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I. Introduction and Definition 

Let pA denote the class of analytic functions in the open unit disk : { :| | 1}z z  U of the form 

                                                 
1

( ) {1,2,3,...}p n p

n p

n

f z z a z p








                                                   (1.1)

 
and let 

1.A A  

Let S denote the subclass of pA consisting of multivalent functions. 

A function 
pf A given by (1.1) is said to be p valently starlike if it satisfies the inequality 

( )
Re 0, ( ).

( )

zf z
z

pf z

 
  

 
U  

We denote this class of functions by
*

pS . Note that the class 
*

pS reduces to * *

1 :S S , the class of starlike 

functions in U , introduced by Robertson [17]. 

 

A function pf A is said to be p-valently convex if it satisfies the condition 

1 ( )
Re 1 0, ( ).

( )

zf z
z

p f z

 
   

 
U  

We denote by pC the familiar subclass of pA . In particular 1p  , 
1 :C C the class of convex functions in U , 

introduced by Robertson [17] (also see [4]). 

 

For 2,n  Hayman [9] showed the difference of successive coefficients is bounded by an absolute constant i.e. 

1|| | | || .n na a A    

       Using different technique, Milin [15] showed that 9.A   Ilina [10] improved this to 4.26.A  Further, 

Grispan [8] restricted to 3.61.A For starlike function *,S  Leung [12] proved that the best possible bound is 

1.A On the other hand, it is known that for the class ,S  A cannot be reduced to 1. When 2,n  Golusin [5,6], 

Jenkins [11] and Duren [4] showed that for ,f S  
3 21 | | | | 1.029...a a    and that both upper and lower 

bounds in (1.1) are sharp. When 2n  and 3,n   Panigrahi [16] showed that for ,f C
 3 2| | | | 0.521a a 

 
and 

4 3| | | | 0.521a a  . Also for *,f S  
3 2| | | | 1.25a a   and 

4 3| | | | 2a a   both the inequalities are sharp. 

 

We now define the following differential operator 
,

, , :j

p p p



  D A A  

by 

                        
,

, ,

1

( ) [( ) ( 1)( ) ] ( , , )j p j n p

p n p

n

f z z n p n p n p C n p a z  

   








      D                                 (1.2) 
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where 

( )
( , , ) .

( 1) ( )

n p
C n p

n p






  

   

 

and 
0, : {0}, , , 0.j p          

 

By specializing the parameters , , ,j     and p we obtain the following operators studied earlier by various 

researchers: Namely, 

 If 1p   , 0,  0  or 0,   1,p   the operator 
,1 ,0

0,0,1 1,0,1

j j jD  D D  is the popular Salagean 

operator [19]; 

 When 0,j  1p  , then 
0,

,



 D  which is the Ruscheweyh differential operator (see [18]); 

 For 0, 0,   1p  , then 
,0

,0,1

j j

 D D which is the differential operator studied by Al-Oboudi (see [1]); 

 If 0  and 1p  then 
,0

, ,1 ,

j j

   D D  has been studied by Darus and Ibrahim (see [2]); 

 When 1,p  then 
, ,

, ,1 ,

j j 

   D D  which is the generalized differential operator studied by Panigrahi and 

Murugusundaramoorthy (see [16]). 

 

Motivated by the above concept, in this paper, making use of the differential operator 
,

, ,

j

p



 D  we introduce 

and investigate a new subclass of multivalent functions, as in 

 

Definition 1.1. A function pf A  is said to be in the class 
,

, , ( )j t

p  M if it satisfies the inequality 

                                             

, 1,

, , , ,

, 1,

, , , ,

(1 ) ( ( )) ( ( ))
0, ( )

(1 ) ( ) ( )

j j

p p

j j

p p

t z f z tz f z
z

t f z t f z

 

   

 

   





   
   
   

U
D D

D D
                                 (1.3) 

where 
00 1, , ,t j    ,p   and 0.   

 

Note that by taking 0t j    and 1,t   0j     the class
,

, , ( ),j t

p  M  reduces the classes 
*

pS  

and pC , respectively. 

 

Remark 1.1. If 0t j    and 1p  , then 
,

, , ( )j t

p  M  reduces to the well-known class of starlike functions 

in .U  Similarly, if we let 1,t p    0j     then 
,

, , ( )j t

p  M reduces to the well-known class of 

convex functions in .U  

 

The purpose of the present study is to estimate the coefficient differences for the function class 
,

, , ( ),j t

p  M  

when 1n p  and 2n p  . 

