Trai Rashiq Bargia Sutra and Rana's Constant

Mohammad Makbul Hossain (Rana)
${ }^{1}$ Department: Course Teacher: Apparel Technology, Professional Institute of Science and Fashion Technology (Nu), Uttara, Dhaka, Bangladesh
${ }^{2}$ department: As A Student of Mit, Institute Of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh

Abstract

Like as, 1. Polidromik Number: (111, 222, 121, 525 its value same as from left to right starting number setup) 2. Horzat Number: (the number is divided by the sum of groups all number in, like in 12 sums $(1+2) 3$ is the Hozrat number of 12.) 3. Demloa Number: $\left(214423,21+23=44\right.$ that of the sum $1^{\text {st }}+$ last number $=$ middle number $)$ 4. UD Number : (ups and down number like 6, 9, 81, 18) 5. Kaprekar Constant: (the professor kaprekar in 1946 inventing the constant number 6174) 6. Kaprekar number: (2025 , cut in middle and ad $20+25=45$ square then same previous number 2025)

In this Connection, Axioms defined Mohammad Makbul Hossain Rana using sequential, odd and even numbers, "TRAI RASHIQ BARGIA SUTRA \& RANA'S CONSTANT", is a new invention and it is an extra ordinary and in-depth development in mathematics. His profound achievements in special types of Number Theory. In this theory, he establishes a particular relation between three consecutive integer/ odd/even numbers which is called "Rana's

Keywords: Trai Rashiq bargio sutra \& Constant as odd and even 8 and integer 2 up to nth term.

I. Introduction

Rana's Trai Rashiq bargio sutra \& Constant, as odd and even " $R=8$ " and interger" $R=2$ " up to nth term._Provided extraordinarily deep theorems that laid the foundation for the complete classification of finite simple numbers, one of the greatest achievements of twentieth century in mathematics like, professor Kaprekar constant. Simple numbers are atoms from which all finite numbers are built have a common relation. In a major breakthrough, proved that every number (integer/even/odd) have a common number of elements. Later extended this result to establish a common constant of an important kind of finite simple number called an " $R=2$ " for integer $\& R=8$, for odd leven number. At this point, the classification project came within incredible conclusion that all finite simple number belongs to certain standard families. In-depth and influential. His complements each other's and together forms the backbone of modern number theory.

II. Heading S

Name of theory: Trai Rashiq Bargia Sutra and Rana's Constant "Par par tinty aungker barger auntor dhoer auntor akti dhrobo sonkha."
[Bangla Version: ci ci wZbwU As $\ddagger K i ~ e \ddagger M \bigcirc i$ Aš—l Ø$\ddagger q i$ Aš—i GKwU aªye msL"v , msL"vwU = 2]
 $m s L " v w U=8]$ ivbvi $a^{\text {a² }} \mathrm{yeK}=2,8$ Rana's dhrobok Integer number $=2$, Even/odd (zore/bizore) number $=8$

III. Indentations and Equations

Theses/theory:
1.1. Name of theory: Trai Rashiq Bargia Sutra and Rana's Constant.
1.1.1 Basic: Number theory.
1.1.2. Definition/sutra: Par par tinty aungker barger auntor dhoer auntor akti dhrobo sonkha.

 msL"v, msL"vwU = 8]
1.1.5. ivbvi $a^{\text {a }}$ yeK=2, Rana's dhrobok Integer number $=2$, Even/odd (zore/bizore) number $=8$
1.1.6. Constant: integer number " $R=2$ ", Even/odd number " $R=8$ "

Proof this theory and constant " $R=2 / 8$ ": 1.1.7.
1.2.1. As 1, 2, 3 are three integer number

Proof:
$1^{2}=1$

$$
]=3
$$

$\left.2^{2}=4 \quad\right]=2$ [The Rana's constant for integer Number up to n term]] $=5$
$3^{2}=9$
2.3. As 1,3,5 are three odd number
$1^{2}=1$
$3^{2}=9 \quad \begin{array}{lll} & \quad 8 \\ &]=8 \text { [The Rana's constant for ODD Number up to } n \text { term }]\end{array}$] $=16$
$5^{2}=25$
1.2.2. As $2,4,6$ are three even number
$2^{2}=4$
$4^{2}=16^{\text {] = 12 }}$] = 8 [The Rana's constant for EVEN Number up to n term]
$6^{2}=36$

1.2.3. Example: let Three number are (a+1), a, (a-1) According to Rana's Trai Rashiq Bargia Sutra

Proof:
When, $\mathrm{a}=1,2,3 \ldots \ldots \ldots . \mathrm{n}$ [integer number]
$\left\{(a+1)^{2}-a^{2}\right\}-\left\{a^{2}-(a-1)^{2}\right\}$
$=\left\{\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 1+1^{2}-\mathrm{a}^{2}\right\}-\left\{\mathrm{a}^{2}-\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 1-1^{2}\right\}$
$=\{2 \cdot \mathrm{a} \cdot 1+1\}-\{2 \cdot \mathrm{a} \cdot 1-1\}$
$=\{2 \cdot a \cdot 1+1-2 \cdot a \cdot 1+1\}$
$=\{1+1\}$
=2
This the Rana's Constant " $R=2$ " or " R "
1.2.4. Example: let Three number are $a,(a+2),(a+4)$

