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Abstract: In this paper an efficient modification of Adomian decomposition method is introduced for solving 

heat equation. Tested for some examples and the obtained results demonstrate efficiency of the proposed 

method. The results were presented in tables and figure using the MathCAD 12 and Matlab software package. 
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I. Introduction 
Adomian decomposition method can solve large classes of linear and nonlinear differential equations 

and it is much simpler in computation and quicker in convergence than any other method available in the open 

literature [1,2]. A variety of modifications to Adomian decomposition method have been reported. Wazwaz 

presented a strong modification of ADM that accelerates the rapid convergence of the series solution [3, 4]. E. 

Babolian et al. introduced the restart method to solve the equation f (x) = 0 [5], and the integral equations [6]. 

H. Jafari et.al used a correction of decomposition method for ordinary and nonlinear systems of equations and 

show that the correction accelerates the convergence [7, 8]. 

In this paper, we present computationally efficient numerical method for solving the heat equation: 
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Where ,,,, 21 ggf  and q are known functions, T is given constant. 

 

II. Solution Heat Equation by Modified Adomian’s Decomposition Method 
In this section, we will discuss the use of the MDM for the solution of heat equation with nonlocal boundary 

conditions given   in (1). In this method we assume that 
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Can be rewritten Equation (1): 
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The inverse 
1L  is assumed an integral operator given by 
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Take the operator 
1L   on both sides of Equation (5) we have 

 

)),(())),((())),((( 111 txqLtxuLLtxuLL xxt

   

 

Therefore, we can write, 
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The modified decomposition method was introduced by Wazwaz [11]. This method is based on the 

assumption that the function )(xH  can be divided into two parts, namely )(1 xH  and )(2 xH . Under this 

assumption we set 
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III. Numerical Illustration 
In this paper, we will apply the numerical method to solve heat equation. 

Example 1: 

Consider heat equation with nonlocal boundary conditions for the equation (1), as taken in [9]: 
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We apply the above proposed method; we obtain: 
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Then the series form is given by: 
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This is the exact solution  
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Table 1 shows some of the analytical solutions for heat equation obtained for different values and 

comparison between exact solution and analytical solution, the plot of the exact solution surface is shown in 

Figure 1 and Figure 2 is shown the numerical solution surface for heat equation. 

 

Table1.  Some of comparison between exact solution and analytical solution  

For example 1 
x t Exact Solution Modified Adomian Decomposition Method |uex-uMADM| 

0 1 0.0000 0.0000 0.0000 

0.1 1 0.0025 0.0025 0.0000 

0.2 1 0.0100 0.0100 0.0000 

0.3 1 0.0230 0.0230 0.0000 

0.4 1 0.0400 0.0400 0.0000 

0.5 1 0.0630 0.0630 0.0000 

0.6 1 0.0900 0.0900 0.0000 

0.7 1 0.1230 0.1230 0.0000 

0.8 1 0.1600 0.1600 0.0000 

0.9 1 0.2030 0.2030 0.0000 

1 1 0.2500 0.2500 0.0000 

 

 
Fig. 1: Exact solution 

 

 
Fig. 2: Numerical solution 

 

Example 2: 

Consider the problem (1) with the following conditions, as taken in [9]: 
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where  b   [0,1]. 

Now after modified decomposition method, we obtain: 
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Then the series form is given by: 

),(),(),(),(),( 3210 txutxutxutxutxu   

tx  25.0  

Which gives the exact solution  txtxu  25.0),( .                                                                                     

Table 2 shows part the analytical solutions for heat equation obtained for different values and 

comparison between exact solution and analytical solution.  Figure 3 and Figure 4   show the plot of the exact 

and the numerical solution surface for heat equation respectivel    

                                                                          

Table2. Some of comparison between exact solution and analytical solution 

For example 2 when  t=1,2 
x t Exact Solution Modified Adomian Decomposition Method |uex-uMADM| 

