Sampling Expansion with Symmetric Multi-Channel Sampling in a series of Shift-Invariant Spaces

Adam zakria¹, Yousif Abdeltuif², Ahmed Abdallatif³

¹University of Kordofan, Faculty of Science, Department of Mathematics, Sudan ²Dalanj University, College of Education, Department of Mathematics, Sudan ³University of Zalingei, Faculty of Education, Department of Mathematics, Sudan

Abstract: We find necessary and sufficient conditions under which a regular shifted sampling expansion hold on $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ and obtain truncation error estimates of the sampling series. We also find a sufficient condition for a function in $L^2(\mathbb{R})$ that belongs to a sampling subspace of $L^2(\mathbb{R})$. We use Fourier duality between $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ and $L^2[0,2\pi]$ to find conditions under which there is a stable asymmetric multi-channel sampling formula on $\sum_{d=1}^m V\left(\varphi(t_d)\right)$.

Keywords: Shift invariant space, sampling expansion, Multi-channel sampling, Frame Riesz basis.

I. Introduction

Let $\sum_{d=1}^m \varphi(t_d)$ in $L^2(\mathbb{R})$, let $\sum_{d=1}^m V\left(\varphi(t_d)\right) = \operatorname{span}\{\sum_{d=1}^m \varphi(t_d-n): n \in \mathbb{Z}\}$ be the closed subspace of $L^2(\mathbb{R})$ spanned by integer translates $\{\sum_{d=1}^m \varphi(t_d-n): n \in \mathbb{Z}\}$ of $\sum_{d=1}^m \varphi(t_d)$. We call $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ the series of shift invariant space generated by $\sum_{d=1}^m \varphi(t_d)$ and $\sum_{d=1}^m \varphi(t_d)$ a frame or a Riesz or an orthonormal generator if $\{\sum_{d=1}^m \varphi(t_d-n): n \in \mathbb{Z}\}$ is a frame or a Riesz basis or an orthonormal basis of $\sum_{d=1}^m V\left(\varphi(t_d)\right)$. The multi-channel sampling method goes back to the works of Shannon [16] and Fogel [15], where reconstruction of a band-limited signal from samples of the signal and its derivatives was found. Generalized sampling expansion using arbitrary multi-channel sampling on the Paley-Wiener space was introduced first by Papoulis [14].

Adam zakria , Ahmed Abdallatif 'Yousif Abdeltuif [1] and S. Kang , J.M. Kim, K.H. Kwon [12] considered sampling expansion in a series of shift invariant spaces and symmetric multi-channel sampling in shift-invariant spaces space $V(\varphi)$ with a suitable Riesz generator $\varphi(t)$, where each channeled signal is sampled with a uniform but distinct rate. Using Fourier duality between $\sum_{d=1}^m V(\varphi(t_d))$ and $L^2[0,2\pi]$ [7,8,9,12], we derive under the same considerations a stable series of shifted asymmetric multi-channel sampling formula in $\sum_{d=1}^m V(\varphi(t_d))$. For example, Walter considered a real-valued continuous orthonormal generator satisfying $\sum_{d=1}^m \varphi(t_d) = O((1+\sum_{d=1}^m |t_d|)^{-s})$ with s>1, Chen, Itoh, and Shiki considered a continuous Riesz generator satisfying $\sum_{d=1}^m \varphi(t_d) = O((1+\sum_{d=1}^m |t_d|)^{-s})$ with $s>\frac{1}{2}$, and Zhou and Sun considered a continuous frame generator $\sum_{d=1}^m \varphi(t_d)$ satisfying $\sup_{\mathbb{R}} \sum_{n\in\mathbb{Z}} \sum_{d=1}^m |\varphi(t_d-n)|^2 < \infty$. We find necessary and sufficient conditions under which an irregular sampling expansion and a regular shifted sampling expansion hold on $\sum_{d=1}^m V(\varphi(t_d))$. We give an illustrative examples (see[6, 12]).

II. Preliminaries

We consider the notations and formulas in [6, 12]. Take $\{\varphi n: n \in \mathbb{Z}\}$ be a sequence of elements of a separable Hilbert space H with the inner product (,) and $V = \overline{span}\{\varphi n: n \in \mathbb{Z}\}$ the closed subspace of H spanned by $\{\varphi_n: n \in \mathbb{Z}\}$. Then $\{\varphi_n: n \in \mathbb{Z}\}$ is called

- a Bessel sequence (with a Bessel bound B) if there is a constant $A + \varepsilon_0 > 0$ such that $\sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0) ||\varphi||^2, \varphi \in H$ (or equivalently $\varphi \in V$),
- a frame sequence (with frame bounds $(A, A + \varepsilon_0)$) if there are constants $A, A + \varepsilon_0 > 0$ such that $A||\varphi||^2 \le \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0)||\varphi||^2$, $\varphi \in V$, a Riesz sequence (with Riesz bounds $(A, A + \varepsilon_0)$) if there are constants $A + \varepsilon_0$, A > 0

$$A\|c\|^2 \leq \left\| \sum_{r \in \mathbb{Z}} c\ (n)\ \varphi_n \right\|^2 \leq (A + \varepsilon_0) \|c\|^2, c \ = \ \{c(n)\}_{n \in \mathbb{Z}} \ \in \ l^2$$

where $\|c\|^2 = \sum_{n \in \mathbb{Z}} |c(n)|^2$, an orthonormal sequence if $(\varphi_m, \varphi_n) = \delta_{m,n}$ for all m and n in \mathbb{Z} .

If $\{\varphi_n:n\in\mathbb{Z}\}$ is a frame sequence or a Riesz sequence or an orthonormal sequence in H, then we say that $\{\varphi_n:n\in\mathbb{Z}\}$ is a frame or a Riesz basis or an orthonormal basis of the Hilbert subspace V in H. On $L^2(\mathbb{R})\cap$ $L^1(\mathbb{R})$, we take the Fourier transform to be normalized as

$$\mathcal{F}[\varphi](\xi) = \hat{\varphi}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(t) e^{-it\xi} dt, \varphi(t) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$$

so that $\mathcal{F}[\cdot]$ becomes a unitary operator from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$.

For any $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$, let $\sum_{d=1}^{m} \Phi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - n)|^2$, $G_{\varphi}(\xi) = \sum_{n \in \mathbb{Z}} |\varphi(\xi + 2n\pi)|^2$. Then $\Phi(t) = \Phi(t + 1) \in L^1[0, 1]$,

$$G_{\alpha}(\xi) = \sum_{n \in \mathbb{Z}} |\varphi(\xi + 2n\pi)|^2$$
. Then $\Phi(t) = \Phi(t + 1) \in L^1[0, 1]$.

$$G_{\varphi}(\xi) = G_{\varphi}(\xi + 2\pi) \in L^{1}[0, 2\pi]$$
 and

$$||\sum_{d=1}^{m} \varphi(t_d)||^2_{L^2(\mathbb{R})} = ||\sum_{d=1}^{m} \Phi(t_d)||_{L^1[0,1]} = ||G_{\varphi}(\xi)||_{L^1[0,1]}.$$

