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I. Introduction 

We consider the second order nonlinear neutral delay dynamic equation 

 r t  𝑥 t + p t x α t   
∆
 
∆

+ q t f  x β t   = 0,      t ∈  t0
 ,∞) (1.1) 

Where T is a time scale with sup T =  ∞   and the time scale interval   t0
 ,∞)𝑇 =  t0

 ,∞) ∩ T. 

Subject to the conditions: 

(H1)     r ∈ ∁
1
rd
  t0,∞) T ,  0,∞   ,   p ∈ ∁

2
rd
  t0,∞) T ,  R ; 

(H2)   q ∈ Crd   t0,∞)  T , R  and q does not vanish eventually; 

(H3)   f ∈ C1 R, R  such thatf satisfies uf u > 0  𝑓𝑜𝑟 𝑢 ≠ 0,  f ′ u ≥ 0  for  u ∈ R; 

(H4)    α, β ∈ Crd  t0,∞) T , R    are strictly increasing functions such that 

α t ≤ t ,   β t ≤ t  and    lim
t→∞

α t = ∞ = lim
t→∞

β t . 

 

Let tx ∈  t0
 ,∞)T  such that α t ≥ t0, β(t) ≥ t0 for allt ∈  tx

 ,∞)T .By a solution of equation 

(1.1)weshallmeanafunctionx ∈ ∁rd ( tx
 ,∞)T , R)whichhasthepropertiesx t + p(t)x(α(t)) ∈ ∁rd

1  tx
 ,∞)T  

andr t [x t + p(t)x(α(t))] ∈ ∁rd
1  tx

 ,∞)Tsatisfiesequation(1.1) on tx
 ,∞)T .As is customary, a solution of 

equation(1.1) is oscillatory solution (OS) if it is neither eventually positive nor eventually negative, otherwise it 

is called non-oscillatory. A non-oscillatory solution x t  of equation (1.1) is said to be weakly oscillatory 

solution (WOS) if x t  is non-oscillatory and x∆(t) is oscillatory for large values oft ∈  t0
 ,∞). 

A major task of mathematics today is to harmonize the continuous and the discrete, to include them 

inone comprehensive mathematics and eliminate obscurity from both. 

The theory of time scales, which has recently received a lot of attention was introduced by StefenHilger 

in his Ph.D thesis in 1988 in order to unify continuous and discrete analysis (see [1]). Since then, there has been 

extensive improvement in the oscillation theory of dynamic equations has been increasing (see[[2]-[5]]), and the 

references cited therein. We are interesting in this paper by classifying all solutions of (1.1) into four classes and 

obtainconditions for existence/nonexistence of solutions in these classes. Our results in this papernot only new 

for differential and difference equations, but are also new for the generalized difference and q-difference 

equations and many other dynamic equations on time scales. 

Some authors have paid their attention related to the existence/nonexistence of solutions of various 

equations. For example (see [8]), Cecchi et. al. considered the following differential equations 

[p t h(x)x′(t)]′+ q t f  x g t   = 0,(1.2) 

and 

[p t h(x)x′(t)]′+ q t f  x  t   = 0,(1.3) 

Agarwal et. al. (see [11]) considered the following difference equation 

∆ pn∆ yn + hnyn−k  + qn+1f yn+1−k = 0,    n ∈ {0,1.2… . . }(1.4) 

Where ∆is the forward difference operator, Sabah Hafez Abdallah (see [10]) considered the following 

differential equation 

[p t (x t + h t x t − τ )′ ]′  + q t xα(t− σ) = 0,(1.5) 

where τ and σare non-negative real numbers, and many authors (see[11]-[14]) considered various 

differential/difference equations, but all are studied the above equations by classifying all solutions into four 
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classes such asM+, M−, OS and WOS and obtained criteria for the existence/non-existence of solutions in these 

classes. 

Motivated and inspired by the papers mentioned above, in this paper we consider the equation (1.1), 

and deals the cases when q ≥ 0 and q changes the sign for all large t ∈  t0
 ,∞)𝑇 ,to give sufficient conditions in 

order that every solution of equation (1.1) is either oscillatory or weakly oscillatory and to study the asymptotic 

nature of non-oscillatory solutions of equation (1.1). With respect to their asymptotic behavior all the solutions 

of equation (1.1) may be priori divided in to the following classes: 

M+ =  x ∈ S ∶ ∂ tx ∈  t0,∞)  T  such that  x  t x∆ t ≥ 0 for  t ∈   tx,∞)  T ; 

M− =  x ∈ S ∶ ∂ tx ∈  t0,∞)  T  such that  x t x∆ t ≤ 0 for t ∈   tx,∞) T ; 

OS = x ∈ S ∶ ∂ a sequence  tn ∈   t0,∞)  T , tn → ∞ such that  x tn x tn+1 ≤ 0 ; 

WOS= x ∈ S: x t  is non oscillatory for large t ∈   t0,∞) T , but x∆ t  oscillates . 
 

