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Abstract:  It is worth repeating that if data are approximately normally distributed then parametric tests (as in 

the modules on hypothesis testing) are more appropriate. However, there are situations in which assumptions 

for a parametric test are violated and a nonparametric test is more appropriate. This study was aimed to 

investigates the strength and Limitation of independent  t-test, Mann Whitney U test and Kolmogorov Smirnov 

test procedures on independent samples from unrelated population, under situations where the basic 

assumptions of parametric are not met for different sample size. Testing hypothesis on equality of means require 

assumptions to be made about the format of the data to be employed. Sometimes the test may depend on the 

assumption that a sample comes from a distribution in a particular family; if there is a doubt, then a non-

parametric tests like Mann Whitney U test or Kolmogorov Smirnov test is employed. Random samples were 

simulated from Normal, Uniform, Exponential, Beta and Gamma distributions. The three tests procedures were 

applied on the simulated data sets at various sample sizes (small and moderate) and their Type I error and 

power of the test were studied in both situations under study. 

Keywords: Independent Sample, Independent t-test, Mann Whitney U test, Kolmogorov Smirnov   test,Type  
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I. Introduction 
Nonparametric tests are usually less powerful than corresponding tests designed for use on data that 

come from a specific distribution. Thus, you are less likely to reject the null hypothesis when it is false. The 

tests often require one to modify the hypotheses. For example, most nonparametric tests about the population 

center are tests about the median instead of the mean. The test does not answer the same question as the 

corresponding parametric procedure ([1]). The strength of a nonparametric test resides in the fact that it can be 

applied without any assumption on the form of the underlying distribution. It is good for data with outliers and 

work well for ordinal data (data that have a defined order) because it based on ranks of data ([2]). 

Nonparametric test is a hypothesis test that does not require the population's distribution to be 

characterized by certain parameters. For instance, many hypothesis tests rely on the assumption that the 

population follows a normal distribution with parameters μ and σ. Nonparametric tests do not have this 

assumption, so they are useful when your data are strongly nonnormal and resistant to transformation. However, 

nonparametric tests are not completely free of assumptions about your data, but it may also require the data to 

be an independent random sample. For example, salary data are heavily skewed to the right, with many people 

earning modest salaries and fewer people earning larger salaries. Therefore, one can use nonparametric tests to 

analyse such type of data ([3]).  

In nonparametric tests very few assumptions are made about the distribution underlying the data and, in 

particular, it is not assumed to be a normal distribution. Some statisticians prefer to use the term distribution-free 

rather than nonparametric to describe these tests ([4]). In this article some hypothesis tests were developed in 

situations where the data come from a probability distribution whose underlying distribution is normal or not 

and different sample size were considered for each case of an independent sample. If the observations from two 

samples are unrelated, then we have independent observations. For example, a test could be done to investigate 

whether there is a difference in test anxiety based on educational level (i.e., your dependent variable would be 

"test anxiety" and your independent variable would be "educational level", which has two groups: 

"undergraduates" and "postgraduates"). Unrelated samples, also called unpaired samples or independent 

samples, are samples in which the cases in each sample are different. Often we are investigating differences in 

individuals, which means that when comparing two samples, an individual in one sample cannot also be a 

member of the other sample and vice versa. An example would be gender, an individual would have to be 

classified as either male or female not both. 

Nonparametric statistical tests are concerned with the application of statistical data in nominal or 

ordinal scale to problems in pure science, social science, engineering and other related fields.  Most of the 

present analysis carried out by non science and science oriented researchers are based on parametric test, and it 

is often reasonable to assume that observations come from a particular family of distributions. Moreover, 

experience backed by theory, suggest that for measurements, inferences based on the assumption that 
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observations form a random sample from some normal distribution may not be misleading even if the normality 

assumption is incorrect, but this is not always true. ([5]). Nonparametric tests often are used in conjunction with 

small samples, because for such samples the central limit theorem cannot be invoked. Nonparametric tests can 

be directed toward hypothesis concerning the form, dispersion or location (median) of the population. In the 

majority of the applications, the hypothesis is concerned with the value of a median, the difference between 

medians or the differences among several medians. This contrasts with the parametric procedures that are 

focused principally on population means. If normal model cannot be assumed for the data then the tests of 

hypothesis on means are not applicable. Nonparametric tests were created to overcome this difficulty. 

Nonparametric tests are often (but not always) based on the use of ranks; such as Kolmogorov Smirnov test, 

Wilcoxon rank test, Sign test, Mann Whitney U test, Kruskal Wallis test, etc ([6], [7]).  

The objectives of this study are in two forms: 

i. To examine the effect of non-normality on parametric independent t-test and the nonparametric tests of the 

Mann Whitney U test and Kolmogorov Smirnov test effect.   

ii. To examine the effects of sample size on the three test procedures based on type I error and power of test.  