The normalized Fourier transform is

$$\mathcal{F}[\varphi](\xi) = \hat{\varphi}(\xi) = \int_{-\infty}^{\infty} \sum_{d=1}^{m} \varphi(t_d) \prod_{d=1}^{m} e^{-it_d \xi} dt_d, \sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$

so that $\frac{1}{\sqrt{2\pi}}\mathcal{F}\left[\cdot\right]$ extends to a unitary operator from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$. For each $\sum_{d=1}^m \varphi(t_d) \in L^2(\mathbb{R})$, let

$$\sum_{d=1}^m C_{\varphi}(t_d) = \sum_{n\in\mathbb{Z}} \sum_{d=1}^m |\varphi(t_d+n)|^2 \text{ and } G_{\varphi}(\xi) = \sum_{n\in\mathbb{Z}} |\widehat{\varphi}(\xi+2n\pi)|^2.$$

Hence

$$\sum_{d=1}^{m} C_{\varphi}(t_d) = \sum_{d=1}^{m} C_{\varphi}(t_d+1) \in L^1[0,1], G_{\varphi}(\xi) = G_{\varphi}(\xi+2\pi) \in L^2[0,2\pi]$$

and

$$\left\| \sum_{d=1}^{m} \varphi(t_d) \right\|_{L^2(\mathbb{R})}^2 = \left\| \sum_{d=1}^{m} C_{\varphi}(t_d) \right\|_{L^1[0,1]} = \frac{1}{2\pi} \left\| G_{\varphi}(\xi) \right\|_{L^1[0,2\pi]}.$$

In particular, $\sum_{d=1}^m C_{\omega}(t_d) < \infty$ for a.e. $\sum_{d=1}^m t_d \in \mathbb{R}$. We also let

$$\sum_{d=1}^{m} Z_{\varphi}(t_d, \xi) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d + n) e^{-in\xi}$$

be the Zak transform [11] of $\sum_{d=1}^{m} \varphi(t_d)$ in $L^2(\mathbb{R})$. Then $\sum_{d=1}^{m} Z_{\varphi}(t_d, \xi)$ is well defined a.e. on \mathbb{R}^2 and is quasiperiodic in the sense that

$$\sum_{d=1}^{m} Z_{\varphi}(t_d + 1, \xi) = e^{i\xi} \sum_{d=1}^{m} Z_{\varphi}(t_d, \xi) \text{ and } \sum_{d=1}^{m} Z_{\varphi}(t_d, \xi + 2\pi) = \sum_{d=1}^{m} Z_{\varphi}(t_d, \xi).$$

 $\sum_{d=1}^{m} Z_{\varphi}(t_d + 1, \xi) = e^{i\xi} \sum_{d=1}^{m} Z_{\varphi}(t_d, \xi)$ and $\sum_{d=1}^{m} Z_{\varphi}(t_d, \xi + 2\pi) = \sum_{d=1}^{m} Z_{\varphi}(t_d, \xi)$. A Hilbert space H consisting of complex valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if there is a series of a functions $\sum_{d=1}^{m} q(s, t_d)$ on $E \times E$, called the reproducing kernel of H, satisfying

- (i) $\sum_{d=1}^{m} q(., t_d) \in H$ for each $\sum_{d=1}^{m} t_d \in E$,
- (ii) $\langle f(s), \sum_{d=1}^{m} q(s, t_d) \rangle = \sum_{d=1}^{m} f(t_d), f \in H.$

In an RKHS H, any norm converging sequence also converges uniformly on any subset of E, on which $\|\sum_{d=1}^{m} q(.,t_d)\|^2 = \sum_{d=1}^{m} q(t_d,t_d)$ is bounded.

A sequence $\{\varphi_n : n \in \mathbb{Z}\}$ of vectors in a separable Hilbert space H is

(i) a Bessel sequence with a bound $A + \varepsilon_0 : \varepsilon_0 > 0$ if

$$\sum_{n\in\mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0) ||\varphi||^2, \varphi \in H, \varepsilon_0 > 0,$$

(ii) a frame of H with bounds $A + \varepsilon_0 \ge A : \varepsilon_0 > 0$ if

$$A\|\varphi\|^2 \le \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0) \|\varphi\|^2, \varphi \in H, \varepsilon_0 > 0,$$
(iii) a Riesz basis of H with bounds $A + \varepsilon_0 \ge A : \varepsilon_0 > 0$ if it is complete in H and

$$A\|c\|^{2} \leq \left\| \sum_{n \in \mathbb{Z}} c(n) \varphi_{n} \right\|^{2} \leq (A + \varepsilon_{0}) \|c\|^{2}, c = \{c(n)\}_{n \in \mathbb{Z}} \in l^{2}, \varepsilon_{0} > 0,$$

where
$$\|c\|^2 = \sum_{n \in \mathbb{Z}} |c(n)|^2$$

We let $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ be the series of the shift invariant spaces, where $\sum_{d=1}^m \varphi(t_d)$ is a series of a Riesz generators, that is, $\{\sum_{d=1}^m \varphi(t_d-n): n\in\mathbb{Z}\}$ is a series of a Riesz bases of $\sum_{d=1}^m V\left(\varphi(t_d)\right)$. Then

$$\sum_{d=1}^{m} V\left(\varphi(t_d)\right) = \left\{\sum_{d=1}^{m} (c * \varphi)(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n)\varphi(t_d - n) : C = \{c(n)\}_{n \in \mathbb{Z}} \in l^2\right\}.$$

It is well known see [5] that $\sum_{d=1}^m \varphi(t_d)$ is a series of a Riesz generators if and only if there are constant A such that $A \leq G_{\varphi}(\xi) \leq A + \varepsilon_0$ a.e. on $[0,2\pi]$. In this case, $\{\sum_{d=1}^m \varphi(t_d-n): n \in \mathbb{Z}\}$ is a series of a Riesz bases of $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ with bound $\varepsilon_0 > 0$. For any $c = \{c(n)\}_{n \in \mathbb{Z}}$ and $d = \{d(n)\}_{n \in \mathbb{Z}}$ in l^2 , the discrete convolution product of c and d is defined by

 $c*d=\{(c*d)(n)=\sum_{n\in\mathbb{Z}}c\ (k)d(n-k)\}$. Then \hat{c}^* (ξ) \hat{d}^* (ξ) belongs to $L^1[0,2\pi]$ and its Fourier series is $(c*d)(n)e^{-in\xi}$ so that

$$\int_{0}^{2\pi} \left| \hat{c}^{*} \left(\xi \right) \hat{d}^{*} (\xi) \right|^{2} d\xi = 2 \pi ||c * d||^{2}.$$
 (1)

Proposition 2.1: Let $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ and A > 0. Then

(a) $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Bessel sequence with a Bessel bound $A + \varepsilon_0$ if and only if $2\pi G_{\varphi}(\xi) \le A + \varepsilon_0$ a.e. on $[0, 2\pi]$,

(b) $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}\$ is a frame sequence with frame bounds $(A, A + \varepsilon_0)$ if and only if

$$A \le 2 \pi G_{\varphi} (\xi) \le A + \varepsilon_0 a.e. \ on E_{\varphi} ,$$
 (2)

(c) $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Riesz sequence with Riesz bounds

 $(A, A + \varepsilon_0)$ if and only if $A \le 2 \pi G_{\varphi}(\xi)$. $(A + \varepsilon_0)$ a.e. on $[0, 2 \pi]$,

(d) $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is an orthonormal sequence if and only if $2\pi G_{\varphi}(\xi) = 1$ a.e. on $[0, 2\pi]$.

