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Abstract: In some categories, certain subgroups of Hom(A,A) for some groups of morphisms 𝐴 → 𝐴 are very 

useful and interesting. In this paper, the author’s main aim is to study some such groups. Specifically, the 

automorphism groups of A, A being a group or a topological space, have been studied in certain cases. 
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I. Introduction 
Hossain[1,3] studied the automorphism groups and Hossain and Majumdar[5] studied the 

endomorphism semigroups of the special semigroups[2] having a set of generators such that each non-zero 

element is expressible uniquely in terms of the generators using each generator at most once. Some important 

structures for this class were determined in those studies. In the consequences of [1] and [3], the study of this 

paper has been done. Sometimes terminologies of Zassenhaus[7] and Scott[6] have been used in this study. For 

convenience of the study the following preliminaries are very necessary: 

As gluing operations one needs direct product, semidirect product, free product etc. If 1G and 2G

are two groups, the direct product },|),{( 22112121 GgGgggGG  of 1G and 2G is a group with 

multiplication given by  ).,(),)(,( 22112121 gggggggg  Its cardinality is obviously |G|⋅|H|. Sometimes 

G×H is termed the external direct product. It has two natural subgroups G}g|,1){(g=1×G 

 and H}.h|h){(1,=H×1   

Clearly,G≅G×1 since g⟼(g,1) is an isomorphism  of G⟶G×1, and similarly H≅1×H. So, one thinks 

of G×H as a group containing a copy of G.If 1G and 2G  are additive abelian groups, direct product in that 

case is replaced just by the direct sum of the groups.
 

 

Let H and K be two groups, and let )(: HAutK  be a homomorphism. The semidirect product 

of H by K via   is the set of ordered pairs },|),{( KkHhkh  together with the binary operation 

defined by )),((),)(,( 21212211 1
kkhhkhkh k , where k . is written for Kkk ),(  is a group. This 

group is denoted by KH  for the semidirect product of the group H by the group K. write N⋊ϕ K for the 

semidirect product.  

 

The present authors now define another type of group product termed free product as follows: 

Given any collection }:{ IiGi  of groups their free product exists and can be defined as follows: 

Assume that for each Ii   there is a homomorphism i of iG into a fixed group G . Then we say that G is the 

free product of the groups IiGi ,  if and only if for any group H and for any homomorphism 

IiHGii  ,: there exists a unique homomorphism HGf :  such that ii f   for every .Ii
 

 On the other hand, a group G is said to be the free product of its subgroups IA  , if the subgroups 

A generate G i.e., every element g of G is the product of a finite number of the elements of the A :  

),,2,1(,,21 niAaaag
iin    , and the expression is unique. In this case, the free product 

includes the component groups as subgroups. 

  

Specifically, if one only deals with abelian groups, it can be seen that the free product of abelian groups 

is again abelian. In that case, the free product equals the direct product.  
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The wreath product[4] of transformation groups G and H on sets A and B respectively, written

HG , is the group of all permutations   on BA  such that 

,,,))(),(()),(( BbAababa b    where H  and for each bBb ,  is a 

permutation of G on A, but for different b’s the choice of the permutations b  are independent. Here, 

we recall the following theorems: 

 

THEOREM 1.1[1]: 

(i) AutZ
+   {1}, the group with one element,  

(ii)AutQ
+  Q

+
, 

(iii)Aut (N(2))   {1}, the group with one element . 

 

If S a finite direct sum , where each Sα  is any of Z
+
, Q

+ 
or N(2); then 

THEOREM 1.2[1]: )()(
11 rr nn SSAutSSAutSAut    , where   denotes the wreath 

product, )( rii  . 

 

II. Group of Morphisms and Automorphism Groups 
Let A be an object of a category C. If a subset G(A) of Hom(A,A) is a group under composition of 

morphisms of C with 1A as the identity element, G(A) will be called a group of morphismsof A. Morphism is 

actually a structure-preserving map from one mathematical structure to another. In theory of sets,linear algebras, 

groups, topologies,morphisms are repectively functions, linear transformations,group homomorphisms and 

continuous functions. 

