Design of Movie Theatre by STAADD Pro Analysis and LSM - A Study

P.Yella Reddy¹ and B.Rama Bhupal Reddy²

^{1.} Research Scholar, Department of Mathematics, Rayalaseema University, Kurnool, A.P. ^{2.} Associate Professor, Department of Mathematics, K.S.R.M College of Engineering (Autonomous), Kadapa, A.P.

Abstract: The design of a modern movie theatre is very complicated and it should be done very methodically keeping in mind the innumerable number of details that it should be attended to. A certain degree of price discrimination can be seen at movie theatres. There is a different and varied price not only for when but also for where one sits in a movie theatre. This is to say that one is charged more for the same movie and the same experience based on from where he or she sits. As by norm, the seats in front are charged lesser than the seats at the back. The comfort of viewing, i.e. physical comfort is the best at the back, and worst in the front, but the last few 'expensive' rows may not be the most 'ideal' place to watch the movie from. In this paper includes the design of an ideal movie theatre such that one can have the best possible angle of vision using STAADD PRO ANALYSIS and LSM

Keywords: Movie theatre, Beams, Purlins, Footing, STAADD PRO ANALYSIS, LSM.

I. Introduction

Cinema is most popular and cheapest entertainment for the people. For screening the movies to the audience a fully fledged movie theatre is necessary. Hence, though the movie theatre is a commercial entertainment structure, it should provide maximum facilities and comforts to the audience at a reasonable prize. The designer will need many and varied skills – drawing, painting, construction, draftsman-ship, sewing, budgeting, self promotion, communication, are all skills which are needed in various degrees. The designer also needs to have an understanding of the text and of the human figure in space. So the following four principles are Theatre design can be a lifetime study.

- The audience must feel closely linked with the performers and each other
- The audience should be clustered around the performers, within the limits of good sightlines
- The auditorium must be scaled to sustain and enhance the performance.
- The architecture should encourage a sense of excitement and community

Fig 1. A simplified drawing of movie theatre

The above figure is a drawing representation of a movie theatre which depicts the following: 1. THE SCREEN

2. HEIGHT OF THE SCREEN ABOVE THE GROUND

3. DISTANCE BETWEEN SCREEN AND FIRST ROW

- 4. HORIZONTAL DISTANCE BETWEEN FIRST ROW AND THE END OF SEATING AREA
- 5. THE HEIGHT OF THE INDIVIDUAL
- 6. PROJECTOR ROOM
- 7. θ-THE ANGLE SUBTENDED BY SCREEN ON INDIVIDUALS EYE
- 8. α- THE ANGLE OF INCLINATION OF THE SEATING AREA
- 9. THE SEATING

III. Room Design And Accoustics

The shape of the room is one of the important factors affecting its acoustical properties. Hence the determination of most desirable shape is a problem that the architect should know how to solve. The optimum ratio of length to width for a room is not a fixed number, but varies with the size and shape of the seating area. For most rooms, ratio of the length to width between 1.2:1 and 2:1 has been more satisfactory.

IV. Design of Theatre

Length of 4 seats = 2.54 m, wall thickness= 0.23 m Let us provide 25 rows each having 24 seats , 12 each on either side of ramp 2m wide. Total length occupied by 12 seats = 3*254 = 7.62 mAllow passage of 1 m at the end of seating on both sides. Total internal breadth of theatre= 1+7.62+2+7.62+1 = 19.24 mExternal breadth = 19.24+2*0.23 = 19.7 mFrom the above data, a) Screen dimensions = 13 m * 5.5 mb) Height of screen above the ground= 3 m c) Distance between screen and first row = 8 m

d) Distance between first row and last row:

Provide 3 classes with landings of 1.5 m between each class.

Class A = 8 rows, Class B = 8 rows, Class C = 9 rows

Width of each row= 1 m

Distance between 1^{st} and last rows = 9+1.5+8+1.5+8=28 m

Total length of theatre = 8+28 = 36 m

Aspect ratio = 36/19.24 = 1.87 < 2

Therefore acoustic dimensions are satisfied.

e) Let angle of inclination of seating area = 9^0

The inclination starts at a distance of 7.8 m from the screen.

Height of last row from the floor near screen = 4.04 m

Total height of columns = 3+5.5+0.5 = 9 m

As the breadth of theatre is 19.24 m it will be difficult to provide beams. So roof truss should be designed for this theatre.

V. Staad Analysis – Determination of Forces In Truss Members

*****	*****
*	*
* STAAD-III	*
* Revision 22.0W	*
* Date= Oct, 2016	*
* Time= 0: 4: 20	*
*	* *
*****	*****

1. STAAD TRUSS DESIGN OF TRUSS FOR THEATRE. 2. INPUT WIDTH 72 3. UNIT METER KNS 4. JOINT COORDINATES 5. .000 .000 .000 1 2 6. 9.820 .000. .000 3 7. 19.640 .000 .000 8. 4 9.820 4.910 .000

9.	5	2.455	.000	.000	
10.	6	4.910	.000	.000	
11.	7	7.365	.000	.000	
12.	8	12.275	.000	.000	
13.	9	14.730	.000	.000	
14.	10	17.185	.000	.000	
15	11	2,455	1 227	000	
16	12	4 910	2 4 5 5	000	
10.	12	7 365	2.433	.000	
17.	13	17 195	1 227	.000	
10.	14	14.720	1.227	.000	
19.	15	14.750	2.433	.000	
20.	10	12.275	3.083	.000	
21.1	MEMBE	ER INCIL	ENCES		
22.	1	I	5		
23.	2	2	8		
24.	3	1	11		
25.	4	2	4		
26.	5	3	14		
27.	6	5	6		
28.	7	6	7		
29.	8	7	2		
30	9	8	9		
31	10	9	10		
31.	11	10	3		
32. 22	11	10	12		
33. 24	12	11	12		
54. 25	15	12	15		
35.	14	13	4		
36.	15	14	15		
37.	16	15	16		
38.	17	16	4		
39.	18	5	11		
40.	19	11	6		
41.	20	6	12		
42.	21	12	7		
43.	22	7	13		
44.	23	13	2		
45	24	2	16		
46	25	16	8		
10. 47	25	8	15		
	20	15	0		
40.	21	15	9 14		
49. 50	20	9	14		
50.	29 (E) (D)				
51. N	MEMBE	RPROP	ERTY INI	JIAN	
52.1	1035	10171	ABLE ST	TUBE TH	.006 WT .075 DT .075
53.4	4 18 TO	29 TABI	LE ST TU	BE TH .005	WT .05 DT .05
54. C	CONST	ANT			
55. E	E STEEI	L ALL			
56. I	DENSIT	Y STEEI	L ALL		
57. F	POISSO	N STEEL	L ALL		
58. 5	SUPPOF	RT			
59.1	3 FIXF	ED			
60. I	LOAD 1	DL			
61 5	SELEW	EIGHT Y	-1.		
62 M	MEMBE	RIOAL)		
63 3	3 5 12 T	0.17 LIM	[Y_2		
64 I	ο <u></u> Δηγ		L I -2.		
04. I	JOAD 2		`		
05. I		CK LUAL	, 1. T.Z. A		
66.3	5 12 T		l Y -4.		
6/.I	LUAD (JOMB 3 I	UL+LL		