Proof: (See [6]) For each $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ and $c = \{c(n)\}_{n \in \mathbb{Z}} \in l^2$, let

 $T(c)=(c*\varphi)(t)=\sum_{k\in\mathbb{Z}}\sum_{d=1}^mc(k)\,\varphi\,(t_d-k)$ be the semi-discrete convolution product of c and $\sum_{d=1}^m\varphi(t_d)$, which may or may not converge in $L^2(\mathbb{R})$. In terms of the operator T, called the pre-frame operator of $\{\sum_{d=1}^m\varphi(t_d-n):n\in\mathbb{Z}\}$, (see [6]): $\{\sum_{d=1}^m\varphi(t_d-n):n\in\mathbb{Z}\}$ is a Bessel sequence with a Bessel bound B if and only if T is a bounded linear operator from l^2 into $\sum_{d=1}^mV\left(\varphi(t_d)\right)$ and $||T(c)||^2_{L^2(\mathbb{R})}\leq A+\varepsilon_0||c||^2$, $c\in l^2$, $\{\sum_{d=1}^m\varphi(t_d-n):n\in\mathbb{Z}\}$ is a frame sequence with frame bounds $(A,A+\varepsilon_0)$ if and only if T is a bounded linear operator from l^2 onto $\sum_{d=1}^mV\left(\varphi(t_d)\right)$ and

$$A||c||^{2} \le ||T(c)||^{2}_{L^{2}(\mathbb{R})} \le (A + \varepsilon_{0})||c||^{2}, c \in N(T)^{\perp}, \tag{3}$$

where $N(T) = Ker T = \{c \in l^2 : T(c) = 0\}$ and $N(T)^{\perp}$ is the orthogonal complement of N(T) in l^2 , $\{\sum_{d=1}^m \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Riesz sequence with Riesz bounds $(A, A + \varepsilon_0)$ if and only if T is an isomorphism from l^2 onto $\sum_{d=1}^m V(\varphi(t_d))$ and

 $A||c||^2 \le ||T(c)||^2_{L^2(\mathbb{R})} \le (A+\varepsilon_0)||c||^2, c \in l^2, \{\sum_{d=1}^m \varphi(t_d-n): n \in \mathbb{Z}\}$ is an orthonormal sequence if and only if T is a unitary operator from l^2 onto $\sum_{d=1}^m V\left(\varphi(t_d)\right)$.

Lemma 2.2: Let $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$. If $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Bessel sequence, then for any $c = \{c(n)\}_{n \in \mathbb{Z}}$ in l^2 , $\widehat{c * \varphi}(\xi) = \widehat{c}^*(\xi)\widehat{\varphi}(\xi)$ (4)

so that

$$\|(c * \varphi)(t)\|^{2}_{L^{2}(\mathbb{R})} = \int_{-\infty}^{\infty} |\hat{c}^{*}(\xi)\hat{\varphi}(\xi)|^{2} d\xi$$

$$= \int_{0}^{\infty} |\hat{c}^{*}(\xi)|^{2} G_{\varphi}(\xi) d\xi.$$
(5)

Proof: See [2,18]. Let $\sum_{d=1}^{m} \varphi(t_d)$ be a frame or a Riesz generator. Then T is an isomorphism from $N(T)^{\perp}$ onto $\sum_{d=1}^{m} V(\varphi(t_d))$ so that

$$\sum_{d=1}^{m} V(\varphi(t_d)) = \left\{ \sum_{d=1}^{m} (c * \varphi)(t_d) : c \in l^2 \right\} = \left\{ \sum_{d=1}^{m} (c * \varphi)(t_d) : c \in N(T)^{\perp} \right\},$$

where $\sum_{d=1}^m f(t_d) = \sum_{d=1}^m (c * \varphi)(t_d)$ is the L^2 -limit of $\sum_{k \in \mathbb{Z}} \sum_{d=1}^m c(k) \varphi(t_d - k)$. Applying (5), we have $N(T) = \{c \in l^2 : \hat{c}^*(\xi) = 0 \text{ a.e. on } E_{\varphi} \}$ so that

$$N(T)^{\perp} = \left\{ c \in l^2 : \hat{c}^*(\xi) = 0 \text{ a.e. on } N_{\varphi} \right\}. \tag{6}$$

Proposition 2.3: putting $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ be a frame generator and

Proof: Applying (4) for any $\sum_{d=1}^{m} f(t_d) = (c * \varphi)(t) \in \sum_{d=1}^{m} V(\varphi(t_d))$,

$$\begin{split} \sum_{d=1}^{m} \langle f(t_d), \psi(t_d - k) \rangle_{L^2(\mathbb{R})} &= \langle \hat{c}^*(\xi) \hat{\varphi}(\xi), e^{-ik \xi} \hat{\psi}(\xi) \rangle_{L^2(\mathbb{R})} \\ &= \langle \hat{c}^*(\xi) \hat{\varphi}(\xi), \frac{\hat{\varphi}(\xi)}{2\pi G_{\varphi}(\xi)} \chi supp G_{\varphi}(\xi) e^{-ik \xi} \rangle_{L^2(\mathbb{R})} \\ &= \frac{1}{2\pi} \int\limits_{0}^{2\pi} \hat{c}^*(\xi) \chi_{E_{\varphi}}(\xi) e^{ik \xi} d\xi, k \in \mathbb{Z} \end{split}$$

since $\hat{\psi}(\xi) = \frac{\hat{\varphi}(\xi)}{2\pi G_{\varphi}(\xi)} \chi supp G_{\varphi}(\xi)$ (see [13]), where $\chi_{E}(\xi)$ is the characteristic function of a subset E of \mathbb{R} . Hence

$$\sum_{d=1}^{m} \sum_{k \in \mathbb{Z}} \langle f(t_d), \psi(t_d - k) \rangle_{L^2(\mathbb{R})} e^{-ik\xi} = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \left(\int_{0}^{2\pi} \hat{c}^* (\xi) \chi_{E_{\varphi}} (\xi) e^{ik\xi} d\xi \right)$$
$$= \hat{c}^*(\xi) \chi_{E_{\varphi}} (\xi).$$

Now, $c \in N(T)^{\perp}$ if and only if \hat{c}^* (ξ) = 0 a.e. on N_{φ} (see (6)).

That is, $\hat{c}^*(\xi) = \hat{c}^*(\xi) \chi_{E_{\varphi}}(\xi)$ a.e. on $[0, 2\pi]$. Hence the conclusion follows. A Hilbert space H consisting of complex-valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if the point evaluation $l_t(f) = f(t)$ is a bounded linear functional on H for each t in E. In an RKHS H, there is a function k(s,t) on $E \times E$, called the reproducing kernel of H satisfying

(i) $k(\cdot, s) \in H$ for each s in E,

(ii)
$$\langle f(t), k(t,s) \rangle = f(s), f \in H$$
.

Moreover, any norm converging sequence in an RKHS H converges also uniformly on any subset of E, on which k(t,t) is bounded (see [4]).