 

II. Materials And Methods 
The materials used for the analysis were generated data using simulation procedures from selected 

continuous distributions. Since it is very difficult to get data that follows these distribution patterns, even if there 

is, it is very difficult to get the required number of replicates for the sample sizes of interest. The parametric 

(Independent t-test) and nonparametric (Mann Whitney U test and Kolmogorov Smirnov test), methods of 

analyzing independent sample were applied, to compare the performance of each test on the generated data from 

the Normal, Uniform, Exponential, Beta and Gamma distributions based on the underlying criteria for 

assessment   

 

2.1 Simulation Procedures and Analysis 

Random samples were simulated from Normal, Uniform, Exponential, Beta and Gammadistributions 

respectively for sample size of 5 10, 15, 25 and 30 which considered as small and moderate sample sizes 

respectively. Each test procedures were applied on the data sets at varying sample sizes and their Type I error 

and power of the tests were studied in each situation. At every replicate two samples were simulated 

independently from each distribution using the same parameters to form the required independent sample from 

the same population. The process was repeated 500 times for each independent sample size considered and 

results were displayed in table 1-5. 

 

2.2 Criteria for Assessment and Test of Significance 

 Some decision must often be made between significance of a test or not. Turning the p-value into a binary 

decision allows us to examine two questions about the comparative value of statistical tests: 

i. What percent of significant results will a researcher mistakenly judge to be in significant? 

ii. What percent of reported significant results will actually be in significant? 

Indeed the number of rejecting H0 when it is true is counted for type I error and number of times H0 is accepted 

when it is true was recorded as power of the test from each statistic under study.  

 

Student’s Independent t-test 
The independent t-test, also called the two sample t-test or student's t-test, is an inferential statistical 

test that determines whether there is a statistically significant difference between the means in two unrelated 

samples on the same continuous, dependent variable. The test also asks whether a difference between two 

samples’ averages is unlikely to have occurred because of random chance in sample selection. A difference is 

more likely to be meaningful and “real” if (i) the difference between the averages is large, (ii) the sample size is 

large, and (iii) responses are consistently close to the average values and not widely spread out (the standard 

deviation is low) ([8]). 

Note that before performing any Independent t-Test the following assumptions must be satisfied: 

i. Independence: Observations within each sample must be independent (they don’t influence each other) 

ii. Normal Distribution: The scores in each population must be normally distributed 

iii. Homogeneity of Variance: The two populations must have equal variances (the degree to which the 

distributions are spread out is approximately equal) 

Let 𝑥1𝑖and𝑥2𝑖  be two of observation from different population of individual i, then we obtain 

                              𝑡 =
𝑥 1 − 𝑥 2

𝑆𝑝 
1

𝑛1
+

1

𝑛2

  ~  𝑡𝑛1+𝑛2−1                                          (1) 
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where 𝑥 1 is the 1
st
sample mean, 𝑥 2 is the 2

nd
 sample mean and𝑆𝑝

2 =
 𝑛1−1 𝑆1

2+ 𝑛2−1 𝑆2
2

𝑛1+𝑛2−2
The null hypothesis (H0) is 

reject if calculated t value is greater than table value (i.e. 𝑡 𝑐𝑎𝑙 > 𝑡𝛼
2

,𝑛1+𝑛2−2
) otherwise we do not reject null 

hypothesis ([8]). 

 

Mann Whitney U test 
Mann Whitney U-test is a nonparametric test alternative to the two independent sample t-test, which is 

called the Wilcoxon rank sum test. The test, sometimes called the Mann Whitney U Test or the Wilcoxon Rank 

Sum Test, is used to test whether two samples are likely to derive from the same population (i.e., that the two 

populations have the same shape). Some investigators interpret this test as comparing the medians between the 

two populations. The procedure for the test involves pooling the observations from the two samples into one 

combined sample and arrange the jointly values in an increasing order of magnitude and rank them in ascending 

order of magnitude, keeping track of which sample each observation comes from, [i.e. from 1 to (𝑛1 + 𝑛2)], 

respectively. If there is ties, we assigned to each of the tied observations the mean of the ranks which they 

occupy. The test is based on 𝑊1 the sum of the ranks of the values of first group or on 𝑊2 the sum of the ranks 

of the values of second group. In actual practice, we base the test directly on  𝑊1and𝑊2, instead we use the 

related statistics    

𝑈1 = 𝑊1 −
𝑛1 𝑛1 + 1 

2
         or        𝑈2 = 𝑊2 −

𝑛2 𝑛2 + 1 

2
 

or the smaller of the two, which we denote by U i.e.  𝑈 = 𝑚𝑖𝑛(𝑈1 , 𝑈2) 

This test is often performed as a two-sided test and, thus, the hypothesis indicates that the populations 

are not equal as opposed to specifying directionality. A one-sided hypothesis is used if interest lies in detecting a 

positive or negative shift in one population as compared to the other.Therefore we reject H0 when 𝑈 ≤ 𝑈𝛼 2  for 

two tailed test or when 𝑈2 ≤ 𝑈𝛼  for one tailed test. Similar when 𝑈1 ≥ 𝑈𝛼  we reject H0 for one tailed test ([9]). 