II. Preliminary Results 

 
In order to derive our main results, we have to recall the following preliminary lemmas: 

 

Let P be the family of all functions h analytic in ,U for which    0Re h z  and 

                                                           
1

( ) 1 , .n

n

n

h z c z z




    U                                                                  (2.1) 

Lemma 2.1. [4] If ,h P then | | 2,kc  for each 1.k   

Lemma 2.2. [7] The power series for h given in (2.1) converges in the unit disc U to a function in P  if and 

only if the Toeplitz determinants. 

 

1 2

1 1 1

1 2

2

2
, 1,2,3,

2

k

k

k

k k k

c c c

c c c
D k

c c c
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and ,k kc c  are all non-negative. These are strictly positive except for 0

1

( ) ,k

m
it z

k

k

h z h e


  0,k  kt real and 

,k jt t  for ,k j  in this case 0kD  for ( 1)k m  and 0kD  for .k m  

 

This necessary and sufficient condition due to Caratheodory and Toeplitz can be found in [7]. 

 

We may assume without restriction that 
1 0c  and on using [Lemma 2.2], for 2k  and 3k  respectively, we 

get 

1 2

2 2 2

2 1 1 1 2 2 1

2 1

2

2 8 2Re{ } 2 | | 4 0,

2

c c

D c c c c c c

c c

         

which is equivalent to 

                                                     2 2

2 1 12 (4 ) , for some , | | 1.c c x c x x                                                 (2.2) 

1 2 3

1 1 2

3

2 1 1

3 2 1

2

2
.

2

2

c c c

c c c
D

c c c

c c c

  

 

Then 
3 0D  is equivalent to 

                               3 2 2 2 2 2 2 2

3 1 2 1 1 1 2 1 1 2 1(4 4 )(4 ) (2 ) 2(4 ) 2 | 2 | .c c c c c c c c c c c                                          (2.3) 

 

From the relations (2.2) and (2.3), after simplifying, we get 

                                   
 3 2 2 2 2 2

3 1 1 1 1 1 14 2 (4 ) (4 ) 2(4 )(1 | | )

for some real value of , with | | 1.

c c c c x c c x c x z

z z

       


                                  (2.4) 

 

III. Main Results 

In this section, we prove to estimate the coefficient differences for the function class 
,

, , ( ).j t

p  M  

Theorem 3.1. Let f given by (1.1) be in the class 
,

, , ( ).j t

p  M  If 
3 2 1

( 2) ( 2)
,

( 3) ( 1)

p p
A A A

p p

 
 

 
 then 

                                                            
2 2

1 2
2 1 2

1 2

8 ( 1)
|| | | || ,

4 ( 1)
p p

pA p A
a a

p p A A
 

 
 


                                                      (3.1) 

and 

                                                       
2 2 2

2 3
3 2 2 2

2 3

(3 1) 8 ( 1)
|| | | || ,

4 ( 1)
p p

p A p p A
a a

p p A A
 

  
 


                                            (3.2) 

where 

1 ( 1) (1 ) ( )[1 (( 1) (1 ) 1) ],j jA p p p p p t            

2

( )( 1)
( 2) (1 ( 1) ) [1 (( 2) (1 ( 1) ) 1) ],

2

j j p p
A p p p p t  

 
  

          

and 

3

( )( 1)( 2)
( 3) (1 ( 2) ) [1 (( 3) (1 ( 2) ) 1) ].

6

j j p p p
A p p p p t   

 
    

          

Proof: Let the function ( )f z represented by (1.1) be in the class 
,

, , ( ).j t

p  M  By geometric interpretation, there 

exists a function hP given by (2.1) such that 

                                                         

, 1,

, , , ,

, 1,

, , , ,

(1 ) ( ( )) ( ( ))
( ).