If a series of shift invariant space $\sum_{d=1}^{m} V(\varphi(t_d))$ with a frame generator $\sum_{d=1}^{m} \varphi(t_d)$ is an RKHS, then its reproducing kernel is given by

$$\sum_{d=1}^{m} k(t_d, s) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d - n) \overline{\varphi(s - n)} = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d - n) \overline{\varphi(s - n)}$$
 (7)

where $\{\sum_{d=1}^m \psi\left(t_d-n\right): n\in\mathbb{Z}\}$ is the canonical dual frame of $\{\sum_{d=1}^m \varphi\left(t_d-n\right): n\in\mathbb{Z}\}$. We now find conditions on the generator $\sum_{d=1}^m \varphi(t_d)$ under which $\sum_{d=1}^m V\left(\varphi(t_d)\right)$ can be recognized as an RKHS. Since all functions in an RKHS must be pointwise well defined, we only consider generators $\sum_{d=1}^m \varphi(t_d)$ satisfying $\sum_{d=1}^m \varphi(t_d)$ is a complex valued square integrable

function well defined every where on
$$\mathbb{R}$$
 . (8)

If $\sum_{d=1}^{m} V(\varphi(t_d))$ is recognizable as an RKHS with the reproducing kernel $\sum_{d=1}^{m} k(t_d, s)$ as in (7), where $\sum_{d=1}^{m} \varphi(t_d)$ is a frame generator satisfying (8), hence

$$\Phi(s) = \sum_{n \in \mathbb{Z}} |\varphi(s-n)|^2 = \sum_{n \in \mathbb{Z}} \sum_{d=1}^m \left| \langle (k(t_d, s), \varphi(t_d-n)) \rangle_{L^2(\mathbb{R})} \right|^2$$

$$\leq (A + \varepsilon_0) ||K(\cdot, s)||^2_{L^2(\mathbb{R})} = (A + \varepsilon_0) k(s, s), s \in \mathbb{R},$$

therefore $A + \varepsilon_0$ is an upper frame bound of $\{\sum_{d=1}^m \varphi(t_d - n) : n \in \mathbb{Z}\}$. Hence

$$\sum_{d=1}^{m} \Phi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - n)|^2 < \infty \text{ for any } t \text{ in } \mathbb{R} .$$
 (9)

Conversely, we have:

Asymmetric multi-channel sampling Lemmas

The aim of this paper is as follows (see [11]). Let $\{L_{(1+\varepsilon_1)} [\cdot] : \varepsilon_1 \ge 0\}$ be N LTI (linear time-invariant) systems with impulse responses $\{\sum_{d=1}^{m} L_{(1+\varepsilon_1)}(t_d): \varepsilon_1 \geq 0\}$. Develop a stable series of shifted multi-channel sampling formula for any signal $\sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$ using discrete sample values from $\{\sum_{d=1}^{m} L_{(1+\varepsilon_1)}(t_d) : \varepsilon_1 \geq 0\}$, where each channeled signal $\sum_{d=1}^{m} L_{(1+\varepsilon_1)}[f](t_d)$ for $\varepsilon_1 \geq 0$ is assigned with a distinct sampling rate

$$\sum_{d=1}^{m} f(t_d) = \sum_{\epsilon_1=0}^{N} \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L_{(1+\epsilon_1)} [f] (\sigma_{(1+\epsilon_1)} + (1+\epsilon_2)_{(1+\epsilon_1)} n) s_{d(1+\epsilon_1),n} (t_d),$$

$$\sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)), \qquad (10)$$

where $\left\{\sum_{d=1}^m s_{d(1+\varepsilon_1),n}(t_d): \varepsilon_1 \geq 0, n \in \mathbb{Z}\right\}$ is a series of frames or a Riesz basis of $\sum_{d=1}^m V\left(\varphi(t_d)\right)$,

 $\{(1+\varepsilon_2)_{(1+\varepsilon_1)}: \varepsilon_1 \geq 0\}$ are positive integers, and $\{\sigma_{(1+\varepsilon_1)}: \varepsilon_1 \geq 0\}$ are real constants. Note that the series of shifting of sampling instants is unavoidable in some uniform sampling [11] and arises naturally when we allow rational sampling periods in (10). Here, we assume that each $L_{(1+\epsilon_1)}$ [:] is one of the following three types: the impulse response $\sum_{d=1}^m l(t_d)$ of an LTI system is such that (i) $\sum_{d=1}^m l(t_d) = \sum_{d=1}^m \delta(t_d+a)$, $a\in\mathbb{R}$ or

- (ii) $\sum_{d=1}^{m} l(t_d) \in L^2(\mathbb{R})$ or
- (iii) $\hat{l}(\xi) \in L^{\infty}(\mathbb{R}) \cup L^{2}(\mathbb{R})$ when

 $H_{\varphi}(\xi) = \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + 2n\pi)| \in L^2[0, 2\pi]$. For type (i),

 $\textstyle \sum_{d=1}^m L[\,f\,](t_d) \,=\, \sum_{d=1}^m f(t_d\,+\,a)\,, f\,\in\, L^2(\mathbb{R}) \quad \text{so that} \quad L[\,\cdot\,]\colon L^2(\mathbb{R}) \,\to\, L^2(\mathbb{R}) \quad \text{is an isomorphism.} \quad \text{In}$ particular, for any $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)),$ $\sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} (c * \psi)(t_d)$ converges absolutely on \mathbb{R} since

$$\sum_{d=1}^m C_{\psi}(t_d) = \sum_{n\in\mathbb{Z}} \sum_{d=1}^m |\psi(t_d+n)|^2 < \infty, \sum_{d=1}^m t_d \in \mathbb{R} \text{ , where }$$

$$\sum_{d=1}^m \psi(t_d) = \sum_{d=1}^m L[\varphi](t_d) = \sum_{d=1}^m \varphi(t_d+a). \text{ For types (ii) and (iii), we have the following results (see$$

Lemma 3.1. Putting $L[\cdot]$ be an LTI system with the impulse response $\sum_{d=1}^{m} l(t_d)$ of the type (ii) or (iii) as

$$\sum_{d=1}^{m} \psi(t_d) = \sum_{d=1}^{m} L[\varphi](t_d) = \sum_{d=1}^{1} (\varphi * l)(t_d) \text{ .Then}$$
(a)
$$\sum_{d=1}^{m} \psi(t_d) \in C_{\infty}(\mathbb{R}) = \left\{ \sum_{d=1}^{m} u(t_d) \in C(\mathbb{R}) : \lim_{\sum_{d=1}^{m} |t_d| \to \infty} \sum_{d=1}^{m} u(t_d) = 0 \right\},$$

- (b) $\sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}(t_d) < \infty$
- (c) for each $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$,

 $\sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} (c * \psi)(t_d)$ converges absolutely and uniformly on \mathbb{R} .

Hence $\sum_{d=1}^{m} L[f](t_d) \in C(\mathbb{R})$.