With a very simple argument we can prove that M+,M−, OS, WOS are mutually disjoint. By the above 

definitions, it turns out that solutions in the classM+ are eventually either positive non-decreasing or negative 

non-increasing, solutions in the class M− are eventually either positive non-increasing or negative non-

decreasing, solutions in the class OS are oscillatory, and finally solutions in the class WOS are weakly 

oscillatory. 

In Section 2, we discuss definitions and preliminaries of time scale calculus. In Section 3, we obtain 

sufficient conditions for the existence/non-existence in the above said classes. In Section 4, we discuss the 

asymptotic behavior of solutions in the class of  M+ andM−.Finally section 5, follows conclusion. 

 

II. Definitions and Preliminaries 
For completeness in the paper, we find it useful to recall the following notions about time scale theory. 

A time scale is a nonempty closed subset of real numbers. On a time scale [ denoted by T], the forward jump 

operator, the backward jump operator, and the graininess function are defined as follows respectively 

σ t = inf s ∈ T: s > 𝑡 ,   ρ t = sup  s ∈ T: s < 𝑡 ,       μ t = σ t − t,      t ∈ T 

where inf∅ = supT (i.e., σ(t) = t if T has a maximum t)  

sup∅ = inf T (i.e., ρ(t) = t if T has a minimum t), here ∅ denotes the empty set. 

A point  t ∈ T  is said to be left-dense if  t >inf T and ρ(t) = t, right-dense if t < supT and σ (t) = t, left-

scattered ifρ(t) < t, right-scattered if σ(t) > t, and isolated if ρ(t) < t <σ(t). 

A function f :T → R is said to be right-dense continuous (rd-continuous) provided it is continuous at 

each right-dense points in T and its left-sided limit exists (finite) at left-dense points in T. The set of all such rd-

continuous functions is denoted by  Crd  T, R . 
We also need the setTk : If T has a left-scattered maximum m, then Tk  = T –{m}Otherwise,Tk= T. 

 Let f: T → R, then we define the function  fσ  : T  → R by 

fσ t = f(σ(t))for all  t ∈ Tk  

Fix  t ∈ Tk  and let f: T →  R. Define f∆(t) to be the number (provided it exists) with theproperty that 

given any 𝜖> 0, there is a neighborhood U of t such that    fσ t − f s  − f∆ t  σ t − s  ≤ ϵ σ t − s  for all 

s∈U.In this case we say that f∆ t  is the (delta) derivative of f at t and that f is (delta) differentiable at t. 

In limit form the (delta) derivative of a function f: T →  R is defined as 

f∆ t =

 
 
 

 
 f σ t  − f t 

μ t 
,                                            μ t > 0

lim
s→t

f t − f s 

t − s
,                                           μ t = 0 

  

Wheret ∈ Tk  (provided that limit exists). Higher-order delta derivatives are defined recursively. 

i.e.f∆
n
= (f ∆

n−1
)∆for n ∈ N with the convention f ∆

0
= f. Assume that f: T →R andlet t ∈ Tk , if f is (delta) 

differentiable at t, then f σ t  = f t + μ(t)f ∆ t . 

A functionF: T →  R is called an anti-derivative of f: T →  R provided F∆(t) = f(t) holds for all t ∈ Tk . 

It is well-known that every rd-continuous function has an anti-derivative. The set of functionsf: T →  R that are 

n-times (delta) differentiable and whose nth order (delta) derivative is rd-continuous is denoted by  ∁
n
rd
 T,  R . 

We will make use of the following product and quotient rules for the delta-derivatives of the product fg 

and 
f

g
(whereggσ ≠ 0, gσ = goσ) of two delta-differentiable functions f and g: 

 fg ∆ = f∆g + fσg∆ = fg∆ + f∆gσ ,                  
f

g
 
∆

=
f∆g− fg∆

gg∆
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Let f be a real-valued function defined on an interval a, b T . We say that f is increasing, decreasing, 

non-increasing, and non-decreasing on  a, b Tif for every t1, t2 ∈   a, b T  such thatt2 > t1 imply f(t2) > f(t1), 

f(t2) < f(t1), f(t2) ≤ f(t1) and f(t2) ≥ f(t1) respectively. Let f be a differentiable function on a, b T . Then f is 

increasing, decreasing, non-increasing and non-decreasing on  a, b Tiff ∆(t)>0, f∆(t) < 0, f∆(t)≤ 0 and f ∆(t) ≥ 

0for all  t ∈  a, b Trespectively. 

