IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 6 Ver. I (Nov. - Dec.2016), PP 113-117 www.iosrjournals.org

Goldbach's **Conjecture**

Ritvi Singh D/O Mr. Jasveer Singh

Student of B.Sc (Final year), Govt. R.D. Girls College Bharatpur,Rajasthan, India

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:

Every even integer greater than 2 can be expressed as sum of two primes **Proof:**We can prove above conjecture with the help of mathematical induction Let P(n) be the statement that "every even integer greater than 2 can be expressed as sum of two primes" i.e. every number of form 2n, $n \ge 2$ can be expressed as sum of two primes We have, P(2) = 2(2) = 4 = 2 + 2 \Rightarrow 4 can be expressed as sum of two primes (2 and 2) \Rightarrow P(2) is true Let P(m) be true then $P(m) = 2m = P_1 + P_2$(i) Where $P_{1 and} P_{2}$ are primes Now, we shall show that P(m+1) is true For which we have to show that 2(m+1) can be expressed as sum of two primes We have, P(m+1) = 2(m+1) = 2m+2 \Rightarrow 2(m+1) = P₁+P₂ + 2(ii) In order to show that 2(m+1) is sum of two primes we need to prove that either of the following possibility holds true : Since P_1 is prime so it is sufficient to prove that (P_2+2) is prime • (P_1+1) and (P_2+2) both are prime If both the above possibilities do not holds good then we can show that if P₃ is any prime less (or greater) than P_1 then there exist a prime P_4 such that $P_3 + P_4 = 2(m+1)$ Now using equation (ii) $2(m+1) = P_1 + P_2 + 2$ а a а Where a is any arbitrary number less than 2(m+1)Since, 2(m+1)>each term of R.H.S \Rightarrow factors of any term of RHS if exists will be smaller than 2(m+1)

Now there are two types of numbers smaller than 2(m+1):

- Numbers which divides 2(m+1)
- Numbers which do not divides 2(m+1)

Thus there arises following two cases:

- a is any arbitrary number which divides 2(m+1)
- a is any arbitrary number which do not divides 2(m+1)

$Case-I: \quad \text{when a is any arbitrary number which divides } 2(m+1)$

Suppose a divides 2(m+1), **q** times then $\frac{2(m+1)}{a} = q$ (iv) Now, P_1 is prime \Rightarrow a do not divide P₁ Suppose a divides P_1 **u** times and leaves r_1 as remainder then, $P_1 = ua + r_1$ $\frac{P_1}{a} = \frac{ua+r_1}{a}$ -..... (v) Substituting value of equation (iv) and (v) in (iii) $\frac{qa}{a} = \frac{ua+r_1}{a} + \frac{P_2+2}{a}$ $qa = ua + r_1 + P_2 + 2$ $(q-u)a - r_1 = P_2 + 2$ $(q-u)a - a + a - r_1 = P_2 + 2$ $(q-u-1)a + r = P_2 + 2$ $Za + r = P_2 + 2.....(vi)$ Where z = (q-u-1)And r=a-r₁ Then by division algorithm we can say that $(P_2 + 2)$ is not divided by a if z is whole number and r<a Now, we will prove that z is whole number Clearly, $2(m+1)>P_1>0$ $\Rightarrow \frac{qa}{a} > \frac{ua+r_1}{a}$ $\Rightarrow (q-u) > \frac{r_1}{a}$ Also ,r₁<a $\Rightarrow \frac{r_1}{a} < 1$ $\Rightarrow (q-u) \ge 1$ \Rightarrow $(q-u-1) \ge 0$ (vii) Also, q,u,1 all are whole numbers so their difference will also be a whole number Thus, z=(q-u-1) is whole number.....(viii) Again, $r = (a - r_1)$ Where $0 < r_1 < a$ \Rightarrow a-r₁<a ⇒r<a (ix) Thus from equation (vi), (viii) and (ix) we can say that $a(P_2+2)$ is not divided by a **Note :** (Here $a \neq 1$. As, $(P_2+2)=za+r$ where 0 < r < aNow if $a=1 \implies r=0$ \Rightarrow P₂+2=za \implies P₂+2 is divided by a) Result of case I : (P_2+2) is not divided by any number (other than 1) which divides 2(m+1)

Case II : When a is any arbitrary number which do not divides 2(m+1)