0 1 1.020 1.020 0.000 

0.1 1 1.005 1.005 0.000 

0.2 1 1.020 1.020 0.000 

0.3 1 1.045 1.045 0.000 

0.4 1 1.080 1.080 0.000 

0.5 1 1.125 1.125 0.000 

0.6 1 1.180 1.180 0.000 

0.7 1 1.245 1.245 0.000 

0.8 1 1.320 1.320 0.000 

0.9 1 1.405 1.405 0.000 

1 1 1.500 1.500 0.000 

0 2 0.000 0.000 0.000 

0.1 2 2.005 2.005 0.000 

0.2 2 2.020 2.020 0.000 

0.3 2 2.045 2.045 0.000 

0.4 2 2.080 2.080 0.000 

0.5 2 2.125 2.125 0.000 

0.6 2 2.180 2.180 0.000 

0.7 2 2.245 2.245 0.000 

0.8 2 2.320 2.320 0.000 

0.9 2 2.405 2.405 0.000 

1 2 2.500 2.500 0.000 

 

 
Fig. 3: Exact solution 
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Fig. 4: Numerical solution 

 

Example 3: 

Consider the problem (1) with the following boundary and initial conditions, as taken in [9] 
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Now we apply the above modified decomposition method, we obtain: 
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Then the series form is given by: 
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This is the exact solution  
66),( txtxu  . 

 

Table 3 shows some the analytical solutions for heat equation obtained for different values and 

comparison between exact solution and analytical solution. Figure 5 and Figure 6 show the plot of the exact 

solution surface and the numerical solution surface for heat equation respectively. 

 

Table3. Some of comparison between exact solution and analytical solution 

For example 3 when t=1,2,3 
x t Exact Solution Modified Adomian Decomposition Method |uex-uMADM| 

0 1 0.00000 0.00000 0.0000 

0.1 1 1.00000 1.00000 0.0000 

0.2 1 1.00000 1.00000 0.0000 

0.3 1 1.00100 1.00100 0.0000 

0.4 1 1.00400 1.00400 0.0000 

0.5 1 1.01600 1.01600 0.0000 

0.6 1 1.04700 1.04700 0.0000 

0.7 1 1.11800 1.11800 0.0000 

0.8 1 1.26200 1.26200 0.0000 

0.9 1 1.53100 1.53100 0.0000 

1 1 2.00000 2.00000 0.0000 

0 2 0.00000 0.00000 0.0000 
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0.1 2 64.0000 64.0000 0.0000 

0.2 2 64.0000 64.0000 0.0000 

0.3 2 64.0010 64.0010 0.0000 

0.4 2 64.0040 64.0040 0.0000 

0.5 2 64.0160 64.0160 0.0000 

0.6 2 64.0470 64.0470 0.0000 

0.7 2 64.1180 64.1180 0.0000 

0.8 2 64.2620 64.2620 0.0000 

0.9 2 64.5310 64.5310 0.0000 

1 3 65.0000 65.0000 0.0000 

0 3 0.00000 0.00000 0.0000 

0.1 3 729.000 729.000 0.0000 

0.2 3 729.000 729.000 0.0000 

0.3 3 729.001 729.001 0.0000 

0.4 3 729.004 729.004 0.0000 

0.5 3 729.016 729.016 0.0000 

0.6 3 729.047 729.047 0.0000 

0.7 3 729.118 729.118 0.0000 

0.8 3 729.262 729.262 0.0000 

0.9 3 729.531 729.531 0.0000 

1 3 730.000 730.000 0.0000 

 

 
Fig. 5: Exact solution 

 

 
Fig. 6: Numerical solution 

 

IV. Conclusion 

In this paper, we have applied the modified decomposition method for the solution of the heat equation 

with nonlocal boundary conditions. This algorithm is simple and easy to implement. The obtained results 

confirmed a good accuracy of the method. On the other hand, the calculations are simpler and faster than in 

traditional techniques 
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