Proof Suppose that $\sum_{d=1}^m l(t_d) \in L^2(\mathbb{R})$. Then $\sum_{d=1}^m \psi(t_d) \in C_\infty(\mathbb{R})$ by the Riemann-Lebesgue lemma since $\hat{\psi}(\xi) = \hat{\varphi}(\xi)\hat{l}(\xi) \in L^1(\mathbb{R})$. Since

$$\sum_{n\in\mathbb{Z}} \left| \hat{\psi}(\xi + 2n\pi) \right| \le G_{\varphi}(\xi)^{\frac{1}{2}} G_{l}(\xi)^{\frac{1}{2}} \quad ,$$

$$\left\| \sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi + 2n\pi)| \right\|^{2} \leq \int_{0}^{2\pi} G_{\varphi}(\xi) G_{l}(\xi) d\xi \leq 2\pi \|G_{\varphi}(\xi)\|_{L^{\infty}(\mathbb{R})} \|l\|^{2}_{L^{2}(\mathbb{R})}.$$

Thus for any $\sum_{d=1}^{m} t_d$ in \mathbb{R} , we have by the Poisson summation formula (se [1])

$$\sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_d(\xi + 2n\pi)} = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi(t_d + n) e^{-in\xi} \text{ in } L^2 [0, 2\pi]$$

Therefore any $\sum_{d=1}^{m} t_d$ in \mathbb{R}

$$\sum_{d=1}^{m} C_{\psi}(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\psi(t_d + n)|^2 = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi(t_d + n) e^{-in\xi} \right\|^2_{L^2[0,2\pi]}$$

$$= \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_{d}(\xi + 2n\pi)} \right\|^{2}$$

$$\leq \left\| G_{\varphi}(\xi) \right\|_{L^{\infty}(\mathbb{R})} \|l\|^{2}_{L^{2}(\mathbb{R})}.$$

By Young's inequality on the convolution product, $||L[f]||_{L^{\infty}(\mathbb{R})} \leq ||f||_{L^{2}(\mathbb{R})} ||l||_{L^{2}(\mathbb{R})}$ so that $L[\cdot]: L^{2}(\mathbb{R}) \to \mathbb{R}$ $L^{\infty}(\mathbb{R})$ is a bounded linear operator. Where

$$\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) \varphi(t_d - n) \in \sum_{d=1}^{m} V(\varphi(t_d)),$$

$$\sum_{d=1}^{m} L[f](t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) L[\varphi(t_d - n)] = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) \psi(t_d - n),$$

which converges absolutely and uniformly on R by (b). Now assume that $H_{\omega}(\xi) \in L^{2}[0,2\pi]$. The case $\hat{l}(\xi) \in L^2(\mathbb{R})$ is reduced to type (ii). So let $\hat{l}(\xi) \in L^{\infty}(\mathbb{R})$. Then $\hat{\varphi}(\xi) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ so that $\hat{\psi}(\xi) = L^2(\mathbb{R})$ $\hat{\varphi}(\xi)\hat{l}(\xi) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ and so $\psi(\xi) \in \mathcal{C}_{\infty}(R) \cap L^2(\mathbb{R})$). Since

$$\sum_{n\in\mathbb{T}} |\hat{\psi}(\xi + 2n\pi)| \le ||l||_{L^{\infty}(\mathbb{R})} H_{\varphi}(\xi), \text{ we have again}$$

by the Poisson summation formula

$$\sum_{d=1}^{m} C_{\psi}(t_{d}) = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_{d}(\xi + 2n\pi)} \right\|^{2}$$

$$\leq \|l\|^{2} L^{\infty}(\mathbb{R}) \|H_{\varphi}(\xi)\|^{2} L^{2}[0.2\pi]$$

so that $\sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}(t_d) < \infty$. For any $f \in L^2(\mathbb{R})$,

$$\begin{split} \sum_{d=1}^{m} \|L[f](t_d)\|_{L^2(\mathbb{R})} &= \|f * l\|_{L^2(\mathbb{R})} = \frac{1}{\sqrt{2\pi}} \|\hat{f}(\xi)\hat{l}(\xi)\|_{L^2(\mathbb{R})} \\ &\leq \|\hat{l}\|_{L^{\infty}(\mathbb{R})} \|f\|_{L^2(\mathbb{R})}. \end{split}$$

Hence $L[\cdot]: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a bounded linear operator so that for any

 $\sum_{d=1}^m f(t_d) = \sum_{d=1}^m (\boldsymbol{c} * \boldsymbol{\varphi})(t_d) \in \sum_{d=1}^m V\left(\boldsymbol{\varphi}(t_d)\right), \sum_{d=1}^m L[f](t_d) = \sum_{d=1}^m (\boldsymbol{c} * \boldsymbol{\psi})(t_d) \text{ converges in } L^2(\mathbb{R}).$ By (b), $\sum_{d=1}^m (\boldsymbol{c} * \boldsymbol{\psi})(t_d)$ also converges absolutely and uniformly on \mathbb{R} .

By Lemma 3.2(b), $\sum_{d=1}^{m} \psi(t_d) \in L^2(\mathbb{R})$. However, $\sum_{d=1}^{m} (c * \psi)(t_d)$ may not converge in $L^2(\mathbb{R})$ unless $\{\sum_{d=1}^{m} \psi(t_d - n) : n \in \mathbb{Z}\}\$ is a Bessel sequence.

Lemma 3.2(b) improves Lemma 1 in [9], in which the proof uses $\sum_{d=1}^{m} l(t_d) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$,

 $\sup_{\mathbb{R}} \sum_{d=1}^m C_{\varphi}(t_d) < \infty$, and the integral version of Minkowski inequality. Note that the condition $H_{\varphi}(\xi) \in$ $L^2[0,2\pi]$ implies $\sum_{d=1}^m \varphi(t_d) \in L^2(\mathbb{R}) \cap \mathcal{C}_{\infty}((\mathbb{R})$ and $\sup_{\mathbb{R}} \sum_{d=1}^m \mathcal{C}_{\varphi}(t_d) < \infty$. (see [1]). Note also that $H_{\omega}(\xi) \in L^{2}[0,2\pi] \text{ if } \hat{\varphi}(\xi) = O((1+|\xi|)^{-(1+\epsilon_{2})}), (1+\epsilon_{2})_{(1+\epsilon_{1})} > 1, \epsilon_{1} \geq 0, \text{ which holds e.g. for } 0$ $\sum_{d=1}^{m} \varphi_n(t_d) = \sum_{d=1}^{m} (\varphi_0 * \varphi_{n-1})(t_d)$ the cardinal B-spline of degree $n \ge 1$, where

 $\varphi_0 = \sum_{d=1}^m \chi_{[0,1)}(t_d)$. We have as a consequence of Lemma 3.2: Let $L[\cdot]$ be an LTI system with impulse response $\sum_{d=1}^m l(t_d)$ of type (i) or (ii) or (iii) as above and $\sum_{d=1}^m \psi(t_d) = \sum_{d=1}^m L[\varphi](t_d)$. Then for any $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\mathcal{J}F)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)), F(\xi) \in L^2[0, 2\pi]$

$$\sum_{d=1}^{m} L[f](t_{d}) = \sum_{d=1}^{m} \langle (\xi), \frac{1}{2\pi} \overline{Z_{\psi}(t_{d}, \xi)} \rangle_{L^{2}[0, 2\pi]}$$
since $L[\cdot]$ is a bounded linear operator from $L^{2}(\mathbb{R})$ into $L^{2}(\mathbb{R})$ or $L^{\infty}(\mathbb{R})$ and $\{\sum_{d=1}^{m} \psi(t_{d} - n) : n \in \mathbb{Z}\} \in l^{2},$

 $\sum_{d=1}^m t_d \in \mathbb{R}$. Let $\sum_{d=1}^m \psi_{(1+\varepsilon_1)}(t_d) = \sum_{d=1}^m L_{(1+\varepsilon_1)}[\varphi](t_d)$ and