DOI: 10.9790/5728-1206010927

```
68.11.521.5
69. PERFORM ANALYSIS PRINT ALL
 PROBLEM STATISTICS
 NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 16/ 29/ 2
 ORIGINAL/FINAL BAND-WIDTH = 14/3
 TOTAL PRIMARY LOAD CASES = 2,
 TOTAL DEGREES OF FREEDOM = 28
 SIZE OF STIFFNESS MATRIX = 224 DOUBLE PREC. WORDS
 REQRD/AVAIL. DISK SPACE = 12.04/6545.8 MB, EXMEM = 1958.9 MB
 LOADING 1 DL
 SELF WEIGHT Y -1.000
 ACTUAL WEIGHT OF THE STRUCTURE =
                                        8.121 KNS
 MEMBER LOAD - UNIT KNS METE
 MEMBER UDL
                 L1
                      L2
                           CON
                                  L LIN1 LIN2
 3 -2.000 Y
             .00
                 2.74
 5 -2.000 Y
             .00 2.74
 12 -2.000 Y
              .00 2.74
 13 -2.000 Y
             .00 2.74
 14 -2.000 Y
             .00 2.74
 15 -2.000 Y
             .00 2.74
 16 -2.000 Y
              .00 2.74
              .00 2.74
 17 -2.000 Y
***TOTAL APPLIED LOAD ( KNS METE ) SUMMARY (LOADING 1)
  SUMMATION FORCE-X =
                            .00
  SUMMATION FORCE-Y =
                          -47.40
  SUMMATION FORCE-Z =
                            .00
  SUMMATION OF MOMENTS AROUND THE ORIGIN-
  MX=00, MY=00, MZ= -465.48
LOADING 2 LL
MEMBER LOAD - UNIT KNS
MEMBER UDL
                L1 L2
                          CON
                                 L LIN1 LIN2
    -4.000 Y
             .00 2.74
  3
             .00
 5
    -4.000 Y
                 2.74
 12 -4.000 Y
              .00 2.74
 13 -4.000 Y
              .00 2.74
 14 -4.000 Y
              .00 2.74
 15 -4.000 Y
              .00
                 2.74
 16 -4.000 Y
              .00
                 2.74
 17 -4.000 Y
              .00
                 2.74
***TOTAL APPLIED LOAD (KNS METE) SUMMARY (LOADING 2)
  SUMMATION FORCE-X =
                            .00
  SUMMATION FORCE-Y =
                          -78.56
  SUMMATION FORCE-Z =
                            .00
  SUMMATION OF MOMENTS AROUND THE ORIGIN-
  MX=
           .00 MY=
                        .00 MZ=
                                   -771.4
++ Processing Element Stiffness Matrix.
                                     0:4:20
++ Processing Global Stiffness Matrix.
                                    0:4:20
++ Processing Triangular Factorization.
                                    0: 4:20
++ Calculating Joint Displacements.
                                    0:4:20
++ Calculating Member Forces.
                                   0:4:20
***TOTAL REACTION ( KNS METE ) SUMMARY
LOADING 1
                                         .00
```

SUMMATION OF MOMENTS AROUND ORIGIN-

MX=	.00 N	MY=	.00 MZ=	465.48
EXTERNAL	ANI) INTERNA	L JOINT LOA	D SUMMARY-

JT EXT FX/ EXT FY/ EXT FZ/ EXT MX/ EXT MY/ EXT MZ/ INT FX INT FY INT FZ INT MX INT MY INT MZ

1	1.23	-2.79	.00	.00	.00	.00		
	-36.57	-20.91	.00	.00	.00	.00		
2	.00	79	.00	.00	.00	.00		
	.00	.79	.00	.00	.00	.00		
3	-1.23	-2.79	.00	.00	.00	.00		
	36.57	-20.91	.00	.00	.00	.00		
4	.00	-5.43	.00	.00	.00	.00		
	.00	5.43	.00	.00	.00	.00		
5	.00	35	.00	.00	.00	.00		
	.00	.35	.00	.00	.00	.00		
6	.00	49	.00	.00	.00	.00		
	.00	.49	.00	.00	.00	.00		
7	.00	56	.00	.00	.00	.00		
	.00	.56	.00	.00	.00	.00		
8	.00	56	.00	.00	.00	.00		
	.00	.56	.00	.00	.00	.00		
9	.00	49	.00	.00	.00	.00		
	.00	.49	.00	.00	.00	.00		
10	.00	35	.00	.00	.00	.00		
	.00	.35	.00	.00	.00	.00		
11	2.45	-5.40	.00	.00	.00	.00		
	-2.46	5.40	.00	.00	.00	.00		
12	2.46	-5.46	.00	.00	.00	.00		
	-2.46	5.46	.00	.00	.00	.00		
13	2.45	-5.54	.00	.00	.00	.00		
	-2.46	5.54	.00	.00	.00	.00		
14	-2.45	-5.40	.00	.00	.00	.00		
	2.45	5.40	.00	.00	.00	.00		
15	-2.46	-5.46	.00	.00	.00	.00		
-	2.46	5.46	.00	.00	.00	.00		
16	-2.45	5 -5.54	.00	.00	.00	.00		
	2.45	5.54	.00	.00	.00	.00		
LOA	DING	2						
SUN	Λ-X=	00_S	UM-Y=	78.	56 SUN	1-Z=	.00	
SUN	ЛМАТІ	ON OF N	NOMEN	JTS AR	OUND (DRIGIN-	-	
MX	=	.00 MY	/=	.00 M	Z=	771.46		
EXT	FERNA	L AND I	NTERN	IAL JOI	– NT LOA	D SUM	MARY-	
JT	EXT F	X/ EX	ΓFY/ I	EXT FZ	EXT	MX/ E	EXT MY/	EXT MZ/
	INT FX	INT F	Y IN	ΓFZΙ	NT MX	INT N	MY INT	MZ
1	2.45	-4.91	.00	.00	.00	.00		
	-59.55	-34.37	.00	.00	.00	.00		
2	.00	.00	.00	.00	.00	.00		
	.00	.00	.00	.00	.00	.00		
3	-2.45	-4.91	.00	.00	.00	.00		
-	59.55	-34.37	.00	.00	.00	.00		
4	.00	-9.82	.00	.00	.00	.00		
	.00	9.82	.00	.00	.00	.00		
5	.00	.00	.00	.00	.00	.00		
2	.00	.00	.00	.00	.00	.00		

