On Some Coefficient Estimates For Certain Subclass of Analytic And Multivalent Functions

M. Elumalai
Department of Mathematics, Presidency College, Chennai - 600 005, Tamilnadu, India.

Abstract

In this paper, motivated by the works of Jenkins [11], Leung [12] and Panigrahi and Murugusundaramoorthy [16] we defined a subclass of p - valent analytic functions using a generalized differential operator and compute coefficient differences. We also point out, as particular cases, the results obtained earlier by various authors.

Keywords and phrases: Multivalent functions, p-valent starlike functions, p-valent convex functions, Toeplitz determinant, Hankel determinant, Differential operator
2000 Mathematics Subject Classification: 30C45.

I. Introduction and Definition

Let A_{p} denote the class of analytic functions in the open unit disk $U:=\{z \in \square:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \in \square=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

and let $\mathrm{A}=\mathrm{A}_{1}$.
Let S denote the subclass of A_{p} consisting of multivalent functions.
A function $f \in \mathrm{~A}_{p}$ given by (1.1) is said to be p - valently starlike if it satisfies the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{p f(z)}\right)>0, \quad(z \in \mathrm{U})
$$

We denote this class of functions by S_{p}^{*}. Note that the class S_{p}^{*} reduces to $\mathrm{S}_{1}^{*}:=\mathrm{S}^{*}$, the class of starlike functions in U , introduced by Robertson [17].

A function $f \in \mathrm{~A}_{p}$ is said to be p -valently convex if it satisfies the condition

$$
\operatorname{Re} \frac{1}{p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad(z \in \mathrm{U}) .
$$

We denote by C_{p} the familiar subclass of A_{p}. In particular $p=1, \mathrm{C}_{1}:=\mathrm{C}$ the class of convex functions in U , introduced by Robertson [17] (also see [4]).

For $n \geq 2$, Hayman [9] showed the difference of successive coefficients is bounded by an absolute constant i.e.

$$
\left\|a_{n+1}|-| a_{n}\right\| \leq A .
$$

Using different technique, Milin [15] showed that $A<9$. Ilina [10] improved this to $A<4.26$. Further, Grispan [8] restricted to $A<3.61$. For starlike function S^{*}, Leung [12] proved that the best possible bound is $A=1$. On the other hand, it is known that for the class S, A cannot be reduced to 1 . When $n=2$, Golusin $[5,6]$, Jenkins [11] and Duren [4] showed that for $f \in S,-1 \leq a_{3}\left|-\left|a_{2}\right| \leq 1.029 \ldots\right.$ and that both upper and lower bounds in (1.1) are sharp. When $n=2$ and $n=3$, Panigrahi [16] showed that for $f \in \mathrm{C},\left|a_{3}\right|-\left|a_{2}\right| \leq 0.521$ and $\left|a_{4}\right|-\left|a_{3}\right| \leq 0.521$. Also for $f \in \mathrm{~S}^{*},\left|a_{3}\right|-\left|a_{2}\right| \leq 1.25$ and $\left|a_{4}\right|-\left|a_{3}\right| \leq 2$ both the inequalities are sharp.

We now define the following differential operator $\mathrm{D}_{\mu, \delta, p}^{j, \alpha}: \mathrm{A}_{p} \rightarrow \mathrm{~A}_{p}$ by

$$
\begin{equation*}
\mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)=z^{p}+\sum_{n=1}^{\infty}\left[(n+p)^{\alpha}+(n+p-1)(n+p)^{\alpha} \mu\right]^{j} C(\delta, n, p) a_{n+p} z^{n+p} \tag{1.2}
\end{equation*}
$$

where

$$
C(\delta, n, p)=\frac{\Gamma(n+p+\delta)}{\Gamma(n+1) \Gamma(\delta+p)} .
$$

and $j, \alpha \in \square_{0}:=\square \cup\{0\}, p \in \square, \mu, \delta \geq 0$.