Theorem2.1. (Chain rule) ([1, Theorem 1.90]) Let f: R→R is continuously differentiable and supposeg : T→ R is 

delta differentiable. Then fog: T → R is delta differentiable and the formula 

 fog ∆ t = { f ′(g t + hμ(t)g∆(t))dh
1

0

}g∆(t) 

Theorem2.2.([1, Theorem 1.117]).Let a ∈ Tk , b∈ T and assume f: T × Tk → Rcontinuous at (t, t), where  t ∈ Tk   

with t > a. Also assume that f∆(t, .) is rd-continuous on [a,σ(t)]. Suppose that for each𝜖 > 0 there exists a 

neighborhood U of t, independent of𝜏 ∈ [𝑎,𝜎(𝑡)], such that  fσ t − f s  − f∆ t  σ t − s  ≤ ϵ σ t − s      
forall s∈ U.Wheref∆ denotes the derivative of  f with respect to the first variable. Then 

(i)g t =  f(t, τ)∆τ
t

a
impliesg∆ t =  f∆(t, τ)∆τ

t

a
+ f(σ t , t) 

(ii) h t =  f(t, τ)∆τ
b

t
impliesf∆ t =  f∆(t, τ)∆τ

t

a
− f(σ t , t) 

For more basic concepts in the time scale theory the readers are referred to the books (see[15, 16]). 

 

III. Existence And Non-Existence Of Solutions In 𝐌+,𝐌−, OS And WOS 
First, The existence of solutions of equation (1.1) in the class  𝐌+ 

Theorem3.1. With respect to the dynamic equation (1.1), assume that 

(i) p(t)≥ 0 and non-decreasing for all t∈ t0,∞)  T  and 

(ii) lim  supt→∞  q s ∆s = ∞
t

t0,
hold.Then for equation (1.1), we have M+ = ∅. 

Proof.Suppose that the equation (1.1) has a solutionx ∈ M+. Without loss of generality, we may assume that 

x(t) > 0and x∆(t) ≥ 0for large t∈ t0,∞)  T(The proof is similar ifx t < 0and x∆ t ≤ 0for large t∈  t0,∞) T). 

Then there exists t1 ∈  t0,∞)  T  such that x t , x α t  , x β t   all are non-negative for all t∈ t0,∞)  T . Define 

z t = x t + p(t)x(α(t))(3.1) 

Fort1 ∈  t0,∞)  T .  Then by condition (i), we have  z t > 0 𝑎𝑛𝑑 z∆(t) ≥ 0  for all t ∈  t1 ,∞ T .Using 

(3.1), equation (1.1) becomes 

 r t z∆(t) ∆ + q t f  x β t   = 0 

or 

 r t z∆(t) ∆ = −q t f  x β t   fort∈  t1,∞)  T)(3.2) 

Now for t ∈   t1,∞) T , 

 
r t z∆ t 

f x β t   
 

∆

=
 r t z∆ t  

∆

f x β t   
   +  r(σ t )z∆(σ t )  

1

f x β t   
 

∆

 

=
 r t z∆(t) 

∆

f x β t   
  - r(σ t )z∆(σ t )  

 f(x β t )  
∆

fσ x β t   f x β t   
  

=
 r t z∆(t) 

∆

f x β t   
- r(σ t )z∆(σ t )  

{ f′
1

0 (x(β t +hμ(t)(x(β t ))∆dh ))}(x(β t ))∆

fσ  x β t   f x β t   
  

=  
 r t z∆(t) 

∆

f x β t   
- r(σ t )z∆(σ t )  

{ f′
1

0 (x(β t +hμ(t) x β t   
∆

dh ))}x∆(β t )β∆(t)

fσ x β t   f x β t   
 (3.3)   

Therefore, 

 
r t z∆(t)

f x β t   
 

∆

≤  
 r t z∆ t  

∆

f x β t   
,t ∈   t1,∞) T                                                                                          (3.4) 

Because,  f ′ u ≥ 0 for u ≠ 0, z∆(t) ≥ 0 andx∆ β t  ≥ 0  ∀   t ∈   t1,∞)  T  

From (3.2) and (3.4),we have 

 
r t z∆(t)

f x β t   
 

∆

≤ −q(t)   for t ∈   t1,∞)  T  

Integrating the last inequality from  t1  to  t,   we obtain 

r t z∆(t)

f  x β t   
−

r t1 z
∆(t1)

f  x β t1   
≤ − q s ∆s

t

t1

 

From given condition (ii), we obtain 
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lim inf
t→∞

r t z∆(t)

f  x β t   
= −∞, 

Which contradicts the assumptionz∆(t) ≥ 0 for large t. Thus, the theorem is proved. 