6	00	00	00	00	00	00
0	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00
1	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	
11	4.91	-9.82	.00	.00	.00	.00
	-4.91	9.82	.00	.00	.00	.00
12	4.91	-9.82	.00	.00	.00	.00
	-4.91	9.82	.00	.00	.00	.00
13	4.91	-9.82	.00	.00	.00	.00
	-4.91	9.82	.00	.00	.00	.00
14	-4.91	-9.82	.00	.00	.00	.00
4.91	9.82	.00	.00	.00	.00	
15	-4.91	-9.82	.00	.00	.00	.00
4.91	9.82	.00	.00	.00	.00	
16	-4.91	-9.82	.00	.00	.00	.00
4.91	9.82	.00	.00	.00	.00	
LOA	D COM	IBINAT	TON N	O. 3		
DL+	LL					
LOA	DING-	1. 2				
FAC	TOR -	1 50 1	50·-			
		1	,			

VI. Design of Truss For Theatre JOINT DISPLACEMENT (CM RADIANS) STRUCTURE TYPE = TRUSS JOINT LOAD X-TRANS Y-TRANS Z-TRANS X-ROTAN Y-ROTAN Z-ROTAN

1	1	.0000	.0000	.0000	.0000	.0000	.0000
	2	.0000	.0000	.0000	.0000	.0000	.0000
	3	.0000	.0000	.0000	.0000	.0000	.0000
2	1	.0000	3421	.0000	.0000	.0000	.0000
	2	.0000	5645	.0000	.0000	.0000	.0000
	3	.0000 -	1.3599	.0000	.0000	.0000	.0000
3	1	.0000	.0000	.0000	.0000	.0000	.0000
	2	.0000	.0000	.0000	.0000	.0000	.0000
	3	.0000	.0000	.0000	.0000	.0000	.0000
4	1	.0000	2824	.0000	.0000	.0000	.0000
	2	.0000	4666	.0000	.0000	.0000	.0000
	3	.0000 -	-1.1234	.0000	.0000	.0000	.0000
5	1	.0038	2224	.0000	.0000	.0000	.0000
	2	.0067	3691	.0000	.0000	.0000	.0000
	3	.0157	8873	.0000	.0000	.0000	.0000
6	1	.0076	3185	.0000	.0000	.0000	.0000
	2	.0133	5267	.0000	.0000	.0000	.0000
	3	.0315 -	-1.2678	.0000	.0000	.0000	.0000
7	1	.0064	3566	.0000	.0000	.0000	.0000
	2	.0111	5888	.0000	.0000	.0000	.0000
	3	.0263 -	-1.4181	.0000	.0000	.0000	.0000
8	1	0064	3566	.0000	.0000	.0000	.0000
	2	0111	5888	.0000	.0000	.0000	.0000
	3	0263 ·	-1.4181	.0000	.0000	.0000	.0000
9	1	0076	3185	.0000	.0000	.0000	.0000
	2	0133	5267	.0000	.0000	.0000	.0000
	3	0315	-1.2678	.0000	.0000	.0000	.0000