 

Now the subset of Hom(A,A) consisting of all ),( AAHomf  for which the inverse exists is the 

largest group of morphisms of A  and contains all groups of morphisms of A. This group will be called the 

automorphism group of A and denoted by .AAut  FNow for an object A of certain categories, AutA is 

sometimes very interesting, and has some important structures.  

 

For example, if the object A is V, a vector space over the field F, then  AutVAAut the group of all 

invertible linear operators of V,  and hence )(FMVAut nn , the group of all nn  non-singular matrices 

with entries in F. For R and C in place of V,these are GL(n, R) and  GL(n, C) respectively. It is known that 

several subgroups of GL(n, R) and  GL(n, C) are very important and widely used in theoretical physics. If the 

object A is a group or a topological space, AAut has different structure, and the aim in this study is to 

determine it using the notions of the mentioned few works. In this paper,  the structures of AAut  have been 

determined for those cases when A is any one of cyclic groups, the additive group Q of rational numbers, the 

additive group R of real numbers and the topological space R .  

 

For obtaining the structures of ,AAut the concepts of cyclic groups Cninfinite or finite with one 

generator, the additive group Znof the residue classes of the integers modulo some positive integers, say, n, 

additive group Qof rational numbers, additive group R of real numbers and the real topological spaces etc. have 

been used. The group of all automorphisms of G, i.e., the group of all 1-1 homomorphisms of G onto itself is 

denoted by .GAut It is assumed here that group homomorphisms, group isomorphisms and group 

automorphisms etc. are known well to the readers.  
 

III. Automorphism Groups of Real numbers and Real Topological spaces 
It is easy to see that if G is infinite cyclic with generator x, then the only automorphismsof G are given 

by the maps xx 
and 

1 xx 
. Hence GAut is the cyclic group of order 2 generated by  , i.e., 

)(2 CGAut  . 

For a finite cyclic group G, the situation is more complex. If x is a generator of G, then the 

automorphisms of G are precisely the homomorphisms of G given by the maps 
if xx i , where i is any 

integer relatively prime to n. Thus the order of GAut is )(n , where n is the order of G and  is the Euler 

function. We now determine the structure of nCAut . This is done by a manner different to that used in Scott 

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Mathematical_structure
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Set_theory
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(1964) and Zassenhaus (1958). Consider the ring Zn of the residue classes of the integers modulo n ( 2n ). 

Then the set of elements r Zn , with 1),( nr is a group under multiplication. For, since there are integers a, 

b such that 1 nbra and so, we have 1ra , a  is the multiplicative inverse of r , the bar denoting the 

residue class modulo n. The authors denote this group by ][n .  Clearly the order of  ][n is )(n , where  is 

the Euler function. Now the map ][: nCAut n   given by rf )( , where nC  being the cyclic group 

of order n and
rxxf )( , is an isomorphism. Thus this can be obtained in the following theorem.  

Theorem 3.1[3]: ].[nCAut n   

 

For the structure of the group ][n , it needs to prove that: 

Theorem 3.2[3]: If a and b are two relatively prime integers, then ][][][ baab   (direct product). 

Proof: The elements of ][ab are }{ )( irj raq
i
 , where }{ kr is the set of all positive integers less than a and 

relatively prime to a , and for a fixed ir , irj raq
i
)( is the set of integers in 

})1(,,2,{ iii rabrara   which are relatively prime to .a  

Define ][][: aab  by ][)( )( arraq irj i
 . Then,  is an onto homomorphism and 

}1{ )( 
irjaqKer . Now, ][: bKer  given by ][)( )()( braqraq irjirj ii

 is an 

isomorphism. 