By specializing the parameters j, α, μ, δ and p we obtain the following operators studied earlier by various researchers: Namely,
$>$ If $\alpha=p=1, \mu=0, \delta=0$ or $\alpha=\delta=0, \mu=p=1$, the operator $D_{0,0,1}^{j, 1} \equiv \mathrm{D}_{1,0,1}^{j, 0} \equiv \mathrm{D}^{j}$ is the popular Salagean operator [19];
$>$ When $j=0, p=1$, then $\mathrm{D}_{\mu, \delta}^{0, \alpha}$ which is the Ruscheweyh differential operator (see [18]);
$>$ For $\alpha=0, \delta=0, p=1$, then $\mathrm{D}_{\mu, 0,1}^{j, 0}=\mathrm{D}_{\mu}^{j}$ which is the differential operator studied by Al-Oboudi (see [1]);
$>$ If $\alpha=0$ and $p=1$ then $\mathrm{D}_{\mu, \delta, 1}^{j, 0}=\mathrm{D}_{\mu, \delta}^{j}$ has been studied by Darus and Ibrahim (see [2]);
$>$ When $p=1$, then $\mathrm{D}_{\mu, \delta, 1}^{j, \alpha}=\mathrm{D}_{\mu, \delta}^{j, \alpha}$ which is the generalized differential operator studied by Panigrahi and Murugusundaramoorthy (see [16]).

Motivated by the above concept, in this paper, making use of the differential operator $\mathrm{D}_{\mu, \delta, p}^{j, \alpha}$ we introduce and investigate a new subclass of multivalent functions, as in

Definition 1.1. A function $f \in \mathrm{~A}_{p}$ is said to be in the class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$ if it satisfies the inequality

$$
\begin{equation*}
\mathfrak{R}\left(\frac{(1-t) z\left(\mathbf{D}_{\mu, \delta, p}^{j, \alpha} f(z)\right)^{\prime}+t z\left(\mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)\right)^{\prime}}{(1-t) \mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)+t \mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)}\right)>0, \quad(z \in \mathrm{U}) \tag{1.3}
\end{equation*}
$$

where $0 \leq t \leq 1, j, \alpha \in \square_{0}, \quad p \in \square, \mu$ and $\delta \geq 0$.

Note that by taking $t=j=\delta=0$ and $t=\alpha=1, j=\mu=\delta=0$ the class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$, reduces the classes S_{p}^{*} and C_{p}, respectively.

Remark 1.1. If $t=j=\delta=0$ and $p=1$, then $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$ reduces to the well-known class of starlike functions in U. Similarly, if we let $t=\alpha=p=1, \quad j=\mu=\delta=0$ then $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$ reduces to the well-known class of convex functions in U .

The purpose of the present study is to estimate the coefficient differences for the function class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$, when $n=p+1$ and $n=p+2$.

II. Preliminary Results

In order to derive our main results, we have to recall the following preliminary lemmas:
Let P be the family of all functions h analytic in U , for which $\operatorname{Re}\{h(z)\}>0$ and

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad \forall z \in \mathrm{U} . \tag{2.1}
\end{equation*}
$$

Lemma 2.1. [4] If $h \in \mathrm{P}$, then $\left|c_{k}\right| \leq 2$, for each $k \geq 1$.
Lemma 2.2. [7] The power series for h given in (2.1) converges in the unit disc U to a function in P if and only if the Toeplitz determinants.

$$
D_{k}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \ldots & c_{k} \\
c_{-1} & 2 & c_{1} & \ldots & c_{k-1} \\
\vdots & \vdots & \vdots & \vdots & \\
c_{-k} & c_{-k+1} & c_{-k+2} & \ldots & 2
\end{array}\right|, \quad k=1,2,3, \ldots
$$

and $c_{-k}=\overline{c_{k}}$, are all non-negative. These are strictly positive except for $h(z)=\sum_{k=1}^{m} \rho_{k} h_{0} e^{i t_{k} z}, \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$, for $k \neq j$, in this case $D_{k}>0$ for $k<(m-1)$ and $D_{k}=0$ for $k \geq m$.