1	0 1	0038	2224	.0000	.0000	.0000	.0000		
	2	0067	3691	.0000	.0000	.0000	.0000		
1	3	0157	8873	.0000	.0000	.0000	.0000		
1	1 1	.0688	2222	.0000	.0000	.0000	.0000		
	2	.1150	3091	.0000	.0000	.0000	.0000		
1'	2 2 1	.2730	00/0	.0000	.0000	.0000	.0000		
1.	2 1	1277	- 5185	.0000	.0000	.0000	.0000		
	3	3064	-1 2475	.0000	.0000	0000	0000		
1	3 1	0576	- 3412	0000	0000	0000	0000		
1.	2	.0960	5643	.0000	.0000	.0000	.0000		
	3	.2304	-1.3583	.0000	.0000	.0000	.0000		
14	4 1	0688	2222	.0000	.0000	.0000	.0000		
	2	1150	3691	.0000	.0000	.0000	.0000		
	3	2756	8869	.0000	.0000	.0000	.0000		
1:	5 1	0766	3132	.0000	.0000	.0000	.0000		
	2	1277	5185	.0000	.0000	.0000	.0000		
	3	3064	-1.2475	.0000	.0000	.0000	.0000		
1	61	0576	3412	.0000	.0000	.0000	.0000		
	2	0960	5643	.0000	.0000	.0000	.0000		
	3	2304	-1.3583	.0000	.0000	.0000	.0000		
SUF JOII	PPOR NT L MOM	F REACT OAD FO -X MC	TIONS -U DRCE-X DM-Y N	NIT KN FORCE 10M Z	S METI	E STRU RCE-Z	JCTURE	TYPE = T	RUSS
1		35.34	23.70	.00	.00	.00 .0	00		
	2	57.09	39.28	.00	.00	.00 .0	0		
~	3	138.65	94.47	.00	.00	.00 .0	00		
3		-35.34	23.70	.00	.00	.00 .	00		
	2	-57.09	39.28	.00	.00	.00 .0)U 00		
МЕ		-138.03 D END E	94.47	.00 STRUC	.00 רים תוודי	.00 . 			
		K END F	UKCES	SIKUC METE	IUKE	IIPC = I	I KUSS		
AL	L UN. 7MDT			VILLE		VOIDA	D 7		
		N MO	JJIA MVN	$\Lambda IAL 3$	псак-	I SHEP	AK-Z		
IC	JK3IU	IN MO	IVI-1 IV	IOM-Z					
	1 1	1 5	28 16	00	00	00	00		
5	5 28	1 -5	20 .10	00 (.00)0 (.00	.00		
5	2.20	1 _9 2	2 00	.00 .0	00	00	00		
5	9.22	00	.2 .00	00 ()0 (.00	.00		
5	3	1 -21	75 23	.00 .0	00	00	00		
5	21 75	23	00	00 (.00)0 (.00	.00		
2	21.70	.23	.00	.00 .0					
,	2 1	2 8.8	.16	.00	.00	.00	.00		
8	-8.84	4 .16	.00	.00 .	00 .	00			
	2	2 15.3	36 .00	.00	.00	.00	.00		
8	-15.30	5 .00	.00	.00 .	00 .	00			
	3	2 36.3	.23	.00	.00	.00	.00		
8 .	-36.30	.23	.00	.00 .0). 00	00			
	3 1	1 46.	86 2.9	00. 0	.00	.00	.00		
11	-46.7	0 2.90	00.	.00	.00	.00			
	2	1 76.8	38 5.49	00.	.00	.00	.00		
11	-76.8	5.49	.00	.00	.00	.00			
	3	1 185.	61 12.5	.00 85	.00	.00	.00		
11	-185.	37 12.5	.00	.00	.00	.00			
4	4 1	2 -22	.27 .00	00.	.00	.00	.00		
4	22.61	.00	.00	.00 .0). 0()0			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-36.81 .00 .00 -88.62 .00 .00	00. 00. 0. 00. 00. 00. 0. 00.	00. 0. 0 00. 0. 0	.00 0 .00	.00 .00			
5 1 314 -46.702 314 -76.883 314 -185.37	46.86 2.90 .00 76.88 5 5.49 .00 185.61 1 12.58 .0	2.90 .00 0 .00 5.49 .00 0 .00 12.58 .00 00 .00	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00	.00 .00 .00			
$\begin{array}{cccc} 6 & 1 & 5 \\ 6 & 5.28 \\ & 2 & 5 \\ 6 & 9.22 \\ & 3 & 5 \\ 6 & 21.75 \end{array}$	-5.28 .16 .00 -9.22 . .00 .00 -21.75 .23 .00	.16 .00 .00 .00 00 .00 .00 .00 .23 .00 .00 .0	00. 0. 00. 00. 00. 00. 00.	00. 0 00. 00. 00	.00 .00 .00			
7 1 6 7 -1.72 MEMBER ALL UNIT	1.72 .16 .00 END FORC S ARE KI	.16 .00 .00 .0 ES STRUC NS METE	.00 0 .0 CTURE	.00)0 TYPE =	.00 TRUS	S		
MEMBER 2 6 7 3 6 7 7	3.08 . -3.08 . 7.20 . -7.20 .	AXIAL S 00 .00 00 .00 23 .00 23 .00	.00 .00 .00 .00 .00	Y SHEA .00 .00 .00 .00	AR-Z .00 .00 .00 .00	FORSION	MOM-Y	MOM-Z
$ \begin{array}{r} 8 & 1 & 7 \\ 2 & -8.84 \\ 2 & 7 \\ 2 & -15.36 \\ & 3 & 7 \\ 2 & -36.30 \\ \end{array} $	8.84 .16 .00 15.36 .00 .00 36.30 .23 .00	.16 .00 .00 .0 .00 .00 .00 .00 .23 .00 .00 .0	00. 0. 00. 00. 00. 00. 00.	.00 00 .00 .00 .00	.00 .00 .00			
$\begin{array}{r} 9 & 1 & 8 \\ 9 & -1.72 & \\ & 2 & 8 \\ 9 & -3.08 & \\ & 3 & 8 \\ 9 & -7.20 \end{array}$	$\begin{array}{c} 1.72\\.16&.00\\3.08&.\\.00&.00\\7.20&.\\.23&.00\end{array}$.16 .00 .00 .00 .00 .0 .00 .0 23 .00 .00 .0	00. 00. (0 00. 00. 00. 00. 00. 0	.00 0 .00 00 .00	.00 .00 .00			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-5.28 .16 .00 -9.22 .00 .00 -21.75 .23 .00	.16 .00 .00 .00 .00 .00 .23 .00 .00 .0	00. 0. 00. 0. 00. 0. 00. . 00.	00. 00 00. 00. 00. 00	.00 .00 .00			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -5.28 .16 .00 -9.22 .00 .00 -21.75 .23 .00	.16 .00 .00 .00 .00 .00 .00 .00 .23 .00 .00 .00	00.)0. (00. (00. (00. (00. (00. 00. 00.	.00 .00 .00			

12 1 11 41.79 2.90 .00 .00 .00	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
3 11 165.62 12.59 .00 .00 .00 12 -165.39 12.59 .00 .00 .00 .00	.00
13 1 12 36.58 2.90 .00 .00 .00 13 -36.42 2.90 .00 .00 .00 .00	.00
2 12 60.38 5.49 .00 .00 .00 13 60.38 5.49 .00 .00 .00	.00
13 -00.58 5.49 .00 .00 .00 .00 3 12 145.44 12.59 .00 .00 .00 13 -145.20 12.59 .00 .00 .00 .00	.00
14 1 13 31.25 2.90 .00 .00 .00 4 -31.09 2.90 .00 .00 .00 .00	.00
MEMBER END FORCES STRUCTURE TYPE = ALL UNITS ARE KNS METE	TRUSS
MEMBER LOAD JT AXIAL SHEAR-Y SHE TORSION MOM-Y MOM-Z	EAR-Z
2 13 52.15 5.49 .00 .00 .00 4 -52 15 5.49 00 00 00 00	.00
3 13 125.09 12.58 .00 .00 .00 4 -124.86 12.58 .00 .00 .00	.00
15 1 14 41.79 2.90 .00 .00 .00	.00
2 14 68.62 5.49 .00 .00 .00 .00	.00
15 -68.62 5.49 .00 .00 .00 .00 3 14 165.62 12.59 .00 .00 .00 15 -165.39 12.59 .00 .00 .00 .00	.00
16 1 15 36.58 2.90 .00 .00 .00	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
3 15 145.44 12.59 .00 .00 .00 .00	.00
16 -145.20 12.59 .00 .00 .00	.00
17 1 16 31.25 2.90 .00 .00 .00 4 -31.09 2.90 .00 .00 .00 .00	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
3 16 125.09 12.58 .00 .00 .00 4 -124.86 12.58 .00 .00 .00 .00	.00
18 1 531 .00 .00 .00 .00	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
19 1 11 7.78 .08 .00 .00 .00	.00
6 -7.86 .08 .00 .00 .00 .00 2 11 13.76 .00 .00 .00 .00	.00
6 -13.76 .00 .00 .00 .00 .00 3 11 32.30 .13 .00 .00 .00	.00

