text { Sequence of } 4 \text { signs in (3.3)] }- \text { [Sequence of } 4 \text { signs in (3.3)] } \\
& =[+--+]-[+--+] \\
& =+--+-++-.
\end{aligned}
$$

The general form of the sequences of signs can be stated in the following way.
Rule for the sequence of 2^{n} signs: When $n \geq 1$ and $0 \leq m \leq n-1$ then in the sequence of 2^{n} signs starting with + sign, the sequence of signs obtained by the multiplication of each of first 2^{m} signs by - sign in succession is the sequence of second 2^{m} signs.
Now the problem is, 'What is the sign of any $k^{\text {th }}$ term of (3.n)?' We give a solution of the problem below.
(i) One sign in (3.1) is + .
(ii) The sequence of all 2^{n-2} signs in (3.n-1) is the sequence of the $1^{\text {st }} 2^{n-2} \operatorname{signs}$ in (3.n); and the sequence of 2^{n} ${ }^{-2}$ signs obtained by the multiplication of $-\operatorname{sign}$ with each of 2^{n-2} signs in (3.n-1) in succession is the sequence of the $2^{\text {nd }}$ or last 2^{n-2} signs in (3.n). Hence $j^{\text {th }}$ and $\left(2^{n-2}+j\right)^{\text {th }}$ terms in (3.n) have the opposite signs when $1 \leq j \leq 2^{n-2}$.
(iii) The sequence of all 2^{n-3} signs in (3.n-2) is the sequence of the $1^{\text {st }} 2^{n-3} \operatorname{signs}$ in (3.n-1); and the sequence of 2^{n-3} signs obtained by the multiplication of $-\operatorname{sign}$ with each of 2^{n-3} signs in (3.n-2) in succession is the sequence of the $2^{\text {nd }} 2^{n-3}$ signs in (3.n-1).

It follows from point (iii) and point (ii) that the sequence of all 2^{n-3} signs in (3.n-2) is the sequence of the $1^{\text {st }} 2^{n-3}$ signs in (3.n); and the sequence of 2^{n-3} signs obtained by the multiplication of - sign with each of 2^{n} ${ }^{-3}$ signs in (3.n-2) in succession is the sequence of the $2^{\text {nd }} 2^{n-3}$ signs in (3.n). Hence j-th and ($2^{n-3}+j$)-th terms of (3.n) have the opposite signs when $1 \leq j \leq 2^{n-3}$.

In general one sign in (3.1), the sequences of 2 signs in (3.2), 2^{2} signs in (3.3), $\ldots, 2^{n-2} \operatorname{signs}$ in (3.n-1) appear as the $1^{\text {st }}$ one, the sequences of the $1^{\text {st }} 2$ signs, $1^{\text {st }} 2^{2}$ signs, $\ldots, 1^{\text {st }} 2^{n-2}$ signs respectively in the sequence of all 2^{n-1} signs in (3.n) such that the sequence of j signs obtained by the multiplication of each the $1^{\text {st }} j$ signs with $-\operatorname{sign}$ in (3.n) is the sequence of j signs which appears next to the 2^{m} th sign in (3.n) when $1 \leq j \leq 2^{m}, 0 \leq m$ $\leq n-2$. Hence we have the following conclusion.

IV. Conclusion

$j^{\text {th }}$ and $\left(2^{m}+j\right)$-th terms of (3.n) for $1 \leq j \leq 2^{m}, 0 \leq m \leq n-2$ have the opposite signs.
Case 1: When $j=2^{m}$.
It follows from the conclusion that if $j=2^{m}$ then 2^{m} th and 2^{m+1} th terms of (3.n) have the opposite signs. Hence in (3.n), $1^{\text {st }}$ or 2^{0} th, $2^{\text {nd }}$ or 2^{1} th, 2^{2} th, 2^{3} th term \ldots in succession have + and - signs alternately starting with + sign. This implies that in 2^{m} th term of (3.n) + sign appears when m is even and - sign appears when m is odd.

Case 2: When $j<2^{m}$.
Let e be 0 or a positive even integer; d be a positive odd integer; and $m_{1}, m_{2}, \ldots, m_{t}$ are the positive integers such that $e, d<m_{1}<m_{2}<\ldots<m_{t} \leq n-2$. Then the greatest values of $m_{t}, m_{t-1}, m_{t-2}, \ldots$ are: $n-2, n-$ $3, n-4, \ldots$ in succession. We have the inequality: $2^{n-1}+\ldots+2+1<2^{n}$. Consequently we find: $2^{e}<2^{m_{1}}$; $2^{m_{1}}+2^{e}<2^{m_{2}} ; 2^{m_{2}}+2^{m_{1}}+2^{e}<2^{m_{3}} ; \ldots ; 2^{m_{t}-1}+\ldots+2^{m_{1}}+2^{e}<2^{m_{t}} ;$ and similarly $2^{d}<2^{m_{1}} ; 2^{m_{1}}+2^{d}$ $<2^{m_{2}} ; 2^{m_{2}}+2^{m_{1}}+2^{d}<2^{m_{3}} ; \ldots ; 2^{m_{t-1}}+\ldots+2^{m_{1}}+2^{d}<2^{m_{t}}$ such that the smaller and bigger integers in two sides of the inequalities are the values of j and 2^{m} respectively. It then follows from the above conclusion that (i) 2^{e} th, $\left(2^{m_{1}}+2^{e}\right)$ th, $\ldots,\left(2^{m} t+\ldots+2^{m_{1}}+2^{e}\right)$ th terms in succession have + and - signs alternately starting with + sign; and (ii) 2^{d} th, $\left(2^{m_{1}}+2^{d}\right)$ th, $\ldots,\left(2^{m_{t}}+\ldots+2^{m_{1}}+2^{d}\right)$-th terms in succession have - and + signs alternately starting with - sign.