According to Rana's Trai Rashiq Bargia Sutra
Proof:
a, $(a+2),(a+4)$
When $\mathrm{a}=2,4,6 \ldots . . . \mathrm{n}$ [EVEN Number]
$\left\{\mathrm{a}^{2}-(\mathrm{a}+2)^{2}\right\}-\left\{(\mathrm{a}+2)^{2}-(\mathrm{a}+4)^{2}\right\}$
$\left[\left\{2^{2}-(2+2)^{2}\right\}-\left\{(2+2)^{2}-(2+4)^{2}\right\}=8\right.$ when $\left.a=2\right]$
$\left[\left\{4^{2}-(4+2)^{2}\right\}-\left\{(4+2)^{2}-(4+4)^{2}\right\}=8\right.$ when $\left.\mathrm{a}=4\right]$
$\left[\left\{6^{2}-(6+2)^{2}\right\}-\left\{(6+2)^{2}-(6+4)^{2}\right\}=8\right.$ when $\left.a=6\right]$
$=\left\{a^{2}-a^{2}-2 \cdot a \cdot 2-4\right\}-\left\{a^{2}+2 \cdot a \cdot 2+4-\left(a^{2}+2 \cdot a \cdot 4+16\right)\right\}$
$=\{-2 \cdot \mathrm{a} \cdot 2-4\}-\left\{\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 2+4-\mathrm{a}^{2}-2 \cdot \mathrm{a} \cdot 4-16\right\}$
$=\{-4 \cdot a-4\}-\{2 \cdot a \cdot 2+4-2 \cdot a \cdot 4-16\}$
$=\{-4 \cdot a-4-4 \cdot a-4+8 . a+16\}$
$=\{-4 . a-4-4 \cdot a-4+8 . a+16\}$

$$
\begin{aligned}
& =\{-8+16\} \\
& =8
\end{aligned}
$$

This the Rana's Constant " $R=8$ " or " R " in even number

1.2.5. Example: let Three number are $\mathbf{a},(\mathbf{a}+2),(a+4)$ According to Rana's Trai Rashiq Bargia Sutra

 Proof:a, $(a+2),(a+4)$
When, $a=1,3,5 \ldots \ldots \ldots . n$ [ODD number]
$\left\{a^{2}-(a+2)^{2}\right\}-\left\{(a+2)^{2}-(a+4)^{2}\right\}$
$\left[\left\{1^{2}-(1+2)^{2}\right\}-\left\{(1+2)^{2}-(1+4)^{2}\right\}=8\right.$ when $\left.\mathrm{a}=1\right]$
$\left[\left\{3^{2}-(3+2)^{2}\right\}-\left\{(3+2)^{2}-(3+4)^{2}\right\}=8\right.$ when $\left.\mathrm{a}=3\right]$
$\left[\left\{5^{2}-(5+2)^{2}\right\}-\left\{(5+2)^{2}-(5+4)^{2}\right\}=8\right.$ when $\mathrm{a}=5$]
$=\left\{\mathrm{a}^{2}-\mathrm{a}^{2}-2 \cdot \mathrm{a} \cdot 2-4\right\}-\left\{\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 2+4-\left(\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot 4+16\right)\right\}$
$=\{-2 \cdot a \cdot 2-4\}-\left\{a^{2}+2 \cdot a \cdot 2+4-a^{2}-2 \cdot a \cdot 4-16\right\}$
$=\{-4 . a-4\}-\{4 . a+4-8 \cdot a-16\}$
$=\{-4 . a-4-4 . a-4+8 . a+16\}$
$=\{-4 \cdot a-4-4 \cdot a-4+8 \cdot a+16\}$
$=\{-8+16\}$
$=\{-8+16\}$
$=8$
This the Rana's Constant " $R=8$ " or " R " in odd number.

IV. Figures and Tables

2.1. Definition: Par par tinty aungker barger antor dhoer auntor akti dhrobo sonkha.

Exercise: - 1 (Numerical Problems)
2.1.1) Sum of any three integers square value as 35 and multiple value of 1 st \&