 

Kolmogorov-Smirnov Test 

Suppose there are differences we wish to detect than can manifest themselves in the location (mean, 

median), the spread (scale, variance), or perhaps even in the shape of the two distributions. It would be helpful 

to have a test to detect "general" difference. The Kolmogorov-Smirnov test is such a test, it tests H0: The 

distributions are the same against H1: The distributions are not the same ([10]). Let the two samples 

𝑋1, 𝑋2 , … , 𝑋𝑚  and 𝑌1 , 𝑌2 , … , 𝑌𝑛  Denote F1(x) the cumulative distribution function (CDF) for the distribution of 

the first population and F2(y) the CDF for the second. Next, denote 𝐹 1 the sample CDF for the first treatment 

and 𝐹 2 be the sample CDF for the second treatment. The Kolmogorov-Smirnov statistic, denotes KS is found by 

𝐾𝑆 = 𝑚𝑎𝑥𝑣 𝐹 1 𝑣 − 𝐹 2 𝑣   
The statistic is calculated by finding the maximum absolute value of the differences between the two 

independent sample CDFs. The hypothesis regarding the distributional form is rejected if the test statistic, KS, is 

greater than the critical value obtained from a table ([11]). These alternative formulations should be equivalent, 

but it is necessary to ensure that the test statistic is calculated in a way that is consistent with how the critical 

values were tabulated. 

 

Table 1: Type I error (Normal Distribution)   α = 0.05 
Test Statistic 

Sample Size(n) Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.0513 0.0487 0.0087 

10 0.0373 0.0367 0.0093 

15 0.0473 0.0480 0.0260 

25 0.0540 0.0500 0.0407 

30 0.0533 0.0513 0.0340 

Averages 0.0486 0.0469 0.0237 

 

Table 2: Type I error (Uniform Distribution) α = 0.05 
Test Statistic 

Sample Size Independent 
T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.0653 0.0607 0.0093 

10 0.0627 0.0547 0.0147 

15 0.0540 0.0447 0.0333 

25 0.0433 0.0420 0.0440 

30 0.0333 0.0333 0.0413 

Averages 0.0517 0.0471 0.0285 
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Table 3: Type I error (Exponential Distribution) α=0.05 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.0433 0.0580 0.0120 

10 0.0427 0.0553 0.0153 

15 0.0540 0.0413 0.0327 

25 0.0360 0.0447 0.0440 

30 0.0400 0.0340 0.0433 

Averages 0.0432 0.0467 0.0295 

 

Table 4: Type I error (Beta Distribution) α = 0.05 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.0553 0.0487 0.0100 

10 0.0500 0.0473 0.0167 

15 0.0467 0.0460 0.0280 

25 0.0453 0.0433 0.0347 

30 0.0467 0.0467 0.0367 

Averages 0.0488 0.0464 0.0252 

 

Table 5: Type I error (Gamma Distribution) α = 0.05 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.0387 0.0520 0.0087 

10 0.0380 0.0480 0.0113 

15 0.0487 0.0447 0.0260 

25 0.0407 0.0460 0.0387 

30 0.0440 0.0493 0.0380 

Averages 0.0420 0.0480 0.0245 

      

Table 6: Summary of the Type I error α = 0.05 
Test Statistic 

Distributions Independent 
T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

Normal 0.0486 0.0469 0.0237 

Uniform 0.0517 0.0471 0.0285 

Exponential 0.0432 0.0467 0.0295 

Beta 0.0488 0.0464 0.0252 

Gamma 0.0420 0.0480 0.0245 

 

 
 

Table 7: Power of the Test (Normal Distribution) 
Test Statistic 

Sample Size Independent T Test Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.7290 0.6130 0.5170 

10 0.8020 0.7910 0.6650 

15 0.8730 0.8680 0.7930 

25 0.8960 0.8830 0.8580 

30 0.9230 0.8976 0.8860 

Averages 0.8446 0.81052 0.7438 
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Table 8: Power of the Test (Uniform Distribution) 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.8770 0.8915 0.8785 

10 0.8955 0.8983 0.9051 

15 0.9015 0.9414 0.9496 

25 0.9347 0.9624 0.9732 

30 0.9581 0.9782 0.9914 

Averages 0.91336 0.93436 0.93956 

 

Table 9: Power of the Test (Exponential Distribution) 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.1550 0.1120 0.1090 