(1 ) ( ) ( )

j j

p p

j j

p p

t z f z tz f z
h z

t f z t f z

 

   

 

   





  


 

D D

D D
                                           (3.3) 
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Replacing 
, 1,

, , , ,( ), ( ),j j

p pf z f z 

   

D D ,

, ,( ( ))j

p f z

 
D and 

1,

, , ( )j

p f z

 

 D by their equivalent expressions and the 

equivalent expression for ( )h z in series (3.3), we have 

 , 1, , 1,

, , , , , , , ,(1 ) ( ( )) ( ( )) ( ) (1 ) ( ) ( ) .j j j j

p p p pt z f z tz f z h z t f z t f z   

       

      D D D D  

1 1

1

1 1 1

1

(1 ) ( )[( ) ( 1)( ) ] ( , , )

( )[( ) ( 1)( ) ] ( , , )

p j n p

n p

n

p j n p

n p

n

t z pz n p n p n p n p n p a z

tz pz n p n p n p n p n p a z

 

 

 

 


  






   





 
        

 

 
        

 





C

C

 

1

(1 ) ( ) ( 1)( ) ( , , )
j

p n p

n p

n

t z n p n p n p n p a z   








 
          

 
 C                                              (3.4) 

1

1 1

( ) ( 1)( ) ( , , ) 1
j

p n p n

n p n

n n

t z n p n p n p n p a z c z   
 






 

   
             

   
 C  

 

Equating the coefficients of like power of 1 2,p pz z  and 3pz  respectively on both sides of (3.4), we have 

1 1 1 1 1( 1) ,p pp A a c A a     

2 2 2 1 1 1 2 2( 2) ,p p pp A a c c A a A a       

3 3 3 1 1 2 2 2 1 3 3( 3) ,p p p pp A a c A a c A a c A a         

where 
1 2,A A and 

3A are given in the statement of theorem. 

After simplifying, we get 

                                                            
2

1 2 1
1 2

1 2 2

, ,
( 1) ( 1)

p p

c c c
a a

pA p A p p A
   

 
                                           (3.5) 

and 

        
3

3 1 2 1
3

3 3 3

(2 1)
.

( 2) ( 1)( 2) ( 1)( 2)
p

c p c c c
a

p A p p p A p p p A



  

    
 

Since, 

1 1|| | | || | |,n p n p n p n pa a a a         

we need to consider 2 1| |p pa a  and 2 3| | .p pa a   

 

Taking into account (3.5) and (2.2) we obtain 

                         
2

2 1 1
2 1

2 2 1

| |
( 1) ( 1)

p p

c c c
a a

p A p p A pA
    

 
 

                
2 2

21 1 1
1

2 2 1

1
(4 )

( 1) 2 2 ( 1)

c c cx
c

p A p A pA

 
     

  
                                                  (3.6) 

                2 21
1 1

2 1 2

2
(4 ) .

2 ( 1) 2( 1)

cp x
c c

p p A pA p A


   

 
 

 

We can assume without loss of generality that 
1 0.c  For convenience of notation, we take 

1 ( [0;2])c c c   (see Lemma 2.1). Applying triangle inequality and replacing | |x by  in the right hand side of 

(3.6) and using the inequality 2 1

( 2)
,

( 1)

p
A A

p





it reduces to 

2 2

2 1

1 2 2

( 2) 4
| |

2 ( 1) 2( 1)
p p

c p c c
a a

pA p p A p A
 

 
   

 
                                                                               (3.7) 

                     ( , ) (0 | | 1),c x       

where 

                        
2 2

1 2 2

( 2) 4
( , ) .

2 ( 1) 2( 1)

c p c c
c

pA p p A p A
  

 
  

 
                                                                              (3.8) 
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We assume that the upper bound for (3.7) occurs at an interior point of the {( , ) : [0,1]}c  and [0,2].c  

Differentiating (3.8) partially with respect to , we get 

                                                                               
2

2

4
.

2( 1)

c

p A





 


 
                                                                (3.9) 

From (3.9) we observe that 0








for 0 1  and for fixed c with 0 2.c  Therefore ( , )F c  is an 

increasing function of , which contradicts our assumption that the maximum value of  occurs at an interior 

point of the set {( , ) : [0,1]}c  and [0,2].c So, fixed [0,2],c we have 

0 1
( , ) ( ,1) (max )c c c


   

 
  (say). 

Therefore replacing  by 1 in (3.8), we obtain 

                                                                    
2

1 2

2 ( 1)
( ) ,

( 1)

c p p c
c

pA p p A


 
 


                                                        (3.10) 

                                                                   
1 2

1 2
( )

c
c

pA pA
                                                                             (3.11) 

and 

                                                                   
2

2
( ) 0c

pA
     . 