This necessary and sufficient condition due to Caratheodory and Toeplitz can be found in [7].
We may assume without restriction that $c_{1}>0$ and on using [Lemma 2.2], for $k=2$ and $k=3$ respectively, we get

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
\overline{c_{1}} & 2 & c_{1} \\
\overline{c_{2}} & \overline{c_{1}} & 2
\end{array}\right|=\left[8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2}\right] \geq 0,
$$

which is equivalent to

$$
\begin{align*}
& 2 c_{2}=\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}, \text { for some } x, \quad|x| \leq 1 . \tag{2.2}\\
& D_{3}=\left|\begin{array}{llll}
2 & c_{1} & c_{2} & c_{3} \\
\overline{c_{1}} & 2 & c_{1} & c_{2} \\
\overline{c_{2}} & \overline{c_{1}} & 2 & c_{1} \\
\overline{c_{3}} & \overline{c_{2}} & \overline{c_{1}} & 2
\end{array}\right| .
\end{align*}
$$

Then $D_{3} \geq 0$ is equivalent to

$$
\begin{equation*}
\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2} \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|2 c_{2}-c_{1}^{2}\right|^{2} . \tag{2.3}
\end{equation*}
$$

From the relations (2.2) and (2.3), after simplifying, we get

$$
\begin{align*}
& 4 c_{3}=\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \tag{2.4}\\
& \\
& \text { for some real value of } z, \text { with } \mid z \leqslant 1
\end{align*}
$$

III. Main Results

In this section, we prove to estimate the coefficient differences for the function class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$.
Theorem 3.1. Let f given by (1.1) be in the class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$. If $\frac{(p+2)}{(p+3)} A_{3} \leq A_{2} \leq \frac{(p+2)}{(p+1)} A_{1}$, then

$$
\begin{equation*}
\left|\left|a_{p+2}\right|-\left|a_{p+1}\right|\right| \leq \frac{8 p A_{1}^{2}+(p+1) A_{2}^{2}}{4 p(p+1) A_{1}^{2} A_{2}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\| a_{p+3}\left|-\left|a_{p+2}\right|\right| \leq \frac{(3 p+1)^{2} A_{2}^{2}+8 p(p+1) A_{3}^{2}}{4 p(p+1)^{2} A_{2} A_{3}^{2}} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{1}=(p+1)^{\alpha j}(1+p \mu)^{j}(\delta+p)\left[1+\left((p+1)^{\alpha}(1+p \mu)-1\right) t\right] \\
A_{2}=(p+2)^{\alpha j}(1+(p+1) \lambda)^{j} \frac{(\delta+p)(\delta+p+1)}{2}\left[1+\left((p+2)^{\alpha}(1+(p+1) \mu)-1\right) t\right]
\end{gathered}
$$

and

$$
A_{3}=(p+3)^{\alpha j}(1+(p+2) \mu)^{j} \frac{(\delta+p)(\delta+p+1)(\delta+p+2)}{6}\left[1+\left((p+3)^{\alpha}(1+(p+2) \mu)-1\right) t\right] .
$$

Proof: Let the function $f(z)$ represented by (1.1) be in the class $\mathrm{M}_{\mu, \delta, p}^{j, t}(\alpha)$. By geometric interpretation, there exists a function $h \in \mathrm{P}$ given by (2.1) such that

$$
\begin{equation*}
\frac{(1-t) z\left(\mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)\right)^{\prime}+t z\left(\mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)\right)^{\prime}}{(1-t) \mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)+t \mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)}=h(z) . \tag{3.3}
\end{equation*}
$$

Replacing $\mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z), \mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z),\left(\mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)\right)^{\prime}$ and $\mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)^{\prime}$ by their equivalent expressions and the equivalent expression for $h(z)$ in series (3.3), we have