6	-32.43	.13	.00	.00	.00	.00				
	20 1 6	-3.90	.00	.00	.00	.00	.00			
	12	4.07	.00	.00	.00	.00	.00			
	2 6	-6.15	.00	.00	.00	.00	.00			
	12	6.15	.00	.00	.00	.00	.00			
	3 6	-15.08	.00	.00	.00	.00	.00			
	12	15.33	.00	00. (.00	.00	.00			
	21 1 12	2 9.9	. 80	.0 80	0. 0	00. 0	.00			
7	-10.15	.08	.00	.00	.00	.00				
Μ	EMBER E	ND FO	RCES	STRU	JCTURI	E TYPE =	= TRUS	S		
A	ALL UNIT	S ARE	KNS	METI	Ξ					
Ν	IEMBER	LOAD	JT A	AXIAL	SHEA	R-Y SH	EAR-Z	TORSION	MOM-Y	MOM-Z
	2 12	17.3	7.0	0.0	00. 0	00. (.00			
7	-17.37	.00	.00	.00	.00	.00				
	3 12	41.0	3.1	3.00	00. C	00. (.00			
7	-41.29	.13	.00	.00	.00	.00				
	22 1 7	-7.5	5.0	0. 0	0.00	00.	.00			
13	7.81	.00	.00	.00	.00	.00				
	2 7	-12.28	.00	00. 0	00. (.00	.00			
13	12.28	.00	.00	.00	.00	.00				
	3 7	-29.75	5.00	00. 0	00. (.00	.00			
13	30.13	.00	.00	.00	.00	.00				
	23 1 1	3 12.	88.	08 .0	0. 00	00. 00	.00)		
2	-13.14	.08	.00	.00	.00	.00				
	2 13	22.1	2.0	0.0	00. 0	00. (.00			
2	-22.12	.00	.00	.00	.00	.00				
	3 13	52.5	0.1	3.00	00. 0	00. (.00			
2	-52.88	.13	.00	.00	.00	.00				
	24 1 2	2 13.1	4 .(.0 00	0. 0	00. 0	.00			
16	5 -12.88	.08	.00	.00	.00	.00				
	2 2	22.12	.00	00. (.00	.00	.00			
16	-22.12	.00	.00	.00	.00	.00				
	3 2	52.88	.13	3.00	.00	.00	.00			
16	-52.50	.13	.00	.00	.00	.00				
0	25 1 10	6 -7.8). 18). 00	0. 00	0.00	.00			
8	7.55	.00	.00	.00	.00	.00	0.0			
0	2 16	-12.2	0. 8	0.0	0.00	00. (.00			
8	12.28	.00	.00	.00	.00	.00	0.0			
0	3 16	-30.1	3.0	0.0	0.00	00. (.00			
8	29.75	.00	.00	.00	.00	.00				
20	1 0	10.15	00	00	00	00	00			
20 15	1 ð 0 00	10.15	.08	.00	.00	.00	.00			
13	-7.70 7 0	.00	.00 1 01	.00) 00		.00	00			
	∠ 0 15	17.37	.UC 7 0	, .00 0 0	, .00) 00	.00	.00			
	3 9	-17.57 A1 20	.00	3 .00 3 00	, .00 1 00	.00	.00			
	J 0 15	-/1.03	· .13 2 13	, .00 3 00	, .00) 00	.00	.00			
	13	-+1.03	, .1.	.00	, .00	.00	.00			
	27 1 1	5 -4 ()7 (00 (0 0	0 00	00			
9	3.90	.00	.00	.00	.00	.00	.00			
	2 15	-6.14	5.00	0		.00	.00			
9	6.15	.00	.00	.00	.00	.00				

.00 3 15 -15.33 .00 .00 .00 .00 9 15.08 .00 .00 .00 .00 .00 9 7.86 .00 .00 28 1 .08 .00 .00 14 -7.78 .08 .00 .00 .00 .00 MEMBER END FORCES STRUCTURE TYPE = TRUSS ALL UNITS ARE -- KNS METE AXIAL SHEAR-Y SHEAR-Z TORSION MOM-Y MOM-Z MEMBER LOAD JT 2 9 13.76 .00 .00 .00 .00 .00 14 -13.76 .00 .00 .00 .00 .00 3 9 32.43 .13 .00 .00 .00 .00 14 -32.30 .13 .00 .00 .00 .00 29 1 14 -.40 .00 .00 .00 .00 .00 .31 .00 10 .00 .00 .00 .00 .00 .00 .00 2 14 .00 .00 .00 .00 10 .00 .00 .00 .00 .00 .00 3 14 -.60 .00 .00 .00 .00 .00 10 .47 .00 .00 .00 .00 **71. PLOT BENDING FILE** 72. FINISH VII. **Calculations For Truss** Clear span of the truss=19.24m Assume a bearing of 20cm on either side Effective span=19.24+0.2+0.2=19.64m According to hand book based on IS codes, Dead load/m² 1. Galvanian sheeting $=16 \text{Kg/m}^2$ 2. Purlins (6 to 9 kg/m²) $=8Kg/m^2$ 3. Truss weight (10 to 14kg/m^2) =12 Kg/m² 4. Weight of wind bracings $=1.3 Kg/m^{2}$ $=37.3 \text{Kg/m}^2$ =375 N/m² Adopting c/c of truss=4m, Let pitch=1 in 4 Load/Panel=w*l/8 = 375*4*19.64 =367KN 8 Live Load: As per IS-875, For roof sloping> 10° , LL=75Kg/m²-(1 Kg/m² for 1° increase in slope) $>20^{\circ}$, LL=75 Kg/m²-(2 Kg/m² for 1[°] increase on slope), Up to minimum of 40 kg/m² Rise of span=19.64/4=4.91m Slope of truss= $\tan^{-1}(4.91/9.82) = 26.565^{\circ}$ $LL=75-(6.565*2)-(10*1)=52Kg/m^2=520 \text{ KN/m}^2$ Wind load: Basic wind pressure at Anantapur, P=100Kg/m² 1. External wind pressure as per IS-875 Wind ward slope Leeward slope 20^{0} -0.4P -0.5P 26.565° -0.218P (interpolation) -0.5P

-0.1P

 30^{0}

-0.5P

2. Internal wind pressure:-Assuming normal permeability, internal wind pressure = $\pm 0.2P$

3. Total wind pressure:

WIND PRESSURE	WIND WARD SIDE	LEE WARD SIDE
a) External	$-0.218P = 218 \text{ Kg/m}^2$	$-0.5P = -50 \text{ Kg/m}^2$
b) External + Internal(-0.2P)	$(-0.218-0.2)P = -41.8 \text{ Kg/m}^2$	$(-0.5-0.2)P = -70 \text{ Kg/m}^2$
c) External + Internal(+0.2P)	$(-0.218+0.2)P = -1.8 \text{ Kg/m}^2$	$(-0.5+0.2)P = -30 \text{ Kg/m}^2$