For optimum value of ( ),c consider ( ) 0.c   It implies that 2

1

.
2

A
c

A
 Therefore, the maximum value of ( )c is 

2 2

1 2

2

1 2

8 ( 1)

4 ( 1)

pA p A

p p A A

 


 which occurs at 2

1

.
2

A
c

A
 from the expression (3.10), we get 

                                                                 
2 2

2 1 2
max 2

1 1 2

8 ( 1)
.

2 4 ( 1)

A pA p A

A p p A A
 

   
  

 
                                                (3.12) 

From (3.7) and (3.12), we have 
2 2

1 2
2 1 2

1 2

8 ( 1)
| | ,

4 ( 1)
p p

pA p A
a a

p p A A
 

 
 


 

which proves the assertion (3.1) of Theorem 3.1. 

 

Using the same technique, we will prove (3.2). From (3.5) and an application of (2.4) we have 

 

3 2| |p pa a 
3 2

3 1 2 1 2 1

3 3 3 2 2

(2 1)

( 2) ( 1)( 2) ( 1)( 2) ( 1) ( 1)

c p c c c c c

p A p p p A p p p A p A p p A


    

      
 

      

3 2 2 2 2 2

1 1 1 1 1 1

3

3
2 21 1
1 1

3 3

2
2 2 1
1 1

2 2

1
{ 2(4 ) (4 ) 2(4 )(1 | | ) }

4( 2)

(2 1)
{ (4 )}

2 ( 1)( 2) ( 1)( 2)

1
{ (4 )}

2( 1) ( 1)

c c c x c c x c x z
p A

p c c
c x c

p p p A p p p A

c
c x c

p A p p A

      



    

   

   
 

 

3 2| |p pa a 

2 2
2 21 1
1 1

3 2 3

2 2
2 21 1
1

3 3

2

1

2

( 3) ( 3 1)( 2)
(4 )

4( 2) 2 ( 1) 2 ( 1)( 2)

(4 ) 1
(4 )(1 | | )

4( 2) 2( 2)

1
(4 )

2( 1)

p c p p cp
c c x

p A p p A p p p A

c c x
c x z

p A p A

c x
p A

  
  

   


    

 

 


                                  (3.13) 
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As earlier, we assume without loss of generality that 
1c c with 0 2.c  Applying triangle inequality and 

replacing | |x  by   in the right hand side of (3.13) and using the fact that
3 2

3

2

p
A A

p





, it reduces to 

                

2 2
2 2

3 2

3 2 3

2 2
2 2

3 3

2

2

( 3) ( 2) ( 3 1)
| | (4 )

4( 2) 2 ( 1) 2 ( 1)( 2)

(4 ) 1
(4 )(1 )

4( 2) 2( 2)

1
(4 )

2( 1)

( , ),

p p

p c p p p c
a a c c

p A p p A p p p A

c c
c z

p A p A

c
p A

c








 

 

   
    

   


   

 

 




                                (3.14) 

where 

                        

2 2
2 2

3 2 3

2 2
2 2

3 3

2

2

( 3) ( 2) ( 3 1)
( , ) (4 )

4( 2) 2 ( 1) 2 ( 1)( 2)

(4 ) 1
(4 )(1 )

4( 2) 2( 2)

1
(4 ) .

2( 1)

p c p p p c
c c c

p A p p A p p p A

c c
c z

p A p A

c
p A

  






   
   

   


   

 

 


                              (3.15) 

Suppose that ( , )c   in (3.15) attains its maximum at an interior point ( , )c  of [0, 2] [0,1].  Differentiating 

(3.15) partially with respect to , we have 

2 2 2 2 2

3 3 3 2

2
2 3

3 2

( 3 1) (4 ) (4 ) (4 ) (4 )

2 ( 1)( 2) 2( 2) ( 2) 2( 1)

( 2)( 4)
( 3 1 ( 1) ) 2 ( 1) .