$$
\begin{align*}
& (1-t) z\left(\mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)\right)^{\prime}+t z\left(\mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)\right)^{\prime}=h(z)\left\{(1-t) \mathrm{D}_{\mu, \delta, p}^{j, \alpha} f(z)+t \mathrm{D}_{\mu, \delta, p}^{j+1, \alpha} f(z)\right\} . \\
& (1-t) z\left\{p z^{p-1}+\sum_{n=1}^{\infty}(n+p)\left[(n+p)^{\alpha}+(n+p-1)(n+p)^{\alpha} \mu\right]^{j} \mathrm{C}(\delta, n, p) a_{n+p} z^{n+p-1}\right\} \\
& \quad+t z\left\{p z^{p-1}+\sum_{n=1}^{\infty}(n+p)\left[(n+p)^{\alpha}+(n+p-1)(n+p)^{\alpha} \mu\right]^{j+1} \mathrm{C}(\delta, n, p) a_{n+p} z^{n+p-1}\right\} \\
& =(1-t)\left\{z^{p}+\sum_{n=1}^{\infty}\left[(n+p)^{\alpha}+(n+p-1)(n+p)^{\alpha} \mu\right]^{j} \mathrm{C}(\delta, n, p) a_{n+p} z^{n+p}\right\} \tag{3.4}\\
& \quad+t\left\{z^{p}+\sum_{n=1}^{\infty}\left[(n+p)^{\alpha}+(n+p-1)(n+p)^{\alpha} \mu\right]^{j+1} \mathrm{C}(\delta, n, p) a_{n+p} z^{n+p}\right\} \times\left\{1+\sum_{n=1}^{\infty} c_{n} z^{n}\right\}
\end{align*}
$$

Equating the coefficients of like power of z^{p+1}, z^{p+2} and z^{p+3} respectively on both sides of (3.4), we have

$$
\begin{gathered}
(p+1) A_{1} a_{p+1}=c_{1}+A_{1} a_{p+1}, \\
(p+2) A_{2} a_{p+2}=c_{2}+c_{1} A_{1} a_{p+1}+A_{2} a_{p+2}, \\
(p+3) A_{3} a_{p+3}=c_{3}+A_{1} a_{p+1} c_{2}+A_{2} a_{p+2} c_{1}+A_{3} a_{p+3},
\end{gathered}
$$

where A_{1}, A_{2} and A_{3} are given in the statement of theorem.
After simplifying, we get

$$
\begin{equation*}
a_{p+1}=\frac{c_{1}}{p A_{1}}, a_{p+2}=\frac{c_{2}}{(p+1) A_{2}}+\frac{c_{1}^{2}}{p(p+1) A_{2}}, \tag{3.5}
\end{equation*}
$$

and

$$
a_{p+3}=\frac{c_{3}}{(p+2) A_{3}}+\frac{(2 p+1) c_{1} c_{2}}{p(p+1)(p+2) A_{3}}+\frac{c_{1}^{3}}{p(p+1)(p+2) A_{3}} .
$$

Since,

$$
\left\|a _ { n + p + 1 } \left|-\left|a_{n+p} \| \leq\left|a_{n+p+1}-a_{n+p}\right|,\right.\right.\right.
$$

we need to consider $\left|a_{p+2}-a_{p+1}\right|$ and $\left|a_{p+2}-a_{p+3}\right|$.
Taking into account (3.5) and (2.2) we obtain

$$
\begin{align*}
\left|a_{p+2}-a_{p+1}\right| & =\left|\frac{c_{2}}{(p+1) A_{2}}+\frac{c_{1}^{2}}{p(p+1) A_{2}}-\frac{c_{1}}{p A_{1}}\right| \\
& =\left|\frac{1}{(p+1) A_{2}}\left(\frac{c_{1}^{2}}{2}+\frac{x}{2}\left(4-c_{1}^{2}\right)\right)+\frac{c_{1}^{2}}{(p+1) A_{2}}-\frac{c_{1}}{p A_{1}}\right| \tag{3.6}\\
& =\left|\frac{p+2}{2 p(p+1) A_{2}} c_{1}^{2}-\frac{c_{1}}{p A_{1}}+\frac{x}{2(p+1) A_{2}}\left(4-c_{1}^{2}\right)\right|
\end{align*}
$$