 $g_{(1+\varepsilon_1)}(\xi) = \frac{1}{2\pi} Z_{\psi_{(1+\varepsilon_1)}}(\sigma_{(1+\varepsilon_1)}, \xi), \ \varepsilon_1 \ge 0.$ Then we have by (11)

$$L_{(1+\varepsilon_1)}[f](\sigma_{(1+\varepsilon_1)} + (1+\varepsilon_2)_{(1+\varepsilon_1)}n) = \langle F(\xi), \frac{1}{2\pi}Z_{\psi_{(1+\varepsilon_1)}}(\sigma_{(1+\varepsilon_1)} + (1+\varepsilon_2)_{(1+\varepsilon_1)}n, \xi)\rangle_{L^2[0,2\pi]}$$

$$= \langle F(\xi), \overline{g_{(1+\varepsilon_1)}(\xi)}e^{-i(1+\varepsilon_2)_{(1+\varepsilon_1)}n\xi} \rangle_{L^2[0,2\pi]}$$
(12)

for any $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\mathcal{J} F)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$ and $\varepsilon_1 \geq 0$. Then by (12) and the isomorphism \mathcal{J} from L^2 [0,2 π] onto $\sum_{d=1}^{m} V(\varphi(t_d))$, the sampling expansion (10) is equivalent to

$$F(\xi) = \sum_{\epsilon_1=0}^{N} \sum_{n\in\mathbb{Z}} \langle F(\xi), \overline{g_{(1+\epsilon_1)}(\xi)} e^{-i(1+\epsilon_2)_{(1+\epsilon_1)} n \xi} \rangle_{L^2[0,2\pi]} S_{(1+\epsilon_1),n}(\xi),$$

 $F(\xi) \in L^2[0,2\pi]$, where $\{S_{(1+\varepsilon_1),n}(\xi): \varepsilon_1 \geq 0, n \in \mathbb{Z}\}$ is a series of frames or a Riesz basis of $L^2[0,2\pi]$. This observation leads us to consider the problem when is $\{\overline{g_{(1+\varepsilon_1)}(\xi)}e^{-i(1+\varepsilon_2)_{(1+\varepsilon_1)}n\xi}: \varepsilon_1 \geq 0 \text{ , } n \in \mathbb{Z} \}$ a series of frames or a Riesz basis of L^2 [0,2 π]. Note that

$$\left\{ \ \overline{g_{(1+\varepsilon_1)}\left(\xi\right.)}e^{-i\left(1+\varepsilon_2\right)_{(1+\varepsilon_1)}\,n\,\,\xi}\colon\varepsilon_1\geq 0\,,n\,\in\mathbb{Z}\,\right\}\ =$$

$$\left\{\overline{g_{(1+\varepsilon_1),m_{(1+\varepsilon_1)}}(\xi)}e^{-i(1+\varepsilon_2)n\xi}:\varepsilon_1\geq 0, 1\leq m_{(1+\varepsilon_1)}\leq \frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_{(1+\varepsilon_1)}}, n\in\mathbb{Z}\right\}$$

where
$$(1+\varepsilon_2) = lcm\{(1+\varepsilon_2)_{(1+\varepsilon_1)} : \varepsilon_1 \ge 0\}$$
 and
$$g_{(1+\varepsilon_1),m_{(1+\varepsilon_1)}}(\xi) = g_{(1+\varepsilon_1)}(\xi)e^{i(1+\varepsilon_2)_{(1+\varepsilon_1)}(m_{(1+\varepsilon_1)}-1)\xi}$$
 for $\varepsilon_1 \ge 0$. Let D be the unitary operator from

 L^2 [0,2 π]onto L^2 (I)^(1+ ϵ_2), where $I = [0,\frac{2\pi}{(1+\epsilon_2)}]$, defined by

$$DF = \left[F\left(\xi + (k-1)\frac{2\pi}{(1+\varepsilon_2)}\right) \right]_{k=1}^{(1+\varepsilon_2)}$$
, $F\left(\xi\right) \in L^2\left[0,2\pi\right]$. We also let

$$G(\xi) = \left[Dg_{1,1}(\xi), \dots, Dg_{1,\frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_1}}(\xi), \dots, Dg_{N,1}(\xi), \dots, Dg_{N,\frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_N}}(\xi) \right]^T$$
(13)

be a
$$\left(\sum_{\varepsilon_1=0}^N \frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_{(1+\varepsilon_1)}}\right) \times (1+\varepsilon_2)$$
 matrix on I and $\lambda_m(\xi)$, $\lambda_M(\xi)$

be the smallest and the largest eigenvalues of the positive semi-definite $(1 + \varepsilon_2) \times (1 + \varepsilon_2)$ matrix $G(\xi) *$

Lemma 3.2: Let $F(\xi) \in L^1(\mathbb{R})$ so that $f(t) = \mathcal{F}^{-1}[F](t) \in \mathcal{C}(\mathbb{R})$ and $0 \le \sigma < 1$. Then

$$\sum_{n\in\pi}e^{i\sigma(\xi+2n\pi)}F(\xi+2n\pi) \text{ converges absolutely in } L^1[0,2\pi] \text{ and }$$

$$\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \sim \frac{1}{\sqrt{2\pi}} Z_f(\sigma, \xi)$$

$$= \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} f(\sigma + n) e^{-in\xi}$$
(14)

which means that $\frac{1}{\sqrt{2\pi}}Z_f(\sigma,\xi)$ is the Fourier series expansion of

$$\sum_{n\in\mathbb{Z}} e^{i\sigma(\xi+2n\pi)} F(\xi+2n\pi) \text{ . If moreover } \sum_{n\in\mathbb{Z}} e^{i\sigma(\xi+2n\pi)} F(\xi+2n\pi)$$

converges in $L^2[0, 2\pi]$ or equivalently $\{f(\sigma + n)\}_{n \in \mathbb{Z}} \in l^2$,

$$\sum_{n\in\mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) = \frac{1}{\sqrt{2\pi}} Z_f(\sigma, \xi) \text{ in } L^2[0, 2\pi].$$
 (15)

Proof: Assume that $(\xi) \in L^1(\mathbb{R})$. Then

$$\sum_{n \in \mathbb{Z}} \left\| e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \right\|_{L^{1}[0,2\pi]} = \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} |F(\xi + 2n\pi)| \, d\xi$$

$$= \sum_{n \in \mathbb{Z}} \int_{0}^{2(n+1)\pi} |F(\xi)| \, d\xi = \int_{0}^{+\infty} |F(\xi)| \, d\xi$$

so that

$$\sum_{n\in\mathbb{Z}}e^{i\sigma(\xi+2n\pi)}F(\xi+2n\pi)$$
 converges absolutely in $L^1[0,2\pi]$.

Hence

$$\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi)$$

$$\sim \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \langle \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi), e^{-ik\xi} \rangle_{L^{2}[0,2\pi]} e^{-ik\xi},$$

where

$$\begin{split} \langle \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi), e^{-ik\xi} \rangle_{L^{2}[0,2\pi]} \\ &= \int_{0}^{2\pi} \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \ e^{ik\xi} \ d\xi \\ &= \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \ e^{ik\xi} \ d\xi \\ &= \int_{0}^{2\pi} F(\xi) e^{i(\sigma + k)\xi} \ d\xi = \sqrt{2\pi} \ f(\sigma + k) \end{split}$$

by the Lebesgue dominated convergence theorem. Hence (14) holds. Now assume that $F(\xi) \in L^1(\mathbb{R})$ and $\sum e^{i\sigma(\xi+2n\pi)}F(\xi+2n\pi) \text{ converges in } L^2[0,2\pi]. \text{ Then (15) becomes}$

an orthonormal basis expansion of $\sum e^{i\sigma(\xi+2n\pi)}F(\xi+2n\pi)$ in $L^2[0,2\pi]$

so that (15) holds.