10 0.4570 0.4560 0.1910 

15 0.6840 0.6160 0.3420 

25 0.8040 0.7060 0.4430 

30 0.8940 0.8780 0.5110 

Averages 0.5988 0.5536 0.3192 

 

Table 10: Power of the Test (Beta Distribution) 
Test Statistic 

Sample Size Independent 

T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.5230 0.6770 0.5190 

10 0.8420 0.8580 0.6480 

15 0.9320 0.9370 0.8170 

25 0.9450 0.9501 0.8780 

30 0.9510 0.9648 0.9150 

Averages 0.8386 0.87738 0.7554 

 

Table 11: Power of the Test (Gamma Distribution) 
Test Statistic 

Sample Size Independent 
T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

5 0.6760 0.6090 0.6140 

10 0.8070 0.7960 0.6450 

15 0.8838 0.8880 0.8105 

25 0.9160 0.9065 0.8880 

30 0.9317 0.9245 0.9160 

Averages 0.8429 0.8248 0.7747 

 

Table 12: Summary of the Power of the Tests 
Test Statistic 

Distributions Independent 
T Test 

Mann Whitney U Test Kolmogorov Smirnov Test 

Normal 0.8446 0.8105 0.7438 

Uniform 0.9134 0.9344 0.9396 

Exponential 0.5988 0.5536 0.3192 

Beta 0.8386 0.8774 0.7554 

Gamma 0.8429 0.8248 0.7747 
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III. Discussion Of Results 
Tables 1 – 5 and 7 – 11 indicate results of analyses using the independent t-test, Mann Whitney U test 

and Kolmogorov Smirnov test on how the tests perform based on the type I error and power of the test, both 

being compared at the 5% level of significance for two tailed test in each case. The average of each value of the 

type I error and power of the test were calculated and recorded under each statistical test for easy comparison. 

Figure 6 and 12 displayed the results of the analysis on how the tests perform based on the type I error and 

power of the test.  

The type I error of the independent t-test, Mann Whitney U test and Kolmogorov Smirnov test 

increases from normal distributions and started to decrease at sample size of 30 for independent t test and 

Kolmogorov Smirnov test as we can see in the table 1. However, the Kolmogorov Smirnov test increases in the 

type I error from the uniform, exponential and beta distributions, while independent t test and Mann Whitney U 

test type I errors decreases as the sample size increase for the respective distribution. Except that independent t 

test type I error value fluctuate from the exponential distribution as can be seen in table 3. For data generated 

from gamma distribution, the type I error for independent t test fluctuate as well. However, the Kolmogorov 

Smirnov test increases in the type I error for sample size 5 to 25, while Mann Whitney U test type I errors 

decreases as the sample size increase. 

The Mann Whitney U test has the type I error that is closest to α from exponential and gamma 

distribution while the independent t-test has the type I error that is closest to α from normal, uniform and beta 

distributions. The Kolmogorov Smirnov tests has the lowest type I error from all distributions consider for this 

study (see table 6). The power of the independent t-test as well as that of nonparametric tests (Mann Whitney U 

test and Kolmogorov Smirnov tests) increases as the sample size increases for data generated from the five 

distributions consider for this study with values range from 0.6130 to 0.9230, 0.8770 to 0.9914, 0.1090 to 

0.8940, 0.5190 to 0.9648 and 0.6090 to 0.9317 for normal, uniform, exponential, beta and gamma distributions 

from sample size of 5 to 30 respectively. The t-test test has the highest power from the data generated from 

normal, exponential and gamma distributions as shown in table 12 followed by Mann Whitney U test. In the 

data generated from uniform distribution Kolmogorov Smirnov test has the highest power followed by Mann 

Whitney U test, while the Mann Whitney U test has the highest power from beta distribution followed by the 

Independent t test. These can be seen clearly in the figure 2 presented above for the summary of the power of 

the tests. 

 

IV. Conclusion 
It was observed that the Mann Whitney U test has the highest power of the test from the data generated 

from beta distribution and therefore consider as the most powerful test in that respect while Kolmogorov 

Smirnov test has the highest power of the test from the data generated from uniform distribution as shown in 

table 12 and considered as the most powerful test for that distribution. Meanwhile, the independent t test was 

consider as the most powerful test from the data generated from normal, exponential and gamma distributions 

having the highest power of the test in that respect. However, there is no significant differences in the power of 

the tests when rounded to two decimal places, if they are compared based on the simulated data from the five 

selected distributions, using small sample sizes at the 5% levels of significance. Hence, the independent t-test is 

the most suitable test when the underline distribution is normal and when sample sizes are large for any 

distributions as reported in the table 1 – 5 and 7 – 11. However the two nonparametric tests are indeed 

alternative tests to t-test when the assumption of normality is not met for independent sample.  
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