We can assume without loss of generality that $c_{1}>0$. For convenience of notation, we take $c_{1}=c(c \in[0 ; 2])$ (see Lemma 2.1). Applying triangle inequality and replacing $|x|$ by η in the right hand side of (3.6) and using the inequality $A_{2} \leq \frac{(p+2)}{(p+1)} A_{1}$, it reduces to

$$
\begin{align*}
\left|a_{p+2}-a_{p+1}\right| & \leq \frac{c}{p A_{1}}-\frac{(p+2) c^{2}}{2 p(p+1) A_{2}}+\frac{4-c^{2}}{2(p+1) A_{2}} \eta \tag{3.7}\\
& =\chi(c, \eta) \quad(0 \leq \eta=|x| \leq 1),
\end{align*}
$$

where

$$
\begin{equation*}
\chi(c, \eta)=\frac{c}{p A_{1}}-\frac{(p+2) c^{2}}{2 p(p+1) A_{2}}+\frac{4-c^{2}}{2(p+1) A_{2}} \eta \tag{3.8}
\end{equation*}
$$

We assume that the upper bound for (3.7) occurs at an interior point of the $\{(\eta, c): \eta[0,1]\}$ and $c \in[0,2]$. Differentiating (3.8) partially with respect to η, we get

$$
\begin{equation*}
\frac{\partial \chi}{\partial \eta}=\frac{4-c^{2}}{2(p+1) A_{2}} \tag{3.9}
\end{equation*}
$$

From (3.9) we observe that $\frac{\partial \chi}{\partial \eta}>0$ for $0<\eta<1$ and for fixed c with $0<c<2$. Therefore $F(c, \eta)$ is an increasing function of η, which contradicts our assumption that the maximum value of χ occurs at an interior point of the set $\{(\eta, c): \eta \in[0,1]\}$ and $c \in[0,2]$. So, fixed $c \in[0,2]$, we have

$$
\max _{0 \leq \eta \leq 1} \chi(c, \eta)=\chi(c, 1)=\tau(c) \text { (say). }
$$

Therefore replacing μ by 1 in (3.8), we obtain

$$
\begin{align*}
\tau(c) & =\frac{c}{p A_{1}}+\frac{2 p-(p+1) c^{2}}{p(p+1) A_{2}}, \tag{3.10}\\
\tau^{\prime}(c) & =\frac{1}{p A_{1}}-\frac{2 c}{p A_{2}} \tag{3.11}
\end{align*}
$$

and

$$
\tau^{\prime \prime}(c)=-\frac{2}{p A_{2}}<0 .
$$

For optimum value of $\tau(c)$, consider $\tau^{\prime}(c)=0$. It implies that $c=\frac{A_{2}}{2 A_{1}}$. Therefore, the maximum value of $\tau(c)$ is $\frac{8 p A_{1}^{2}+(p+1) A_{2}^{2}}{4 p(p+1) A_{1}^{2} A_{2}}$ which occurs at $c=\frac{A_{2}}{2 A_{1}}$.from the expression (3.10), we get

$$
\begin{equation*}
\tau_{\max }=\tau\left(\frac{A_{2}}{2 A_{1}}\right)=\frac{8 p A_{1}^{2}+(p+1) A_{2}^{2}}{4 p(p+1) A_{1}^{2} A_{2}} . \tag{3.12}
\end{equation*}
$$

From (3.7) and (3.12), we have

$$
\left|a_{p+2}-a_{p+1}\right| \leq \frac{8 p A_{1}^{2}+(p+1) A_{2}^{2}}{4 p(p+1) A_{1}^{2} A_{2}},
$$

which proves the assertion (3.1) of Theorem 3.1.
Using the same technique, we will prove (3.2). From (3.5) and an application of (2.4) we have

$$
\begin{align*}
& \left|a_{p+3}-a_{p+2}\right|=\left|\begin{array}{r}
\frac{c_{3}}{(p+2) A_{3}}+\frac{(2 p+1) c_{1} c_{2}}{p(p+1)(p+2) A_{3}}+\frac{c_{1}^{3}}{p(p+1)(p+2) A_{3}}-\frac{c_{2}}{(p+1) A_{2}}-\frac{c_{1}^{2}}{p(p+1) A_{2}}
\end{array}\right| \\
&
\end{align*}\left|\begin{array}{r}
\frac{1}{4(p+2) A_{3}}\left\{c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \\
\quad+\frac{(2 p+1) c_{1}}{2 p(p+1)(p+2) A_{3}}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}+\frac{c_{1}^{3}}{p(p+1)(p+2) A_{3}} \\
\quad-\frac{1}{2(p+1) A_{2}}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}-\frac{c_{1}^{2}}{p(p+1) A_{2}}
\end{array}\right|
$$