Hence the sequence of abelian multiplicative groups and group homomorphisms 

1][][][1)(
1

 


aabbA 

is exact. Also, ][][:* bab   given by 

][)( )()(

* braqraq irjirj ii
 is a well defined homomorphism and ][

1* 1 b . Thus the sequence 

)(A splits. Hence ][][][ baab  . 

Theorem 3.3[3]: (i) Ifp is an odd prime, 
)(

][ np

n Cp


 for each positive integer n. 

(ii) 222]2[  nCCn
for each .2n  

Proof: (i) The order of 

).1(

)(][

1 



 pp

pp

n

nn   

The element 2  of ][ np  must have order exactly ).1(1  ppn
 Hence 2 is a generator of ].[ np  Thus, 

)(
][ np

n Cp


 . 

(ii) For 2n  and 3, the result is easily verified; for  3]2[ 2
and  53]2[ 3

. 

The authors first noted that for each 1],2[
22 

nn aa , the identity element of ]2[ n
. For 

,5,4,3,2n  this is true. Let it be true for 2n , let a be any integer then 12
22 

 nka
n

, for 

some integer k, so that 12122 1222 1

  nnn lkka
n

, where kkl n 222  . Hence 1
12 
n

a , 

where 1 is the identity element of ]2[ 1n
. 

The order of 3 in ]2[ n
is exactly .2 2n

 To do so we show that for all 13,4
32 

n

n in ]2[ n
, i.e., 

123
32 

 nk
n

for any integer k. 

By the above paragraph, there exists an integer l such that .123 12 3

  nl
n

Hence the authors had to show 

that l is odd. This can be done by induction on n. This is seen to be true for .4n Assume that for ,4n

123 12 3

  nl
n

, where l is odd. Squaring both sides, 



On Structures of Some Groups of Morphisms 

DOI: 10.9790/5728-1205036468                                          www.iosrjournals.org                                    67 | Page 

,1212)2(1223 2222222   nnnnnn
lllll where l  is odd. Hence 3 has order

22 n
in 

]2[ n
 i.e., ,3   the cyclic subgroup generated by 3  in ]2[ n

 has order .2 2n
 

Let ],2[ ny but  3y . Then,  32y , since the order of ]2[ n
 is .2 1n

 Now 
2y  cannot be equal 

to an odd power of ,3 for then y will be of order ,2 1n
 which is impossible by the  second paragraph of our 

proof. Hence
ry 22 3 , for some non-negative integer r. Then 

13 yr
 has order 2 and it does not belong to 

.3   Therefore ,33]2[ 1  yrn
 the internal direct product. Thus, 222]2[  nCCn

. 

Therefore,  the consequences of theorems 3.1, 3.2 and 3.3 together establish the theoremstated below: 

Theorem 3.4: Let n be positive integer 
re

r

e
ppn 

1

1 where rpp ,,1   are prime numbers with 

rppp  21  and reee ,,, 21   are positive integers. Then 















.2

,2
][

1)()(

1)()(22

1
1

2
2

21

pifCC

pifCCCC
nCAut

re
r

e

re
r

ee

pp

pp

n









 

It is clear that theorem 3.4 describe the structure of nCAut for an arbitrary positive integer 2n . 

Now the following propositions will focus the structure of Aut Qand AutR , where Q is the additive group of 

rational numbers and R is the additive group of real numbers. 

Proposition 3.5: Aut Q    Q
*
, where Q

*
is the multiplicative group of all non-zero rationals.  

Proof: Consider the map Aut: Q  Q
*
given by ),1()( ff  and the map : Q

* Aut Q given by 

fx )( , where, for each y Q, xyyf )( . Then and are homomorphisms. 

 Now, for each x Q
*
, xxxx  )1))((())(())((  , by the definitions of and . Hence

1 Q*. 

 Also, for each Autf  Q, Autgfff  ))1(())(())((  Q, where, for each y Q, 

)()1()( yfyfyg  so that fg  . Thus, ff ))(( . Therefore .1( QAut Therefore and  are 

isomorphism so that Aut Q   Q
*
. 