Since a do not divides 2(m+1) then by division algorithm we can say that $2(m+1) = sa + r_2$(x) Where s is any whole number And $r_2 < a$ Again P_1 is prime thus P_1 is not divided by a Thus, $P_1 = ta + r_3$ (xi)

Where q is any natural number

Where t is any whole number

And $r_3 < a$

Now , substituting values from equation (x) and (xi) in equation (iii) we get,

$$\frac{sa+r_2}{a} = \frac{ta+r_3}{a} + \frac{P_2+2}{a}$$

$$\Rightarrow \frac{(s-t)a+(r_2-r_3)}{a} = \frac{P_2+2}{a}$$

$$\Rightarrow (s-t) + \frac{r_2-r_3}{a} = \frac{P_2+2}{a}$$

$$\Rightarrow (s-t)a+(r_2-r_3) = P_2+2$$

$$\Rightarrow wa+r_4 = P_2+2$$

$$wa+r_4 = P_2+2$$
.....(xii)

Since s and t are whole numbers this implies (s-t)=w is also a whole number Now there arises following two cases

1. If w=0 then , $0(a) + (r_2 - r_3) = P_2 + 2$

 $\frac{r_2-r_3}{=}=\frac{P_2+2}{2}$

 $r_4 = P_2 + 2$

a = a

Also, $0 < r_2, r_3 < a$ $\Rightarrow -a < r_2 - r_3 < a$

 \Rightarrow -a<r₄<a

Now on the basis of nature of r₄ there arises following conditions:

• - a<r₄<0

In this case equation (xiii) implies P_2+2 is negative integer but we know that P_2+2 is positive Hence, if w=0 then r_4 will never be less than zero.

• r₄=0

This is also not possible because if $r_4=0$ then from equation (xiii) $P_2+2=0$ but P_2+2 is positive. Hence r_4 will never be zero when w=0

• 0<r₄<a

In this case by equation (xiii) we can say that

$$\frac{r_4}{r_4} = \frac{P_2 + 2}{P_2 + 2}$$

a a

Since r₄<a

$$\Rightarrow 0 < \frac{r_4}{a} < 1$$
$$\Rightarrow 0 < \frac{P_2 + 2}{a} < 1$$

 \Rightarrow P₂+2 is not divided by a (:: $\frac{P_2+2}{a}$ is a fraction smaller than 1)

Result: In this case 2(m+1) can be expressed as sum of two primes P₁ and P₂+2

2.If w>0

Now there arises following conditions on the basis of nature of $\ensuremath{r_4}$

• $-a < r_4 < 0$ Now in this condition we need to check whether P_2+2 is divided by a or not From equation (xii) wa+r_4=P_2+2 wa-a+a+r_4=P_2+2 (w-1)a+(a+r_4)=P_2+2 $\begin{array}{l} (w-1)a+r_5=P_2+2\\ \text{Since }w\geq 1\\ \Longrightarrow (w-1)\geq 0\\ \text{Hence, }(w-1)\text{is whole number}\\ \text{Also,}\\ -a< r_4<0\\ -a+a< r_4+a<0+a\\ 0< r_5<a.....(xiv)\\ \text{Thus , from equation }(xii) \text{ and }(xiv) \text{ we can say that }(P_2+2) \text{ is not divided by a} \end{array}$

Thus in this case 2(m+1) can be expressed as sum of two primes P_1 and (P_2+2)

• $0 < r_4 < a$ Again from equation (xii) wa+r₄ = P₂+2 Where w is whole number And $r_4 < a$ Then clearly from division algorithm we can say P₂+2 is not divided by a **Result: In this case 2(m+1) can be expressed as sum of two primes P₁ and (P₂+2)**

• r₄=0

Since r_2 and r_3 are not zero this implies r_4 will be zero only and only if $r_2 = r_3$ Then in this case equation (xii) becomes (s-t)a=P₂+2

If (s-t)=1 $\Rightarrow a=P_2+2$ $\Rightarrow P_1+2$ is divided by

 \Rightarrow P₂+2 is divided by itself

Also (s-t) $\neq 1$ then from equation (xii) we can say that P₂+2 is not prime. But it does not mean that 2(m+1) cannot be expressed as sum of two primes as now also we have two more possibilities as told in starting of proof

[Which were 2.*possibility:* 2(m+1) is *sum* (P₁+1) and (P₂+1) then we will show that P₁+1 and (P₂+1) are primes