As earlier, we assume without loss of generality that $c_{1}=c$ with $0 \leq c \leq 2$. Applying triangle inequality and replacing $|x|$ by η in the right hand side of (3.13) and using the fact that $A_{3} \leq \frac{p+3}{p+2} A_{2}$, it reduces to

$$
\begin{align*}
\left|a_{p+3}-a_{p+2}\right| \leq & \frac{(p+3) c^{2}}{4(p+2) A_{3}}-\frac{(p+2)}{2 p(p+1) A_{2}} c^{2}+\frac{\left(p^{2}+3 p+1\right) c}{2 p(p+1)(p+2) A_{3}}\left(4-c^{2}\right) \eta \\
& -\frac{c\left(4-c^{2}\right) \eta^{2}}{4(p+2) A_{3}}+\frac{1}{2(p+2) A_{3}}\left(4-c^{2}\right)\left(1-\eta^{2}\right) z \tag{3.14}\\
& \quad-\frac{1}{2(p+1) A_{2}}\left(4-c^{2}\right) \eta \\
= & \xi(c, \eta)
\end{align*}
$$

where

$$
\begin{align*}
\xi(c, \eta)=\frac{(p+3) c^{2}}{4(p+2) A_{3}}-\frac{(p+2)}{2 p(p+1) A_{2}} c^{2}+ & \frac{\left(p^{2}+3 p+1\right) c}{2 p(p+1)(p+2) A_{3}}\left(4-c^{2}\right) \eta \\
-\frac{c\left(4-c^{2}\right) \eta^{2}}{4(p+2) A_{3}} & +\frac{1}{2(p+2) A_{3}}\left(4-c^{2}\right)\left(1-\eta^{2}\right) z \tag{3.15}\\
& -\frac{1}{2(p+1) A_{2}}\left(4-c^{2}\right) \eta .
\end{align*}
$$

Suppose that $\xi(c, \eta)$ in (3.15) attains its maximum at an interior point (c, η) of $[0,2] \times[0,1]$. Differentiating (3.15) partially with respect to η, we have

$$
\begin{aligned}
\frac{\partial \xi}{\partial \eta} & =\frac{\left(p^{2}+3 p+1\right) c\left(4-c^{2}\right)}{2 p(p+1)(p+2) A_{3}}+\frac{c\left(4-c^{2}\right) \eta}{2(p+2) A_{3}}-\frac{\left(4-c^{2}\right) \eta}{(p+2) A_{3}}+\frac{\left(4-c^{2}\right)}{2(p+1) A_{2}} \\
& =-\frac{\left(c^{2}-4\right)}{2 p(p+1)(p+2) A_{3}}\left[c\left(p^{2}+3 p+1+p(p+1) \eta\right)-2 p(p+1) \eta+\frac{(p+2) A_{3}}{A_{2}}\right]
\end{aligned}
$$

Now $\frac{\partial \xi}{\partial \eta}=0$ which implies

$$
c=\frac{2 p(p+1)\left(\eta-\frac{(p+2) A_{3}}{2 p(p+1) A_{2}}\right)}{p(p+1) \eta+p^{2}+3 p+1}<0 \quad(0<\eta<1),
$$

which is false since $c>0$. Thus $\xi(c, \eta)$ attains its maximum on the boundary of $[0,2] \times[0,1]$. Thus for fixed c, we have

$$
\max _{0 \leq \eta \leq 1} \xi(c, \eta)=\xi(c, 1)=\psi(c)(\text { say })
$$

Therefore, replacing η by 1 in (3.15) and simplifying we get

$$
\begin{align*}
\psi(c) & =\frac{(3 p+1) c}{p(p+1)(p+2) A_{3}}+\frac{2}{(p+1) A_{2}}-\frac{c^{2}}{p A_{2}} \tag{3.16}\\
\psi^{\prime}(c) & =\frac{(3 p+1)}{p(p+1) A_{3}}-\frac{2 c}{p A_{2}} \text { and } \psi^{\prime \prime}(c)=-\frac{2}{p A_{2}}<0 \tag{3.17}
\end{align*}
$$