The authors noted from the above proposition 3.5 thatHom(Q, Q) ,   the additive group of all additive 

endomorphisms of Q, is given byHom(Q, Q) { f:Q → Q)/ f(x)=ax, aQ} Q. Here, the isomorphism is 

given by )1(ff  . 

 

Therefore, AutR, where R is the additive group of real numbers, is now clear and is given by: 

Proposition 3.6: Aut R    R
*
, whereR

*
 is the multiplicative group of all non-zero   real numbers. 

Proof: The map Aut: R R
 *

 given by )1()( ff  gives the required isomorphism for result of the 

aboveProposition 3.6. The arguments similar to those in the proof of  

Proposition3.5, prove the statement. 

Note that if R is the additive group of all real numbers and  R
+ 

is the multiplicative group of all positive 

real numbers, then the map : RR
+
 given by

xex )(  is an isomorphism of R onto R
+
. So, (R, +)  (R

+
,

 ). Since (R
+
, ) is a subgroup of index 2 in the group (R

*
, ), Aut(R, +) contains an isomorphic copy of  (R, 

+)  as a subgroup of index 2. 

We shall now determine the structure of the automorphism group of the topological space ℝwith the 

usual metric topology. It is the group of all homeomorphisms of the real line, i.e., with the topology induced by 

the metric d where  𝑑 𝑥,𝑦 = |𝑥 − 𝑦| . We denote this group by 𝐴𝑢𝑡ℝ .  

We note that the functions 𝑥 → 𝑐𝑥(magnification), 𝑥 → 𝑥𝑛 , and 𝑥 → 𝑥
1

𝑛 , where c is any non-zero real 

number and n is any odd positive integer, are homeomorphisms of ℝ onto itself, i.e., automorphisms of the real 

line. Also, 𝑥 → 𝑥 + 𝑎(translation) is an automorphism of this space for each real number a. The map 𝑥 → 𝑥2𝑛 is 

not a homeomorphism since it is not 1-1.The trigonometric functions are not 1-1, the exponential functions are 

not onto and the logarithmic function is not defined on the whole of ℝ. The map 𝑥 → 𝑐𝑥 includes as a particular 

case the reflection 𝑥 → −𝑥 at the point 0. It is clear that the reflection about any point is a 

homeomorphism.Therefore, the homeomorphisms of the real line consist of all reflections, all magnifications, 

all translations and all maps 𝑥 → 𝑥𝑎 (a an odd integer or its reciprocal), and their compositions.Now, every 
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translation is a composition of two reflections. For, if we consider the translation 𝜏𝑎 : 𝑥 → 𝑥 + 𝑎, we can verify 

that 𝜏𝑎 = 𝜌𝑎

2
𝜌0, where 𝜌𝑎

2
 and 𝜌0are reflections at the points  

𝑎

2
and 0 respectively. In fact, AutRis generated by 

(i) All maps cxxc :  , where c is any non-zero real numbers, 

(ii) All maps
12

12 : 

  m

m xx  and 12

1

12
/ : 

  n
n xx  , where m, n are any positive integers, and 

(iii) All maps  aaxxa ,: R. 

Now, it can be easily verified that 
*

*}{ RM
Rcc 


 , 

*R being the multiplicative group of all non-zero real 

numbers, and ,},{ ,12
/

12 oddNnmnm QP    where oddQ is the multiplicative group of all rational 

numbers of the form
12

12





n

m
. Hence  RaaR }{ R, the additive group of all real numbers and thus we 

have the proposition: 

 

Proposition: 3.7: RQRRAut odd  *
, where  the denote the free product. 

Concluding remark:The structure of automorphism groups of finite cyclic groups is known through the 

theorem 3.1, theorem 3.3 and theorem 3.4. For the additive groupQ of rationals and R of real numbers,Aut Q 

and Aut R are to be known by proposition3.5 and finally, the automorphism group of real topological spaces has 

been determined by proposition 3.7. 
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