Maximum is in case (b) Diagonal length of truss = sqrt $(9.82^2 + 4.91^2) = 10.98m$ Length of each panel = 10.98/4 = 2.745mSpacing of trusses = 4 m c/c LOAD PER PANEL: Due to DL = 366.3 Kg LL = 52*4*2.455 = 510.64 Kg Wind load a) wind ward side = -42*4*2.745 = -461 Kg b) lee ward side = -70*4*2.745 = -769 Kg

VIII. Design of Truss OMPRESSION MEMBER):

DESIGN OF TOP CHORD (COMPRESSION MEMBER): Maximum load = 185.61 KN

Factored load = 1.5*185.61 = 278.415 KN

Length = 2.745 m

Let us assume effective slenderness ratio to be 100

For tubular section, for the buckling curve b, the design compressive stress corresponding to effective slenderness ratio 100 is 118 N/mm^2

Therefore Area= $(278.415*10^3/118) = 2355.9 \text{ mm}^2$

From IS handbook (or) from S.K Duggal, pg 786, try steel tube of 160 mm Nominal bore and heavy section of 5.4 mm thickness

 $A = 2760 \text{mm}^2$, $Z = 109 \text{cm}^2$, R = 5.76 cm

Effective slenderness ratio= <u>2.745*1000</u> =47.65 < 180 [SAFE] 57.6

For $\lambda = 47.65$; $f_y = 250$ N/mm² and buckling curve 'b' the design compressive stress from table 7.6. $F_{cd} = 186.5$ N/mm²

Design compressive load $P_d = A_c * f_{cd} = 2700*186.5$ =514.74 KN > 278.415 KN [SAFE]

Hence provide steel tube of 160 mm nominal bore and heavy section of 5.4 mm thickness **DESIGN OF WELDING:** a)Design strength of weld in tension{ $1_w = \pi d = 500m$ }

 $T_{dw} = \frac{f_v}{V_{mw}} \frac{1}{1.25} = 506.25 \text{KN} > 278.415 \text{KN} \text{ [SAFE]}$ b)Design strength of weld in compression $V_{dw} = \frac{(410/\sqrt{3})*500*((5/8)*5.4)}{1.25} = 319.563 \text{ KN} > 278.415 \text{ KN} \text{ [SAFE]}$ 1.25

DESIGN OF TRUSS MEMBERS (COMPRESSION MEMBER):

Maximum load = 52.5 KN

Factored load = 1.5*52.5 = 78.75 KN

Length = 4.5 m

Let us assume effective slenderness ratio to be 100

For tubular section, for the buckling curve b, the design compressive stress corresponding to effective slenderness ratio 100 is 118 $\rm N/mm^2$

Therefore Area= $(78.75*10^3/118) = 667.4 \text{ mm}^2$

From IS handbook pg 786, try steel tube of 90 mm Nominal bore and light section of 3.6 mm thickness

 $A = 1110 \text{mm}^2$, $Z = 26.2 \text{cm}^2$, R = 3.47 cm

Effective slenderness ratio= 4.5*1000 =130 < 180 [SAFE] 34.7

For $\lambda = 130$; $f_y = 250$ N/mm² and buckling curve 'b' the design compressive stress from table 7.6. $F_{cd} = 88.3$ N/mm²

Design compressive load $P_d = A_c f_{cd} = 1110*88.3 = 98.013 \text{ KN} > 78.75 \text{ KN}$ [SAFE]

Hence provide steel tube of 90 mm nominal bore and light section of 3.6 mm thickness

DESIGN OF WELDING

a)Design strength of weld in tension { $l_w = \pi d = 283m$ } $T_{dw} = 250*283*((5/8)*3.6) = 159.043 \text{ KN} > 78.75\text{ KN}$ [SAFE] 1.25 b) Design strength of weld in compression $V_{dw} = (410/\sqrt{3})*283*((5/8)*3.6) = 120.6 \text{ KN} > 78.75 \text{ KN}$ [SAFE]

1.25

DESIGN OF TRUSS MEMBERS (COMPRESSION MEMBER):

Maximum load = 88.62 KN Factored load = 1.5*88.62 = 132.3 KN Length = 4.91 m Area= $TV_{mo}/f_y = (132.3*10^3*1.1/250) = 582.12 \text{ mm}^2$ From IS handbook (or) from S.K Duggal, pg 786, try steel tube of 65 mm Nominal bore and medium section of 3.6 mm thickness

Area provided = 820mm², Z=14.2cm², R=2.57 cm

IX. Check For Gross Section Yeilding

 $A = T^*V_{m1} / f_{y =>} 820 = T^*1.1/250 => T = 186.36 \text{ KN} > 132.3 \text{ KN}$ [SAFE]

CHECK FOR NET SECTION RUPTURE:

 $T_{dn} = A_n f_u / V_{m1} = 820*410/1.25 = 268.9 \text{ KN} > 132.3 \text{ KN} \quad \text{[SAFE]}$ Hence provide steel tube of 65 mm nominal bore and heavy section of 3.6 mm thickness

DESIGN OF WELDING:

a) Design strength of weld in tension { $l_w = \pi d = 204.2m$ } $T_{dw} = \frac{250*204.2*((5/8)*6)}{1.25} = 153 \text{ KN} > 132.3 \text{ KN}$ [SAFE] b) Design strength of butt weld in shear

 $V_{dw} = (410/\sqrt{3})*204.2*((5/8)*6) = 145 \text{ KN} > 132.3 \text{ KN}$ [SAFE]

1.25

DETAILS OF TRUSS:

NOMINAL	CLASS	THICKNESS	WEIGHT	AREA OF	Ζ	R	WELD
BORE (mm)		(mm)	(kg/m)	C/S (cm ²)	(cm^3)	(cm)	(mm)
160	Heavy	5.4	21.200	27.10	109.0	5.76	3.375
90	Light	3.6	8.760	11.10	26.20	3.47	2.25
65	Medium	3,6	6.490	8.20	14.20	2.57	3.75

X. Design of Purlin

Since the slope of roof truss is less than 30° , tubular section can be used as purlin. According to hand book based on IS codes .