Thus we find a general rule to determine the sign of $k^{\text {th }}$ term of (3.n) for $1 \leq k \leq 2^{n-1}$. We name the rule as 'The lowest power rule in binary scale' due to an important role of the lowest power of 2 in the expression of k in binary scale: $k=2^{h_{1}}+2^{h_{2}}+\ldots, h_{1}>h_{2}>\ldots$
The lowest power rule in binary scale: The rule is shown in tabular form (Table 1):
Table 1

The lowest power	Number of powers	Sign at $k^{\text {th }}$ place
even	odd	+
even	even	-
odd	odd	-
odd	even	+

Sequence of 64 signs with their ordinal numbers is shown in Table 2.
Table 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
+	-	-	+	-	+	+	-	-	+	+	-	+	-	-	+
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
-	+	+	-	+	-	-	+	+	-	-	+	-	+	+	-
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
-	+	+	-	+	-	-	+	+	-	-	+	-	+	+	-
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
+	-	-	+	-	+	+	-	-	+	+	-	+	-	-	+

Starting with the preliminary sequence:,+- , a verbal statement of the 'the lowest power rule in binary scale' in a general form can be given by considering + and - signs as two elements A and B respectively in the following way.

Starting with A and then B, if a permutation of 2^{n} elements for $n \geq 2$ by some repetitions of A and B is obtained in such a way that the sequence of the elements obtained by keeping A in place of B and B in place of A in the sequence of first 2^{m} elements for $1 \leq m \leq n-1$ is the sequence of second 2^{m} elements, then the type of element at $k^{\text {th }}$ place for $1 \leq k \leq 2^{n}$ depends on the lowest one among the powers of $2 s$ and number of powers of $2 s$ in the expression of k in binary scale: $k=2^{h_{1}}+2^{h_{2}}+\ldots, h_{1}>h_{2}>\ldots$ When one between the lowest power of 2 and number of powers of 2 is even and another is odd, then A appears at $k^{\text {th }}$ place. When both of them are either even or odd, then B appears at $k^{\text {th }}$ place.

The permutation is: $A B B A B A A B B A A B A B B A B A A B A B B A \ldots$ This is a permutation of two elements A and B by their typical repetitions in powers of 2 .

We can get the greatest power rule from the lowest power rule. Indeed the greatest power rule is a particular case of the lowest power rule.

The greatest power rule in binary scale:

In the expression of k in binary scale, if the successive powers are even and odd alternately starting with the even greatest power then the sign at $k^{\text {th }}$ place is + ; and if the successive powers are odd and even alternately starting with the odd greatest power then the sign at $k^{\text {th }}$ place is - . Obviously the greatest power rule is applicable when the powers are consecutive integers.

Remark 1: Intervals between two consecutive As or two Bs

The special permutation by two elements A and B has a property that if two successive A s or two successive $B \mathrm{~s}$ appear at $k_{1}^{\text {th }}$ and $k_{2}^{\text {th }}$ places then $\left|k_{1}-k_{2}\right| \in(1,2,3)$.

Remark 2: Another quality of the lowest power in Binary scale

In the context of the lowest power of 2 , we mention an interesting property of the lowest power in Conjecture 1.
Conjecture 1: The last bottom index in any $m^{\text {th }}$ term among 2^{n-1} terms of the special expression for $\binom{k+n-1}{n}$ is $\mathrm{z}+1$ if the lowest one among the powers of $2 s$ in the expression of m in binary scale is z.

Example: In (2.4), the last bottom indices in 8 terms of the special expression for $\binom{k+3}{4}$ are: $0+1,1+$ $1,0+1,2+1,0+1,1+1,0+1$ and $3+1$ respectively, where $1=2^{0} ; 2=2^{1} ; 3=2^{1}+2^{0} ; 4=2^{2} ; 5=2^{2}+$ $2^{0} ; 6=2^{2}+2^{1} ; 7=2^{2}+2^{1}+2^{0} ;$ and $8=2^{3}$.

Remark 3: Connation of the recurrence with ordered compositions

Two sets of bottom indices in two terms of (2.2) are: $(1,1)$ and 2 such that $1+1=2$. Four sets of bottom indices in four terms of (2.3) are: $(1,1,1),(1,2),(2,1)$ and 3 such that $1+1+1=1+2=2+1=3$. Eight sets of bottom indices in eight terms of (2.4) are: $(1,1,1,1),(1,1,2),(1,2,1),(1,3),(2,1,1),(2,2),(3,1)$
and 4 such that $1+1+1+1=1+1+2=1+2+1=1+3=2+1+1=2+2=3+1=4$. In fact 1 , 2,4 and 8 sets of bottom indices in $1,2,4$ and 8 terms of (2.1), (2.2), (2.3) and (2.4) involve with $1,2,4$ and 8 compositions of $1,2,3$ and 4 respectively in a definite order. The rule of ordered compositions is demonstrated in the paper: Bera Soumendra, Relationships between Ordered Compositions and Fibonacci Numbers, Journal of Mathematics Research, Canadian Center of Science and Education, Vol.7, No.3, 2015.

References

[1]. Andrews G.E., The Theory of Partitions, Cambridge University Press, 1998, Chapter 4, p54.
[2]. Bera Soumendra, Relationships between Ordered Compositions and Fibonacci Numbers, Journal of Mathematics Research, CCSE, Vol. 7, No. 3, 2015.
[3]. John Riordan, Combinatorial identities, R. E. Krie