Example3.2. In Theorem 3.1, the assumption (ii) cannot be dropped. For this, supposeT = qN0 , where q > 1 is a 

fixed real number and consider the following q- difference equation 

∆q[1/t2∆q(x t + q  1 −
1

t
 x(t/q))]   + 

2𝑞
2
3(1−1/𝑞2) 

q−1

1

t
10
3

x
1

3(
t

q2) =0,t∈ T(3.5) 

For this q- difference equation, assumption (i) holds, but (ii) is violated. The equation (3.5) has a 

solution x t = t ∈ M+. 
Theorem3.3.With respect to the dynamic equation (1.1), assume that 

(iii)−1 < 𝑝 t ≤ 0for all   t∈  t0,∞)  T; 

(iv)q(t) ≥ 0for all   t∈  t0,∞)  T; 

(v)limt→∞  q s ∆s = ∞
t

t0,
;  and 

(vi)limt→∞  
1

r s 

t

t0
∆s = ∞ hold. Then for equation (1.1),  we haveM+ = ∅. 

Proof.Suppose that the equation (1.1) has a solution x ∈ M+. Proceeding as in the proof of Theorem3.1, we 

have (3.1) and (3.2). Since  x ∈ M+  and (iii), we have 

z t = x t + p t x α t  ≥ x α t  + p(t)x α t  =  1 + p(t) x α t  > 0 

For  t ∈   t1,∞) T . From (3.1) and (iv), (1.1) becomes 

 r t z∆(t) ∆ = −q t f  x β t   ≤ 0,     for  t ∈   t1,∞) T  

This implies that r t z∆(t) is non increasing ont ∈   t1,∞) T . Now suppose that r t z∆(t)< 0 for large 

t ∈   t1,∞)  T . Then there exists t2 ∈   t1,∞)  T  such that 

r t z∆ t ≤ r t2 z
∆ t2 < 0 

z∆ t ≤
r t2 z

∆ t2 

r t 
 

Integrating from  t2 to t,  we obtain 

z t − z t2 ≤  
r t2 z

∆ t2 

r s 

t

t2

∆s. 

This implies that z t → −∞ as  t → ∞ due to (vi), which is a contradiction. 

Thus, r t z∆ t ≥ 0  for large  t ∈   t1,∞)  T . 
Hence, 

z∆ t ≥ 0 . 
Now proceeding as in the proof of Theorem 3.1, we obtain 

lim 
t→∞

r t z∆(t)

f  x β t   
= −∞, 

due to (v), which contradicts the assumption  z∆ t ≥ 0 for large t ∈   t1,∞) T . 

This completes the proof of the theorem. 

Example3.4.  In theorem  3.3, some of the assumptions cannot be dropped. For this, suppose T = Z and the 

difference equation 

∆ e−n∆ x n − e−3n+2x n − 2   +  e−2 − 1  e−3 − 1 e9e−6nx3 n − 3 = 0, n ≥ 3 ∈ T.  (3.6) 

For this difference equation conditions (iii), (iv) and (vi) are satisfied, whereas, (v) is violated. The  

equation (3.6) has a solution x n = en ∈ M+ 

 

Next, The existence of solutions of equation(1.1) in the class 𝐌−: 

Theorem3.5. With respect to the dynamic equation (1.1), assume that 

(vii)β t ≤ α t ; 

(viii)the function  
1

f u 
 is locally integrableon (0,c) and (-c,0) for some c > 0, 

i.e 
du

f u 
< ∞,       

du

f u 

0

−c

c

0
> ∞; forsome  c>0 

(ix)f is sub multiplicative i.e.f uv ≤ f u f v       for   u, v ∈ R; 

(x)p t ≥ 0 and  non-increasing;    and 

(xi)lim supt→∞  
1

r s f 1+p s  
 q τ ∆τ∆s = ∞

s

t0

t

t0
hold. 
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Then for equation (1.1), we have M− = ∅. 