DEAD LOAD:

Galvanian sheeting = 16 Kg/m^2 Purlins = $\frac{8 \text{ Kg/m}^2}{24 \text{ Kg/m}^2}$ Total DL = 24*2.455*4 = 235.68 Kg = 2360 N

LIVE LOAD:

Live load as calculated earlier = 520 N/m^2 Total LL = 520*2.455*4 = 5106.4 N

WIND LOAD:

Wind load normal to roof truss = 1500 N/m^2 Total wind load = 1500*2.745*4 = 16470 N

Fig 2: Purlins

TOTAL LOAD = $16470+(2360+5106.4)\cos 26.565^{\circ}=23150$ N = 23.15 KN Maximum Bending Moment = $w^{*1}/10 = 23.15^{*4}/10 = 9.26$ KNm

SECTION MODULUS:

 $Z = M / (1.33*0.66*f_y) = 9.26*10^6 / (1.33*0.66*415) = 25.419 \text{ cm}^3$ Provide medium tubular section of 90 mm nominal bore having thickness of 4mm whose sectional modulus Z= 28.8 cm³

BOLT CONNECTIONS:

Use 2- 16 mm diameter bolts, $A_{nb} = 2*0.785*\pi^{16^2/4} = 315.66 \text{ mm}^2$ Strength of bolt in single shear = $V_{sb} = 315.66*400 / \sqrt{3}*1.25 = 58.308 \text{ KN} > 23.15 \text{ KN}$ [SAFE] Strength of bolt in bearing =2.5*0.5*(2*16)*4*400*10⁻³/1.25 = 51.2 KN > 23.15 KN [SAFE]

XI. Analysis And Design of Frames

X-AXIS:

Loading area = $2*(\frac{1}{2}*(5+1)*2) = 12 \text{ m}^2$ Slab load= 12((0.15*25)+2) = 69 KNLoad on beam = 69/5 = 13.8 KN/mSelf-weight of beam = 0.23*0.6*25 = 3.45 KN/mTotal load = 13.8 + 3.45 = 17.25 KN/m

Fig 3 : bmd in X - axis

Y- AXIS:

Loading area = $2*(\frac{1}{2}*(5+1)*2) = 12 \text{ m}^2$ Slab load= 12((0.15*25)+2) = 69 KNLoad on beam = 69/5 = 13.8 KN/mSelf-weight of beam = 0.23*0.6*25 = 3.45 KN/mTotal load = 13.8+3.45 = 17.25 KN/m

$$\begin{split} & r = 1.15 \mbox{ for } p_t = 0.57 \ \% \mbox{ and } \sigma_S = 240 \ MR, \ \delta = 1, \ \lambda = 1 \\ L/D = 29.9 \ , \ Actual \ L/d = 4800/126 = 38.09 \ \ [SAFE] \\ \mbox{ 12. } DESIGN \ OF \ BEAMS \\ & $$T\text{-BEAM}$ \end{split}$$

Fig 5 : T-beam

Applied movement =35.94 KNm Factored movement = 1.5*35.94 = 53.91 KNm $L_0 = 0.7*5 = 3.5 \text{ m}, \text{ d} = 750 - 50 = 700 \text{ mm}$ $b_f = (lo/6) + b_w + 6D_f = 1713 \text{ mm}$ Assume $x_u = D_f$ $M_u = 0.36*20*(1713)*150(700 - 0.42*150) = 1178.5 \text{ KNm}$ $X_u < D_f$ $M_{u} = 0.87f_{v}A_{s}(d - f_{v}A_{st}/f_{ck}b_{f}) => 53.91^{*}10^{6} = 0.87^{*}415^{*}A_{st}[700 - (415^{*}a_{st}/20^{*}1713)] => A_{st} = 222.07 \text{ mm}^{2}$ use 12 mm Ø bars, No. of bars = $(222.07/(\pi/4)*12^2) = 2$ bars. **Side face reinforcement:** Deep beam (i.e D = 750 mm) provides 2-12 mm \emptyset bars on each face. Check for shear:- $S_f = 43.125 \text{ kN}, v_u = 1.5*43.125 = 64.687 \text{KN}$ $T_u = v_u/b_w d = 64.6875*10^3/230*700 = 0.401 N/m^2$ $100A_{st}/b_wd = 100*222.07/230*700 = 0.137$ From $I_{s-456, pg 73, Tc} = 0.26N/mm^2$ $T_v > T_c$ Shear reinforcement is necessary. $V_{us} = 64.687*10^3 - 0.36*230*700 = 6.727 \text{ KN}$ Use 2 legged 8mm Ø stirrups $S_v = (0.87*415*100.53)/0.4*230 = 394.52 \text{ mm}$

Max spacing in y = 0.75d = 525mm (>394.52 mm) (safe)

L-Beam Design

 D_f = 150 mm, b_w = 230 mm, Effective depth = 750-50 = 700 mm

Factored moment =53.91 KNm = m_v $b_f = L_o / 12 + b_w + 3D_f$ $L_o =0.7(4.8) = 2.8 m, b_f = 972mm$ Assume $x_v = D_f$ $M = 0.36*20*972*150(700-(0.42*150)) => 682.63*10^6 N mm = 682.63 N m > <math>m_v$ So $x_v < D_f$ $53.91*10^6 = 0.87*415*A_{st}*700 (1- (415/20)*(A_{st}/700*971)) => A_{st} = 214.7 mm^2$ Use 12 mm Ø , No. of bars = 214/(($\pi/4$)*12²) = 2 , hence Use 2-12 mmØbars

Shear reinforcement:

Using 2 legged 8MM stirrups (max spacing = 0.75 d = 525 mm) $A_s = 2^*\pi/4 * 8^2 = 100.53$ S V = (0.87*415*100.53) / 0.4*230 = 390 mm SIDE FACE REINFORCEMET: A_{st} provide@ 2-12 mm Φ Bars on each face

13. DESIGN OF COLUMNS AXIALLY LOADED COLUMN:

Total weight of column = 81Kn Loads coming from the beam: X-X <u>Y-Y</u> 43.125 + 83/2 84.05KN = 84.625KN Total load = 1.5 (81 + 84.625 + 84.05) = 374.5125 KN P_U=374.5125=. $0.45^{+}20(300^{+}600^{-}A_{ST}) + 0.67^{+}415^{+}A_{ST} => A_{ST} = 768MM^{2}$ Min area of reinforcement = $0.8/100^{+}300^{+}600 = 1440m^{2}$ Use 16 mm Φ bars then No. of bars = $1440/(\pi/4^{+}100)$ =8nos Use 8-16mm Φ bars and 6mm Φ lateral ties @250 mm c/c

14. UNIAXIALLY LOADED COLUMN:

Size of the column =300*600, Height of the column=9m, Total weight of column=0.18*9*25=81KN Load coming from beams:

X-X Y-Y 43.125KN 42.55KN Total factored load=1.5*(43.125+42.55+81)=250.0125KN Factored moment=1.5*35.94KNm=53.91KNm $P_u/(f_{ck}*b*d)=(250.0125*10^3)/(20*300*600)=0.069$ $M_u/(f_{ck}*b*d^2)=0.024$, $p/f_{ck}=0.045$, % of steel =0.9%, 100A_{ST}/b*D=0.9 => A_{st}=1608.5mm² Provide 16mm Φ bars then No of bars =1608.5/ π /4*16²=8no Dravide 8.16mm Φ bars and Dravido 6mm Φ @250mm of a lateral time

Provide 8-16mm Φ bars and Provide 6mm Φ @250mm c/c lateral ties.