Corollary 3.3: (see [3]). If $F(\xi)$ is measurable on \mathbb{R} and

 $\sum_{n\in\mathbb{Z}} F(\xi + 2n \pi)$ converges absolutely in $L^2[0, 2\pi]$, then

$$\sum_{n \in \mathbb{Z}} F(\xi + 2n \pi) = \frac{1}{\sqrt{2\pi}} Z_f(0, \xi) \text{ where } f(t) = \mathcal{F}^{-1}[F](t).$$

Proof: Assume that $\sum F(\xi + 2n\pi)$ converges absolutely in $L^2[0, 2\pi]$. Then

 $\sum F(\xi + 2n \pi)$ converges absolutely also in $L^1[0, 2\pi]$ so that $F(\xi) \in L^1[0, 2\pi]$

and $\sum_{n\in\mathbb{Z}} F(\xi+2n\pi)$ converges in $L^2[0,2\pi]$. Hence the conclusion follows from Lemma 3.1 for $\sigma=0$.

Example 3.4: (see [1],[19] and [15]). Let $\sum_{d=1}^{m} \varphi_0(t_d) = \sum_{d=1}^{m} \chi_{[0,1)}(t_d)$ and

$$\sum_{d=1}^{m} \varphi_n(t_d) = \sum_{d=1}^{m} \varphi_{n-1}(t_d) * \varphi_0(t_d) = \int_{0}^{1} \sum_{d=1}^{m} \varphi_{n-1}(t_d - s) ds, n \ge 1, \sum_{d=1}^{m} (\varphi_n(t_d) = \sum_{d=1}^{m} B_{n+1}(t_d))$$

be the cardinal B-spline of degree
$$n$$
. Then $\widehat{\varphi_n}(\xi) = \frac{1}{\sqrt{2\pi}} \left(\frac{1-e^{-i\xi}}{i\xi}\right)^{n+1}$ and $|\widehat{\varphi}n(\xi)| = \frac{1}{\sqrt{2\pi}} \left|sinc \frac{\xi}{2\pi}\right|^{n+1}$, $n \geq 0$.

It is known in [5] that $\sum_{d=1}^{m} \varphi_0(t_d)$ are an orthonormals generators and $\sum_{d=1}^{m} (\varphi_n(t_d))$ for $n \ge 1$ is a continuous Riesz generator. Moreover since $\sum_{d=1}^{m} (\varphi_n(t_d))$ has compact support,

$$\sup_{\mathbb{R}} \sum_{d=1}^m \Phi_n(t_d) = \sup_{\mathbb{R}} \sum_{k\in\mathbb{Z}} \sum_{d=1}^m |\varphi_n(t_d - k)|^2 < \infty \text{ so that } \sum_{d=1}^m V(\varphi(t_d)) \text{ is an RKHS for }$$

 $n \ge 0$. Since $\varphi_0(\sigma + n) = \delta_{0,n}$ for $n \in \mathbb{Z}$ and $0 \le \sigma < 1$, $Z_{\varphi_0}(\sigma, \xi) = 1$

so that by Theorem 3.3 in [1], we have an orthonormal expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma + n) \varphi_0(t_d - n) , f \in \sum_{d=1}^{m} V(\varphi_0(t_d))$$

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} sin

$$\sum_{d=1}^{m} \Phi_0(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi_0(t_d - n)|^2 = 1 \quad \text{on } \mathbb{R}.$$

For $\sum_{d=1}^m \varphi_1(t_d) = t\chi_{[0,1)}(t_d) + (2-t)\sum_{d=1}^m \chi_{[1,2)}(t_d)$, and $0 \le \sigma < 1$, $\varphi_1(t) = \sigma$, $\varphi_1(\sigma + 1) = 1 - \sigma, \varphi_1(\sigma + n) = 0 \text{ for } n \neq 0, 1 \text{ so that } Z_{\varphi_1}(\sigma, \xi) = \sigma + (1 - \sigma)e^{-i\xi}.$ $\|Z_{\varphi_1}(\sigma,\xi)\|_{0} = |2 \sigma - 1|$ and $\|Z_{\varphi_1}(\sigma,\xi)\|_{\infty} = 1$. Hence by Theorem 3.3 in [1], for any σ with

 $0 \le \sigma < 1$ and $\sigma \ne \frac{1}{2}$,

we have a Riesz basis expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma + n) S(t_d - n) , \qquad f \in \sum_{d=1}^{m} V(\varphi_1(t_d))$$

$$\sum_{d=1}^{m} \varphi_2(t_d) = \frac{1}{2} t^2 \sum_{d=1}^{m} \chi_{[1,2)}(t_d) + \frac{1}{t^2 2} (6t - 2 - 3) \sum_{d=1}^{m} \chi_{[1,2)}(t_d) + \frac{1}{2} (3 - t)^2 \sum_{d=1}^{m} \chi_{[1,2)}(t_d), \quad \text{it} \quad \text{is known (see [1] and [11]) that}$$

 $\left\|Z_{\varphi_2}(0,\xi)\right\|_0 = 0 \text{ but } \frac{1}{2} \le \left\|Z_{\varphi_2}\left(\frac{1}{2},\xi\right)\right\|_0 < \left\|Z_{\varphi_2}\left(\frac{1}{2},\xi\right)\right\|_\infty \le 1 \text{ so that there is a Riesz basis expansion}$

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f\left(\frac{1}{2} + n\right) S(t_d - n), f \in \sum_{d=1}^{m} V(\varphi_2(t_d))$$
 (16)

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} . Since the optimal upper Riesz bound of the Riesz sequence $\{\varphi_2(t_d-k): k, d \in \mathbb{Z}\}$ is 1 (see [5]), we have for the sampling series (16)

$$\sum_{d=1}^{m} \|E_n(f)(t_d)\|_{L^2(\mathbb{R})}^2 \leq 4 \sum_{|k| > n} \left| f\left(\frac{1}{2} + k\right) \right|^2, f \in \sum_{d=1}^{m} V\left(\varphi_2\left(t_d\right)\right).$$

On the other hand, we have

$$\begin{split} H\varphi_2\left(\xi\right) &= \sum_{k \in \mathbb{Z}} \; |\; \hat{\varphi}_2\left(\xi \; + \; 2k\pi\right)| = \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \; \left| sinc\left(\frac{\xi}{2\pi} + k\right) \right|^3 \\ &\leq \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \; \left| sinc\left(\frac{\xi}{2\pi} + k\right) \right|^2 = \frac{1}{\sqrt{2\pi}}. \end{split}$$

Example 3.5: (See [1]) Let $\sum_{d=1}^m \varphi(t_d) = \prod_{d=1}^m e^{\frac{-t_d^2}{2}}$ be the Gauss kernel. Then

 $\hat{\varphi}(\xi) = e^{\frac{-\xi^2}{2}}$ and $0 < \|G_{\varphi}(\xi)\|_0 < \|G_{\varphi}(\xi)\|_{\infty} < \infty$ so that $\sum_{d=1}^m \varphi(t_d)$ is a continuous Riesz generator

$$\sup_{\mathbb{R}} \sum_{d=1}^{m} \Phi(t_d) = \sup_{\mathbb{R}} \sum_{k\in\mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - k)|^2 < \infty.$$
 Since $\hat{\varphi}(\xi) \in L^1(\mathbb{R})$

and $\{\varphi(n)\}_{n\in\mathbb{Z}}\in l^1$, we have by Lemma :

$$Z_{\varphi}(0,\xi) = \sqrt{2\pi} \sum_{n \in \mathbb{Z}} e^{\frac{-1}{2}(\xi + 2n\pi)^2}$$
 so that $0 < \|Z_{\varphi}(\xi)\|_0 < \|Z_{\varphi}(\xi)\|_{\infty} < \infty$.