For an optimum value of $\psi(c)$, consider $\psi^{\prime}(c)=0$ which implies $c=\frac{(3 p+1) A_{2}}{2(p+1) A_{1}}$. Therefore, the maximum value of $\psi(c)$ occurs at $c=\frac{(3 p+1) A_{2}}{2(p+1) A_{1}}$. From the expression (3.16) we obtain

$$
\begin{equation*}
\psi_{\max }=\psi\left(\frac{(3 p+1) A_{2}}{2(p+1) A_{1}}\right)=\frac{(3 p+1)^{2} A_{2}^{2}+8 p(p+1) A_{3}^{2}}{4 p(p+1)^{2} A_{2} A_{3}^{2}} . \tag{3.18}
\end{equation*}
$$

From (3.14) and (3.18), we have

$$
\left|a_{p+3}-a_{p+2}\right|=\frac{(3 p+1)^{2} A_{2}^{2}+8 p(p+1) A_{3}^{2}}{4 p(p+1)^{2} A_{2} A_{3}^{2}} .
$$

The proof of Theorem 3.1 is thus completed.
Taking $t=\alpha=1 ; \mu=\delta=j=0$ in Theorem 3.1 we get
Corollary 3.2. Let f given by (1.1) be in the class C . then

$$
\| a_{p+2}\left|-\left|a_{p+1}\right|\right| \leq \frac{32 p+(p+1)(p+2)^{2}}{8 p^{2}(p+1)^{2}(p+2)}
$$

and

$$
\| a_{p+3}\left|-\left|a_{p+2}\right|\right| \leq \frac{9(3 p+1)^{2}+8 p(p+1)(p+3)^{2}}{2 p^{2}(p+1)^{3}(p+2)(p+3)^{2}}
$$

Both the inequalities are sharp.
Putting $t=j=\delta=0$ in Theorem 3.1 we get
Corollary 3.3. Let f given by (1.1) be in the class S^{*}. Then

$$
\| a_{p+2}\left|-\left|a_{p+1}\right|\right| \leq \frac{32 p+(p+1)^{3}}{8 p^{2}(p+1)^{2}}
$$

and

$$
\| a_{p+3}\left|-\left|a_{p+2}\right|\right| \leq \frac{9(3 p+1)^{2}+8 p(p+1)(p+2)^{2}}{2 p^{2}(p+1)^{3}(p+2)^{2}}
$$

Both the inequalities are sharp.
For $p=1$, Theorem 3.1 reduces to the results obtained in
Corollary 3.4. [16] Let f given by (1.1) be in the class $\mathrm{M}_{\mu, \delta}^{j, t}(\alpha)$. If $\frac{3 A_{3}}{4} \leq A_{2} \leq \frac{3 A_{1}}{2}$, then

$$
\| a_{3}\left|-\left|a_{2}\right|\right| \leq \frac{4 A_{1}^{2}+A_{2}^{2}}{4 A_{1}^{2} A_{2}},
$$

and

$$
\| a_{4}\left|-\left|a_{3}\right|\right| \leq \frac{A_{2}^{2}+A_{3}^{2}}{A_{2} A_{3}^{2}}
$$

where

$$
\begin{gathered}
A_{1}=2^{\alpha j}(1+\mu)^{j}(\delta+1)\left[1+\left(2^{\alpha}(1+\mu)-1\right) t\right] \\
A_{2}=3^{\alpha j}(1+2 \mu)^{j} \frac{(\delta+1)(\delta+2)}{2}\left[1+\left(3^{\alpha}(1+2 \mu)-1\right) t\right]
\end{gathered}
$$

and

$$
A_{3}=4^{\alpha j}(1+3 \mu)^{j} \frac{(\delta+1)(\delta+2)(\delta+3)}{6}\left[1+\left(4^{\alpha}(1+3 \mu)-1\right) t\right]
$$