15. DESIGN OF FOOTING:

SBC = 25 t/m² = 250 kN/m², Load P = 374.5 Kn, Self weight=10%, P = 37.45 kN then Total load =411.95 kN Footing area = total load/SBC = 411.95/250 = 1.6475 m² Provide sides $\approx 1.3m^{+}1.3m$ Column size =0.3*0.6 m² L_x =1.3-0.3=1 m, L_y =1.3-0.6=0.7 m, Net upward pressure ,P=411.95/(1.3*1.3)=243.76kN/m² M_x =P*B*(L_x)²/8 = 243.76*1.3*1²/8 = 39.61 kNm M_y =P*B*(L_y)²/8=243.76*1.3*0.7²/8 = 19.041 kNm M_{max} =39.61 kNm **Depth of footing:** d=VM/(0.138*f_{ck}*b) = V(39.61*10⁶/(0.138*20*1000)) =119.79 mm => d \approx 120mm But min. Depth of foundation D=500mm,d=450mm. **Reinforcement:** M=0.87*fy*Ast*[d-(f_y*A_{st}/f_{ck}*b)] 39.61*10⁶=0.87*415*A_{st}*[450-(415*A_{st}/20*1000)] => A_{st=}=246.6 mm2 ,hence use 12 mm Φ bars, Spacing = Π *12²/(4*247)=293.4mm then Use 12 mm Φ bars @ 300 c/c spacing.

Check for one way shear:

Fig 7 : One way shear

 $V_u = q_0(\text{hatched area}) => V_u = 250^*(0.05^*1.3) = 16.25 \text{ kN}$ $T_v = V_u/\text{Bd} = 16.25/(1.3^*0.450) => 0.27 \text{ kN/m}^2$ $100A_{st}/\text{bd} = 0.42 ==> T_c = 0.41 > T_v. \text{ SAFE in one way shear.}$

Check for two way shear:

XII. Results and Discussion

Actually movie theatre total height of columns is 9 m as the breadth of theatre is 19.24 m it will be difficult to provide beams. So roof truss should be designed for this theatre using analysis of STAADD PRO and checked all design of columns, beams, footings, portal frames using LSM.

17. CONCLUSIONS: Generally all cinema theatres should not be provided roof truss but based on the dimensions of hall we have to provide the roof truss.

18. FUTURE WORK: This work will be done extended for Estimation of costing, valuation and quantity survey.

References

- [1]. NATIONAL BUILDING CODE
- [2]. IS 800-1984, code of practise for general construction in steel.
- [3]. IS 456-2000, code of practise for plain & reinforced concrete.
- [4]. "Theory of structures" by S.Ramamrutham.
- [5]. "Strength of materials & Theory of structures" by B C Punmia.
- [6]. "SP-16" Design aids for reinforced concrete COLUMNS.
- [7]. "Reinforced concrete design" by S.Unnikrishna Pillai & Menon.
- [8]. "R.C.C. Designs" by B C Punmia, A K Jain & A K Jain.

Nomenclature:

- A Area
- b Effective width of the slab
- $b_{\rm f}$ Effective width of the flange
- $b_{\rm w}$ $\,$ $\,$ Breadth of web or rib
- D Overall depth of beam or slab or diameter of column
- D_f _ Thickness of the flange

DL	-	Dead Load
d	-	Effective depth of beam or slab
d	-	Depth of compression reinforcement from the highly compressed face
E _C	-	Modulus of elasticity of concrete
EL	-	Earthquake Load
Es	-	Modulus of elasticity of steel
e	-	Eccentricity
f _{ck}	-	Characteristic cube compressive strength of concrete
f _v	-	Characteristic strength of steel
f_{α}	-	Modulus of rupture of concrete (Flexural tensile strength)
f _{ct}	-	Splitting tensile strength of concrete
f_d	-	Design strength
H_{w}	-	Unsupported height of wall
H_{we}	-	Effective height of wall
I _{ef}	-	Effective Moment of Inertia
I_{gr}	-	Moment of Inertia of the gross section excluding reinforcement
I _r	-	Moment of Inertia of cracked section
Κ	-	Stiffness of member
k	-	Constant (or) Coefficient of factor
L_d	-	Development length
LL	-	Live load (or) imposed load
L_{w}	-	Horizontal distance between centres of lateral restrain
1	-	Length of column
l_{ef}	-	Effective span of beam or slab or effective length of column
l _{ex}	-	Effective length about x-x axis
l _{ey}	-	Effective length about y-y axis
l _n	-	Clear span, face to face of supports
1 _n '	-	l_n for shorter of the two spans at right angles
l_x	-	Length of shorter side of slab
ly	-	Length of longer side of slab
lo	-	Distance between points of zero moments in a beam
l_1	-	Span in the direction in which moments are determined, centre to centre of supports
l_2	-	Span transfer to l_1 , centre to centre of supports
l ₂ '	-	l_2 for the shorter of the continuous spans
Μ	-	Bending Moment
m	-	Modular ratio
n	-	Number of samples
Р	-	Axial load on a compression member
\mathbf{q}_{au}	-	Calculated maximum bearing pressure of soil
r	-	Radius
S T	-	Spacing of stirrups (or) standard deviation
1	-	I orsional Moment
t v	-	wall thickness
V W	-	Shear Force
w	-	1 Otal Toad
WL	-	Willia load Distributed load per unit area
w	-	Distributed load per unit area
w _d	-	Distributed live (imposed) load per unit area
w ₁ v	-	Depth of neutral axis
7	_	Modulus of section
7	_	Lever arm
2 0	-	Angle (or) notic
α D	-	Angle (or) rano
α,p Υ.	-	Partial safety factor for load
α,p Υ _r Υ _m	- -	Partial safety factor for load Partial safety factor for material
α,ρ Υ _r Υ _m τς	- - -	Partial safety factor for load Partial safety factor for material Shear stress in concrete
	- - - X -	Partial safety factor for load Partial safety factor for material Shear stress in concrete Maximum shear stress in concrete with shear Reinforcement

τv - Nominal shear stress