Hence by Theorem 3.3 in [1], $\sum_{d=1}^{m} V(\varphi(t_d))$ is an RKHS and there is a Riesz basis expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(n) S(t_d - n), f \in \sum_{d=1}^{m} V(\varphi(t_d))$$

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R}

Corollary 3.6. (Cf. Theorem 3.2 in [19].) Let N=1. Then there is a series of Riesz bases $\{\sum_{d=1}^m s_n(t_d): n\in A\}$ \mathbb{Z} of $\sum_{d=1}^{m} V(\varphi(t_d))$ such that

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L[f](\sigma + (1 + \varepsilon_2)n) s_n(t_d), \sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$$
 (17)

if and only if $\varepsilon_2 = 0$ and

$$0 < \|Z_{\psi}(\sigma, \xi)\|_{0} \le \|Z_{\psi}(\sigma, \xi)\|_{\infty}. \tag{18}$$

In this case, we also have

 $\begin{array}{ll} \text{(i)} \; \sum_{d=1}^m s_n(t_d) = \sum_{d=1}^m s(t_d-n), n \in \mathbb{Z} \,, \\ \text{(ii)} \; \hat{s}(\xi) = \frac{\widehat{\varphi}(\xi)}{Z_{\psi}(\sigma,\xi)}, \end{array}$

(ii)
$$\hat{s}(\xi) = \frac{\hat{\varphi}(\xi)}{Z_{th}(\sigma,\xi)}$$

(iii)
$$L[s](\sigma + n) = \delta_{n,0}$$
, $n \in \mathbb{Z}$. (19)

Proof . Note that for $\varepsilon_2 = 0$, $G(\xi) = \frac{1}{2\pi} Z_{\psi}(\sigma, \xi)$ and $\lambda_m(\xi) = \lambda_M(\xi) = \left(\frac{1}{2\pi}\right)^2 |Z_{\psi}(\sigma, \xi)|^2$ so that $0 < \alpha_G \le \beta_G < \infty$ if and only if (18) holds. Therefore, everything except (19) follows from Theorem 3.4 in [1]. Finally applying (17) to $\sum_{d=1}^m \varphi(t_d)$ gives $\sum_{d=1}^m \varphi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^m \psi(\sigma + n) s(t_d - n)$ from which we have (19) by taking the Fourier transform. When $\sum_{d=1}^m l(t_d) = \sum_{d=1}^m \delta(t_d)$ so that $L[\cdot]$ is the identity operator, Corollary 3.6 reduces to a series of regular shifted sampling on $\sum_{d=1}^m V(\varphi(t_d))$ (see

Theorem 3.3 in [17]).

Corollary 3.7. Suppose $Z_{\psi}(2-\varepsilon_0,\xi) \in L^{\infty}[0,2\pi], 0 \le \varepsilon_1 \le q-1$, then the following are all equivalent.

(i) There is a series of frames
$$\{\sum_{d=1}^{m} s_n(t_d) : n \in \mathbb{Z}\}\$$
 of $\sum_{d=1}^{m} V(\varphi(t_d))$ for which
$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L[f](2 - \varepsilon_0) s_n(t_d), \sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)).$$
(ii) There is a series of frames $\{\sum_{d=1}^{m} s_{(1+\varepsilon_1)}(t_d - n) : \varepsilon_1 > 0, n \in \mathbb{Z}\}\$ of $\sum_{d=1}^{m} V(\varphi(t_d))$ for which $\sum_{m=1}^{m} f(t_m) = \sum_{m=1}^{m} f(t_m)$ for $\sum_{m=1}^{m} f(t_m) = \sum_{m=1}^{m} f(t_m)$

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{\epsilon_1 \ge 0} \sum_{d=1}^{m} L[f](n - \epsilon_0) s_{(1+\epsilon_1)}(t_d - n), \sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)).$$
(iii)
$$\left\| \sum_{\epsilon_1 \ge 0} |Z_{\psi}(2 - \epsilon_0, \xi)| \right\|_{0} > 0.$$

 $\{L[f](2-\varepsilon_0)\} = \{L[f](n-\varepsilon_0): n \in \mathbb{Z}\}$. Now we have $\{L_{(1+\varepsilon_1)} [\cdot]: \varepsilon_1 > 0\}$ with $L_{(1+\varepsilon_1)}\left[\cdot\right] = L[\cdot], \varepsilon_1 > 0 \quad \text{. Then } g_{(1+\varepsilon_1)}(\xi) = \frac{1}{2\pi} Z_{\psi} \left(2 - \varepsilon_0, \xi\right), \varepsilon_1 > 0 \text{ and }$ $G(\xi)^* G(\xi) = \frac{1}{(2\pi)^2} \sum_{\varepsilon_1 \geq 0} \left| Z_{\psi} \left(2 - \varepsilon_0, \xi\right) \right|^2 \text{. There for } \alpha_G > 0 \text{ if and only if }$ $\left\| \sum_{\gamma > 0} |Z_{\psi}(2 - \varepsilon_0, \xi)| \right\|_0 > 0.$

- Adam zakria , Ahmed Abdallatif , Yousif Abdeltuif [17] sampling expansion in a series of shift invariant spaces ISSN 2321 [1]. 3361 © 2016 IJESC
- O. Christensen, An Introduction to Frames and Riesz Bases (Birkh"auser, 2003). [2].
- [3]. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford University Press, 1996).
- [4]. G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory 38 (1992) 881–884.
- [5]. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2001.
- [6]. I. Djokovic, P.P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE
- A.G. Garcia, M.A. Hern Indez-Medina, G. Pérez-Villalón, Oversampling and reconstruction functions with compact support, J. Comput. Appl. Math. 227(2009) 245-253.
- A.G. Garcia, G. Pérez-Villalón, Dual frames in L^2 (0,1) connected with generalized sampling in shift-invariant spaces, Appl. [8]. Comput. Harmon. Anal. 20(2006) 422-433.
- [9]. A.G. Garcia, G. Pérez-Villalón, A. Portal, Riesz bases in L^2 (0,1) related to sampling in shift-invariant spaces, J. Math. Anal. Appl. 308 (2005) 703-713.
- Y.M. Hong, J.M. Kim, K.H. Kwon, E.H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.
- A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. 41 (1993) 3360-[11].
- [12]. S. Kang, J.M. Kim, K.H. Kwon Asymmetric multi-channel sampling in shift invariant spaces J. Math. Anal. Appl. 367 (2010) 20-
- [13]. X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. 5 (1999) 347–354.
- A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst. 24 (1977) 652-654.
- Γ151. L.J. Fogel, A note on the sampling theorem, IRE Trans. Inform. Theory IT-1(1995) 47-48.
- C.E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Eng. 37 (1949) 10-21. [16].
- [17]. J.M. Kim, K.H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008) 223-248.
- [18]. Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.