2 ( 1)( 2)

p p c c c c c c

p p p A p A p A p A

p Ac
c p p p p p p

p p p A A

  



 

      
   

     

 
         

   

 

Now 0








 which implies 

3

2

2

( 2)
2 ( 1)

2 ( 1)
0 (0 1),

( 1) 3 1

p A
p p

p p A
c

p p p p






 
  

 
   

   
 

which is false since 0.c  Thus ( , )c  attains its maximum on the boundary of [0, 2] [0,1]. Thus for fixed 

,c we have 

0 1
( , ) ( ,1) ( ) )a (m x c c c say


   

 
   

Therefore, replacing  by 1 in (3.15) and simplifying we get 

                                               
2

3 2 2

(3 1) 2
( )

( 1)( 2) ( 1)

p c c
c

p p p A p A pA



  

  
                                                     (3.16) 

                                              
3 2 2

(3 1) 2 2
( ) and ( ) 0.

( 1)

p c
c c

p p A pA pA
 


     


                                             (3.17) 

For an optimum value of ( ),c consider ( ) 0c  which implies 2

1

(3 1)

2( 1)

p A
c

p A





. Therefore, the maximum value 

of ( )c occurs at 2

1

(3 1)

2( 1)

p A
c

p A





. From the expression (3.16) we obtain 

                                                       
2 2 2

2 32
max 2 2

1 2 3

(3 1) 8 ( 1)(3 1)
.

2( 1) 4 ( 1)

p A p p Ap A

p A p p A A
 

    
  

  
                               (3.18) 

From (3.14) and (3.18), we have 
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2 2 2

2 3
3 2 2 2

2 3

(3 1) 8 ( 1)
| | .

4 ( 1)
p p

p A p p A
a a

p p A A
 

  
 


 

The proof of Theorem 3.1 is thus completed. 

Taking 1; 0t j       in Theorem 3.1 we get 

Corollary 3.2. Let f given by (1.1) be in the class .C then 

2

2 1 2 2

32 ( 1)( 2)
|| | | ||

8 ( 1) ( 2)
p p

p p p
a a

p p p
 

  
 

 
 

and  
2 2

3 2 2 3 2

9(3 1) 8 ( 1)( 3)
|| | | ||

2 ( 1) ( 2)( 3)
p p

p p p p
a a

p p p p
 

   
 

  
 

Both the inequalities are sharp. 

 

Putting 0t j    in Theorem 3.1 we get 

 

Corollary 3.3. Let f given by (1.1) be in the class 
*.S  Then 

3

2 1 2 2

32 ( 1)
|| | | ||

8 ( 1)
p p

p p
a a

p p
 

 
 


 

and 
2 2

3 2 2 3 2

9(3 1) 8 ( 1)( 2)
|| | | ||

2 ( 1) ( 2)
p p

p p p p
a a

p p p
 

   
 

 
 

Both the inequalities are sharp. 

 

For 1p  , Theorem 3.1 reduces to the results obtained in 

Corollary 3.4. [16] Let f  given by (1.1) be in the class 
,

, ( ).j t

  M If 3 1
2

3 3
,

4 2

A A
A  then 

2 2

1 2
3 2 2

1 2

4
|| | | || ,

4

A A
a a

A A


   

and 
2 2

2 3
4 3 2

2 3

|| | | || ,
A A

a a
A A


   

where 

1 2 (1 ) ( 1)[1 (2 (1 ) 1) ],j jA t          

2

( 1)( 2)
3 (1 2 ) [1 (3 (1 2 ) 1) ],

2

j jA t  
 

 
      

and 

3

( 1)( 2)( 3)
4 (1 3 ) [1 (4 (1 3 ) 1) ].

6

j jA t   
 

  
      

Remark 3.1. Here we remark that the results obtained in (corollary 1, [16]) is computationally wrong. The 

estimates 3 2 4 3

25 25
|| | | || and || | | ||

38 38
a a a a     must be 3 2 4 3

25 25
|| | | || and || | | ||

48 48
a a a a    . 

Taking  1; 0t p j        in Theorem 3.1 we get following 

Corollary 3.5. [16] Let f given by (1.1) be in the class .C Then 

3 2 4 3

25 25
|| | | || and || | | ||

48 48
a a a a     

Both the inequalities are sharp. 

Putting 0t j    and 1p  in Theorem 3.1 we get following 
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Corollary 3.6. [16] Let f given by (1.1) be in the class 
*.S Then 

3 2 4 3

5
|| | | || and || | | || 2

4
a a a a     

Both the inequalities are sharp. 
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