Proof.Suppose that equation (1.1) has a solution x ∈ M−.  Without loss of generality, we may assume that  

x t > 0  and x∆ t ≤ 0for large t∈  t0,∞)  T .Then there exists t1 ∈   t0,∞) T  such thatx t , x α t  , x β t    all 

are positive and x∆ t , x∆ α t  , x∆ β t   all are non-positive for all t∈  t1,∞) T . Defining z t  as in (3.1). Then 

by using (x), we see that z t >0 and z∆ t ≤ 0  for all t∈  t1,∞) T . Then equation (1.1) becomes 

 r t z∆(t) ∆ + q t f  x β t   = 0for   t∈  t1,∞)  T . 

proceeding as in the proof of  theorem  (3.1) , we obtain 

r t z∆(t)

f  x β t   
−

r t1 z
∆(t1)

f  x β t1   
≤ − q s ∆s

t

t1

 

Which implies that, 
z∆(t)

f x β t   
≤ −

1

r t 
 q s ∆s

t

t1
                                                                         (3.7) 

Since, x is non-increasing and    β t ≤ α t  then we have 

z t = x t + p t x α t  ≤  1 + p t  x α t  ≤  1 + p t  x β t   for  t∈  t1,∞) T .    Using (ix), we 

have 

f z t  ≤ f   1 + p t   f  x β t   for  t∈  t1,∞) T .  (3.8) 

From (3.7) and  (3.8), we have 

z∆(t)f  1+p t   

f z t  
≤ −

1

r t 
 q τ ∆τ

t

t1
, 

Implies that 

z∆(t) 

f z t  
≤ −

1

r t f   1 + p t   
 q τ ∆τ

t

t1

 

Integrating the last inequality from   t1    to    t,  we obtain 

  
z∆(t) 

f z t  
∆t ≤ − 

1

r s f   1 + p s   
 q τ ∆τ∆s

s

t1

t

t1

t

 t1

 

Implies that, 

 −
1

     f u 
∆u ≥

z t 

z   t1 

 
1

r s f   1 + p s   
 q τ ∆τ∆s

s

t1

t

t1

 

 
1

     f u 
du ≥

z t1 

z t 

 −
1

     f u 
∆u ≥

z t 

z   t1 

 
1

r s f   1 + p s   
 q τ ∆τ∆s

s

t1

t

t1

 

Using (xi), we have 

lim
t→∞

sup 
1

     f u 
∆u = ∞,

z t1 

z t 

 

Which contradicts to(viii).This completes the proof of the theorem. 

Example 3.6.  In theorem 3.5, some of the assumptions cannot be dropped. For this, suppose T = R and the 

differential equation 

{t2(x t + (1 − 1/t)x(t/3))′}′ +
2

t5/3 x1/3  
t

27
 = 0,      t ∈  t0,∞ T

, t0 > 0.(3.9) 

For the equation (3.9), all assumptions of Theorem 3.5 are hold, except(x) and (xi).The equation (3.9) 

has a solution x t =
1

t
 ∈ M− 

Theorem3.7.With respect to the dynamic equation (1.1), assume that (vi), (x) and 

(xii)q(t) > 0 for large  t ∈  t0,∞ T
hold. Then for equation (1.1), we  haveM− = ∅. 

Proof.  Proceeding as in the proof of Theorem 3.5, we have 

 r t z∆(t) ∆ = −q t f  x β t   < 0   for   t ∈   t1,∞) T . 

Then   r t z∆(t)  is decreasing.  For  t > t1,  we have 

r t z∆(t)< 𝑟 t1 z
∆(t1) < 0, 

Or   

z∆(t) < 𝑟 t1 z
∆(t1)

1

r t 
 

Integrating from  t1  to  tand  using (vi),  we get 
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z t ≤ z t1 + r t1 z
∆(t1) 

1

r s 
∆s.

t

t1

 

This implies that,z t → −∞  as   t → ∞,whichcontradicts to our assumption that z t > 0for all  

t ∈   t1,∞)  T .  This complete the proof of  the  theorem. 

Theorem3.8.   With respect to the dynamic equation(1.1), assume that (iii),(v),(vi) and (xii) holds. Then for 

equation (1.1), we haveM− = ∅. 
Proof.  Suppose that equation (1.1) has a solutionx ∈ M−. Proceeding as in the proof of  Theorem 3.5 , 

We have (3.1) and (3.2). Since x ∈ M− and (iii), we have 

z t = x t + p t x α t  ≥ x t + p t x t ≥  1 + p t  x(t) > 0 

From (3.2) and (xii), we have 

 r t z∆(t) ∆ = −q t f  x β t   < 0fort ∈   t1,∞) T . 

It follows that, r t z∆(t) is decreasing fort ∈   t1,∞)  T . Now proceeding as in the proof of Theorem 3.3. 