3.*possibility***:**2(m+1) is sum of P₃ and P₄ where P₃ is an prime less(or greater) than P₁ and P₄ is any natural number and then we will prove that P₄ is also prime]

Now we will check whether the second possibility holds true

 $2(m+1)=(P_1+1)+(P_2+1)$

Now we will prove that (P_1+1) and (P_2+1) both are prime

But, we know that all prime numbers except 2 are odd

Also P1 and P2 both are prime

 \Rightarrow P₁ and P₂ both are odd

 \implies (P₁+1)and(P₂+1) are even

 \Rightarrow (P₁+1)and(P₂+1) can be prime only and only if (P₁+1)and(P₂+1) both are separately equal to 2

Thus this possibility holds true only and only if $2(m+1) = (P_1+1) + (P_2+1)$

2(m+1)=2+22(m+1)=4

Now we will check whether our last possibility holds true or not. For which let us consider a prime $P_{3 and}$ a natural number P_4 such that $P_3 + P_4 = 2(m+1)$(xv)

Since P_3 is prime, hence it will not be divided by any a(other than 1 and itself) Thus we can write $P_3 = va + r_6$ (using division algorithm)......(xvi)

Also $2(m+1) = sa + r_2$ (xvii)

(as we have taken the case that 2(m+1) is not divided by a)

Now substituting value of P_3 and 2(m+1) in equation (xv) we get

 $sa + r_2 = va + r_6 + P_4$

 $(s-v)a + (r_2-r_6) = P_4$

 $w_1 a + r_7 = P_4$

Again there arises following three conditions on the basis of nature of r₇

-a<r₇<0

- $0 < r_7 < a$
- r₇=0

Again for first two conditions we can prove P_4 is prime in similar manner as we have proved for P_2+2 But , if $r_7 = 0$ then,

 $(r_2-r_6)=0$ Since r_2 and r_6 are not zero

 \Rightarrow r₂=r₆

Where r_6 is remainder when P_3 is divided by a But, $r_2 = r_3$ Where r_3 is remainder when P_1 is divided by a $\Rightarrow r_3 = r_6$

Now we will repeat above process finite number of times then we will definitely get a prime P_n which when divided by **a** leaves a remainder r_n such that $r_n \neq r_2$

Because if $r_n=r_2$ then it means that on dividing each prime number by arbitrary a we get same remainder but it is not possible.

If it would have been possible then difference between any two prime numbers will be multiple of a but we know that prime numbers do not follow any such law. For example 5,13 and 23 are primes but difference between any two is not divided by arbitrary **a** as

13-5=8

23-13=10

But there exist no arbitrary a which divides both 8 and 10 *Note:* Here a \neq 2 as we have taken the case that a do not divides 2(m+1)

Hence we can say that we can obtain a prime P_n such that $2(m+1) = P_n + P_{n+1}$ And 2(m+1) and P_n when divided by **a** do not leaves same remainder i.e. r_2 - $r_7 \neq 0$ where r_2 is remainder when 2(m+1) is divided by a And r_n is remainder when P_n is divided by a

$$\frac{2(m+1)}{a} = \frac{P_n}{a} + \frac{P_{n+1}}{a}$$
$$\Rightarrow \frac{sa+r_2}{a} = \frac{xa+r_n}{a} + \frac{P_{n+1}}{a}$$
$$(s-x)a + \frac{r_2 - r_n}{a} = \frac{P_n + 1}{a}$$

Now, there arise only two cases which are as under :

- (s-x)=0 In this case P_{n+1} will be prime we can prove it in similar manner as we have proved for P_2+2
- $(s-x)\neq 0$ then again there arises two conditions
- 1. $0 < r_2 r_n < a$

2. $-a < r_2 - r_n < 0$

In both cases we can prove that P_{n+1} is prime in similar manner as we have proved for P_2+2

[here (iii) condition r_2 - $r_n=0$ do not appears as $r_{2\neq}r_n$ also r_2 , $r_n\neq 0$)

Hence we can say that in this condition also 2(m+1) can be expressed as sum of two primes

Combining results of case I and results of all the conditions of case II we can say that in each and every condition we can express 2(m+1) as a sum of two primes

Hence *P* (m+1) is also true

Thus by principle of mathematical induction we can prove that every even integer greater than two can be expressed as sum of two primes