Remark 3.1. Here we remark that the results obtained in (corollary 1, [16]) is computationally wrong. The estimates $\| a_{3}\left|-\left|a_{2}\right|\right| \leq \frac{25}{38}$ and $\| a_{4}\left|-\left|a_{3}\right|\right| \leq \frac{25}{38}$ must be $\| a_{3}\left|-\left|a_{2}\right|\right| \leq \frac{25}{48}$ and $\| a_{4}\left|-\left|a_{3}\right|\right| \leq \frac{25}{48}$.
Taking $t=\alpha=p=1 ; \mu=\delta=j=0$ in Theorem 3.1 we get following
Corollary 3.5. [16] Let f given by (1.1) be in the class C. Then

$$
\| a_{3}\left|-\left|a_{2}\right|\right| \leq \frac{25}{48} \text { and } \| a_{4}\left|-\left|a_{3}\right|\right| \leq \frac{25}{48}
$$

Both the inequalities are sharp.
Putting $t=j=\delta=0$ and $p=1$ in Theorem 3.1 we get following

Corollary 3.6. [16] Let f given by (1.1) be in the class S^{*}. Then

$$
\| a_{3}\left|-\left|a_{2}\right|\right| \leq \frac{5}{4} \text { and } \| a_{4}\left|-\left|a_{3}\right|\right| \leq 2
$$

Both the inequalities are sharp.

References

[1]. F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[2]. M. Darus and R. W. Ibrahim, Generalization of differential operator, J. Math. Stat., 4(2008), 138-144.
[3]. M. Darus and R. W. Ibrahim, New classes containing generalization of differential operator, Appl. Math. Sci., 3(2009), 2507-2515.
[4]. P. L. Duren, Univalent Functions. Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences]\}, 259. Springer- Verlag, New York, 1983.
[5]. G. M. Golusin, On distortion theorems and coefficients of univalent functions, Rec. Math. [Mat. Sbornik] N.S., 19(1946). 183-202.
[6]. G. M. Golusin, Some questions in the theory of univalent functions, Trudy. Mat. Inst. Steklov., 27(1949), 1-12.
[7]. U. Grenander and G. Szego, Toeplitz forms and their application, Berkeley and Los Angeles: Univ. of California Press, 1958.
[8]. A. Z. Grispin, Improved bounds for the difference of the moduli of adjacent coefficients of univalent functions, in Some Questions in the Modern Theory of Functions, Sib. Inst. Math, (1976), 41-45.
[9]. W. K. Hayman, On successive coefficients of univalent functions, J. London Math. Soc., 38(1963), 228-243.
[10]. L. P. Ilina, On the relative growth of adjacent coefficients of univalent functions, Mat. Zametki, 4(1968) 715-722 (in Russian) = Math. Notes 4(1968), 918-922.
[11]. J. A. Jenkins, On certain coefficients of univalent functions, 1960 Analytic functions pp. 159-194 Princeton Univ. Press, Princeton, N.J.
[12]. Y. J. Leung, Successive coefficients of starlike functions, Bull. London Math. Soc.,10(1978), 193-196.
[13]. R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230.
[14]. R. J. Libera and E. J. Zlotkiewicz, Coefficients bounds for the inverse of a function with derivative in p, Proc. Amer. Math. Soc., 87(1983), 251-289.
[15]. I. M. Milin, Adjacent coefficients of univalent functions, Dokl. Acad. Nauk SSSR., 180(1968), 1294-1297 (in Russian)=Soviet Math. Dokl., 9(1969), 762-765.
[16]. T. Panigrahi and G. Murugusundaramoorthy, On successive coefficient estimate for certain subclass of analytic functions, Applied Mathematics E-Notes, 16(2016), 117-124.
[17]. M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76(1970), 1-9.
[18]. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[19]. G. S. Salagean, Subclasses of Univalent Functions. Complex Analysis-fth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