In view of (vi), we findr t z∆(t) ≥ 0for t ∈   t1,∞)  T . Then 

We define,       w t =
r(t)z∆(t)

f(z(t))
fort ∈   t1,∞)  T . 

w∆ t =
 r t z∆(t) 

∆

f z β t   
   +  r(σ t )z∆(σ t )  

1

f z β t   
 

∆

 

=
 r t z∆(t) 

∆

f Z β t   
  - r(σ t )z∆(σ t )  

 f(x β t )  
∆

fσ z β t   f z β t   
  

=
 r t z∆(t) 

∆

f z β t   
  - r(σ t )z∆(σ t )  

{ f′
1

0 (x(β t +hμ(t)(x(β t ))∆dh ))}(x(β t ))∆

fσ z β t   f z β t   
  

=  
 r t z∆(t) 

∆

f x β t   
- r(σ t )z∆(σ t )  

{ f′
1

0 (x(β t +hμ(t) x β t   
∆

dh ))}x∆(β t )β∆(t)

fσ x β t   f x β t   
  

Therefore, 

w∆ t ≤ −q(t) 
f x β t   

f z β t   
fort ∈   t1,∞)  T  .(3.10) 

In view of (iii), we have z(t) ≤ x(t)for  t ∈   t1,∞) T . Using this inequality in (3.10) andintegrating the 

resulting inequality, we get 

w t ≤ w t1 −  q s ∆s
t

t1
, 

Which implies, 

w t → −∞ as  t → ∞,due to (v) which is contradiction. This complete the proof. 

 

Next we establish sufficient conditions under which equation(1.1)has no weakly oscillatory solutions. 

Theorem3.9. With respect to the dynamic equation(1.1), assume that (iv) and  α t = t  hold. If (xiii) p t ≡

p ≥ 0   for t ∈   t0,∞)  T   then for equation (1.1), we have   WOS = ∅. 

Proof.  Let  x be a weakly oscillatory solution of (1.1). Without loss of generality, we may assume that x t >

0for large  t ∈   t0,∞)  T   (the proof is similar if x(t) < 0 for large t ∈   t0,∞) T). Then there existst1 ∈   t0,∞)  T  

such that x(t), x α t  , x β t    all are positive for all t ∈   t1,∞) T . Define  z t   as in Theorem (3.1), then by 

using (xiii), we see that z t > 0  𝑓𝑜𝑟   𝑡 ∈   t1,∞) T  and z∆ t  oscillatesfor large t. From equation (3.1) and (iv), 

equation (1.1) becomes 

 r t z∆(t) ∆ = −q t f  x β t   ≤ 0fort ∈   t1,∞) T . 

By taking F t = r t z∆(t),  then  above equation reduces to 

F t ∆ = −q t f  x β t   ≤ 0   for   t ∈   t1,∞) T . 

This implies that F is non-increasing, which gives a contradiction, because F is an oscillatory function. 

This completes the proof of the theorem. 

Example3.10.In Theorem 3.9, the assumption (iv) cannot be dropped. For this, supposeT = qN0 , where q > 1 is 

a fixed real number and consider the following q-difference equation 

∆q  t∆q x t + 2x t   +
12

 q−1 2

 −1 
log q

qt

t 2− −1 
log q

t
 

3 x3  
t

q
 = 0, t ∈ T     (3.12) 

For this q-difference equation, all assumptions of Theorem 3.9 hold, but (iv) is violated. The equation 

(3.12) has a solution 2 + −1 log q
t
belongs to WOS. 
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The following theorem holds when T = R, but not on arbitrary time scale. 

 

Theorem3.11.With respect to the dynamic equation(1.1), assume that (v), and (xiii). Ifα t = t = β t then for 

equation (1.1), we haveWOS = ∅. 

Proof.  Let x be a weakly oscillatory solution of (1.1). Without loss of generality, we may assume that  x t >

0for  large  t ∈   t0,∞) T  (the proof is similar if x(t) < 0 for large  t ∈   t0,∞)  T). Then there exists t1 ∈   t0,∞)  T   

such that x t , x α t  , x β t    all are positive for all t ∈   t1,∞) T . Define  z t   as in Theorem (3.1). Then by 

using (xiii), we see that z t =  1 + p t  x t > 0 for  t ∈   t1,∞)  T  and z∆ t =  1 + p x∆ t oscillates for 

large t.  Using (3.1), equation (1.1) becomes 

 r t z∆(t) ∆ = −q t f x t    for t ∈   t1,∞) T . 

Now for t ∈   t1,∞)  T , Now for t ∈   t0,∞) T , we obtain 

 
r t z∆(t)

f  x  t   
 

∆

=
 r t z∆(t) ∆

f  x  t   
+  r t  1 + p x∆ t   

1

f  x  t   
 

∆

 

=
 r t z∆(t) 

∆

f x  t   
− r t  1 + p x∆ t  

 f(x t  
∆

fσ x  t   f x  t   
  (3.13) 

Since T = R, the equation (3.13)becomes 

 
r t z′(t)

f  x  t   
 

′

=  
 r t z′(t) ′

f x t  
− r t  1 + p x′ t  

 f(x t  
′

fσ x t  f x t  
  

=
 r t z′(t) ′

f x t  
− r t  1 + p  x′ t  

2
 

f ′ x t  

f 2 x t  
  

Therefore, 

 
r t z′(t)

f x t  
 

′

≤
 r t z′ t  ′

f x(t) 
 

≤ −q t      for all  t ∈   t1,∞)  T  

Integrating the from     t1to  t ,   we obtain 

 
r t z′(t)

f x t  
 −  

r t1 z
′(t1)

f x t  
 ≤ − q s ∆s

t

t1

 

From(v), for large   t ∈   t1,∞) T , we obtain z′ t < 0,  Whichis contradiction, because   x   is weakly oscillatory. 

Theorem3.12.Withrespect to dynamic equation(1.1), assume that (iv), (v),(vi) and (xiii) hold. If 

(xiv) p(t) ≡ p( ≥ 0 ) for  t ∈   t0,∞) T . Then every solution of equation(1.1) is either oscillatory or weakly 

oscillatory. 

Proof. From Theorem 3.1, it follows that for equation (1.1) the class M+ = ∅.In order to complete the proof of it 

suffices to show that M− = ∅.Suppose that equation (1.1) has a solution x ∈ M−.  Without loss of generality, we 

may assume that  x t > 0  𝑎𝑛𝑑  x∆ t ≤ 0 for large t∈  t0,∞)  T  (the proof is similar if x(t) < 0 and x∆ t ≥ 0for 

large  t ∈   t0,∞)  T).Then there exists t1 ∈   t0,∞)  T  such that  x t , x α t  , x β t    all are positive and x∆ t , 

x∆ α t  , x∆ β t   all are non-positive for all t∈  t1,∞) T .Defining z(t) as in (3.1). Then by using (xiv), we 

seez t >0 andz∆ t ≤ 0 for all t∈  t1,∞) T . Then from equation (3.1),  (1.1) reduces to 

 r t z∆(t) ∆ = −q t f  x β t   ≤ 0fort ∈   t1,∞) T . 

Now for  t > t2 ≥ t1   t2 ∈  t1,∞) T  , we have 

 
r t z∆(t)

f x β t   
 

∆

=
 r t z∆(t) 

∆

f x β t   
   +  r(σ t )z∆(σ t )  

1

f x β t   
 

∆

 

= −q t +  r(σ t )z∆(σ t )  
1

f  x β t   
 

∆

 

≤  r(σ t )z∆(σ t )  
1

f  x β t   
 

∆

 

Integrating the fromt2     to      t ,    we obtain 
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r t z∆(t)

f  x β t   
 −  

r t2 z
∆(t2)

f  x β t2   
 ≤    r(σ s )z∆(σ s )  

1

f  x β s   
 

∆
t

t2

∆s 

≤   r(σ t2 )z∆(σ t2 )   
1

f  x β s   
 

∆

∆s
t

t2

 

this implies that, 

 
r t z∆(t)

f  x β t   
 ≤  r(σ t2 )z∆(σ t2 )  

1

f  x β t   
−

1

f  x β t2   
  

r t z∆(t) ≤  r(σ t2 )z∆(σ t2 )  1 −
f x β t   

f x β t2   
     for large   t ∈   t0,∞)  T  

since,x is non increasing, then we can find  k(<0) ∈ R   such that 

 r(σ t2 )z∆(σ t2 )  1 −
f x β t   

f x β t2   
 ≤ kfor all  t ∈   t2,∞) T . 

Therefore, 

r t z∆(t) ≤ k 

Orz∆(t) ≤
k

r t 
 

Thus, for large  t ∈   t2,∞) T ,   we have 

z t − z t2 ≤ k 
1

r s 
∆s

t

t2

 

which implies thatz t → −∞     as  t → ∞,a contradiction toz t > 0.This completes the proof of the 

theorem. 

Example3.13.Let T = hZ, where h is a ratio of odd positive integers and consider the following 

h-difference equation 

∆h e
−t∆h x t + x t − h   +

 eh−1  1+e−h  e−6h

h2 etx3 t − 2h = 0,    for   t ≥ 2h.                  (3.14) 

It is easy to see that equation (3.14) satisfies all the conditions of Theorem (3.12).Hence every solution 

of equation (3.14) oscillatory or weakly oscillatory. In particularx t = (−1)tetis a solution of equation (3.14). 

 

IV. Behavior Of Solutions In M+AndM− 
Theorem4.1.With respect to the dynamic equation (1.1), assume that (vii), (ix), (x) and (xi) are hold. Then for 

every solutionx ∈ M−, we havelimx→∞ x t = 0 . 

Proof. Proceeding as in the proof of Theorem 3.5, we have 

 
du

f u 
≥

z t1 

z t 

 −
∆u

f u 
≥

z t 

z t1 

 
1

r s f   1 + p s   
 q τ ∆τ∆s

s

t1

t

t1

 

Using(xi), we obtain 

limsup
t→∞

 
du

f u 
= ∞.

z t1 

z t 

 

This implies thatlimt→∞ z t = 0,  because  z t ≥ x t    and  x  is  monotonic.This completes  the 

proof  of the  theorem. 

Theorem4.2. With respect to the dynamic equation (1.1),assume that (i), (iv) andp(t) is bounded hold. If (xv) 

limsupt→∞  q s 
t

t0
 

1

r τ 
∆τ∆s

s

t0
= ∞.Then every solution of (1.1) in the class  M+ is unbounded. 

Proof. Let  x be a solution of (1.1) such thatx ∈ M+. Proceeding as in the proof of Theorem3.1,bydefining z t  

as in equation (3.1),we see that z t >0 and z∆ t ≥ 0 for all t∈  t1,∞)  T  due to (i). Then from equation (1.1), we 

obtain  equation (3.2).  For the function 

w t = −
r t z∆(t)

f x β t   
 

1

r s 
∆s

t

t1
, 

we have, 

w∆ t  =  −  r t z∆(t) ∆  
1

f  x β t   
 

1

r s 
∆s

t

t1

 −  r(σ t )z∆(σ t )  
1

f  x β t   
 

1

r s 
∆s

t

t1

 

∆
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= q(t)  
1

r s 
∆s

t

t1
−  r σ t  z∆ σ t    

1

f x β t   
  

1

r s 
∆s

t

t1
 
∆

 − 

 r(σ t )z∆(σ t )   
1

r s 
∆s

σ t 

t1

 
1

f  x β t   
 

∆

  

Implies that, 

w∆ t  ≥q(t)  
1

r s 
∆s

t

t1
−  r(t)z∆ t   

1

r(t)f x β t   
 −  r(σ t )z∆(σ t )   

1

r s 
∆s

σ t 

t1
 

1

f x β t   
 

∆

  

≥ q t  
1

r s 
∆s

t

t1

−
z∆ t 

f  x β t   
−  r(σ t )z∆(σ t )   

1

r s 
∆s

σ t 

t1

  
1

f  x β t   
 

∆

 

w∆ t ≥ q t  
1

r s 
∆s

t

t1

−
z∆ t 

f  x β t   
 

Integrating the above inequality from  t1  to   t ,  we get 

w t ≥  q s 
t

t1
 

1

r τ 
∆τ∆s

s

t1
−  

z∆ s 

f x β s   
∆s

t

t1
(4.15) 

As the function 
z∆ t 

f x β t   
  is positive for t ∈   t1,∞) T ,   then 

limt→∞  
z∆ s 

f x β s   
∆s

t

t1
exists. 

Assume that  limt→∞  
z∆ s 

f x β s   
∆s

t

t1
 =k < ∞. Taking into account(xv), and from (4.15) we get 

limsup 
t→∞

w t = ∞, 

Which gives a contradiction, because  w is negative for all t ∈   t1,∞)  T .Thus 

limt→∞  
z∆ s 

f x β s   
∆s

t

t1
 = ∞. (4.16) 

Consequently, 

lim
t→∞

 
z∆ s 

f  x β s   
∆s

t

t1

 ≤
1

f  x β s   
 z∆ s ∆s

t

t1

 

=
1

f  x β s   
 z t − z t1   

From (4.16), we get 

lim
t→∞

z t = ∞. 

Sincez t = x t + p t x α t    andx  is non negative, we have 

z t ≤  1 + p t  x t  
From above equation, we have 

lim
t→∞

x t = ∞. 

This completes the proof  of the theorem 

Corollary4.3. Assume that (iv), (vii), (viii), (ix), (xi), (xiv) and (xv) hold. Then everybounded solution of (1.1) 

is either oscillatory or weakly oscillatory. 

Proof: The proof follows from Theorems 3.5 and 4.2. 

 

V. Conclusion 
Inthis paper, we studied the non-existence solutions of class M+ and  M−for the ranges p(t)≥ 0 and 

−1 < 𝑝(𝑡) ≤ 0, and the non-existence solutions of a class WOS is studied for p t = −1 by taking some 

restriction in delays. Theexistence solutions of a class OS and WOS has been studied by the way, so that the 

class M+andM−is empty. In section 4, we have been studied the asymptotic behavior of M+ and  M−. It would 

be interesting to study the existence / non-existence of a class M+, M−, OS and WOS for different ranges 

ofp t .  In addition, extending such results to higher order equation would also be of interest. 
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