3 rd number as 5 and Rana's constant " 8 ", proof Rana's theory and
Determine the value of three numbers.
 msL"v wZbwU
wb@bq Ki |\}
2.1.2) Determine the value of three numbers that the Rana's constant as " 8 " and sum of square is 56 and 1 st \& 3rd number multiple is 12 .
 wb@bq Ki |\}
2.1.3) If $\mathrm{R}=8$ and the square sum value of three number is 83 and 1 st $\& 3 \mathrm{rd}$ number multiple is 21 . Determine the number odd or even.
 \dagger † \ddagger Rvo
wb@bq Ki |\}
2.1.4) If $\mathrm{R}=2$ and the square sum value of three number is 14 and 1 st $\& 3 \mathrm{rd}$ number multiple is 3 . determine the value of those number.
$\{h w `$ R = 2 Ges msL"v wZbwUi e $\ddagger \bigcirc M i$ mgwó 14 , 1g I 3q cł`i ,b dj 3, nq Zұe msL"v wZbwU wb@bq Ki |\} 2.1.5) Determine the value of \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) when \(\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2=29 \& \mathrm{ac}=8\) and constant \(\mathrm{R}=2\). \{hw` R=2.nq Ges a2 + b2 + c2 = 29 \& ac=8 nq, Z $\ddagger \mathrm{e} \mathrm{a}$, b, c Gi gvb wb@bq Ki |\}
Cell:01515691992, email: atex.rana@gmail.com, mhrana01@yahoo.com

Solution: 2.1.1)

Let, a, b, c is three integers, According to the question as

$$
\begin{equation*}
\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=35 \tag{iii}
\end{equation*}
$$

$\mathrm{axc}=5$ (ii),
$\mathrm{a}=5 / \mathrm{c}$
Constant $\mathrm{R}=8$
According to the rana's theory.
$\left\{a^{2}-b^{2}\right\}-\left\{b^{2}-c^{2}\right\}=8$
$\Rightarrow a^{2}-2 b^{2}+c^{2}=8$
$\Rightarrow a^{2}+b^{2}+c^{2}=8+3 b^{2}$
$\Rightarrow 35=8+3 \mathrm{~b} 2$
$\Rightarrow 35-8=3 \mathrm{~b} 2$
$\Rightarrow 27=3 \mathrm{~b} 2$
$\Rightarrow b^{2}=9$
$\Rightarrow \mathrm{b}=+3,-3$
from eqn (i)
$\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=35$

$\Rightarrow a^{2}+3^{2}+c^{2}=35$
$\Rightarrow a^{2}+c^{2}=35-9$ (put the value of b)
$\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=26$----(iv)
From eqn (iv) \& (iii)
$\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=26$
$\Rightarrow(5 / \mathrm{c})^{2}+\mathrm{c}^{2}=26$
$\Rightarrow 25 / \mathrm{c}^{2}+\mathrm{c}^{2}=26$
$\Rightarrow 25 / \mathrm{c}^{2}+\mathrm{c}^{2}=26$
$\Rightarrow\left(25+c^{4}\right) / \mathrm{c}^{2}=26$
$\Rightarrow 25+\mathrm{c}^{4}=26 \mathrm{x} \mathrm{c} 2$
$\Rightarrow c^{4}-26 c^{2}+25=0$
$\Rightarrow c^{4}-25 c^{2}-c^{2}+25=0$
$\Rightarrow c^{2}\left(c^{2}-25\right)-1\left(c^{2}-25\right)=0$
$\Rightarrow\left(c^{2}-25\right)\left(c^{2}-1\right)=0$
$\Rightarrow c^{2}=1$
=> c $=1,-1$
or
$\Rightarrow\left(c^{2}-25\right)=0$
$\Rightarrow c^{2}=25$
$\Rightarrow c=5,-5$
From eqn (iii)
a=5/c
$a=5 / 5=1[c=5]$
$\mathrm{a}=5 / 1=5[\mathrm{c}=1]$
The values of three numbers as $1,3,5$ or $5,3,1$ (Odd)

Solution: 2.1.2)

Let, $\mathrm{p}, \mathrm{q}, \mathrm{r}$ is three integers, According to the question as
$\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=56-------(\mathrm{i})$,
$\mathrm{pxr}=12$
(ii),
$\mathrm{p}=12 / \mathrm{r}$
Constant $\mathrm{R}=8$
According to the rana's theory.
$\left\{p^{2}-q^{2}\right\}-\left\{q^{2}-r^{2}\right\}=8$
$\Rightarrow p^{2}-2 q^{2}+r^{2}=8$
$\Rightarrow p^{2}+q^{2}+r^{2}=8+3 q^{2}$
$\Rightarrow 56=8+3 q^{2}$
$\Rightarrow 56-8=3 q^{2}$
$\Rightarrow 48=3 q^{2}$
$\Rightarrow q^{2}=16$
$\Rightarrow q=+4,-4$
From eqn (i)
$\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=56$
$\Rightarrow \mathrm{p}^{2}+4^{2}+\mathrm{r}^{2}=56$
$\Rightarrow \mathrm{p}^{2}+\mathrm{r}^{2}=56-16$
$\Rightarrow \mathrm{p}^{2}+\mathrm{r}^{2}=40$----(iv)
From eqn (iv) \& (iii)
$\Rightarrow \mathrm{p}^{2}+\mathrm{r}^{2}=40$
$\Rightarrow(12 / \mathrm{r})^{2}+\mathrm{r}^{2}=40$
$\Rightarrow 144 / r^{2}+r^{2}=40$
$\Rightarrow 144 / \mathrm{r}^{2}+\mathrm{r}^{2}=40$
$\Rightarrow\left(144+r^{4}\right) / r^{2}=40$
$\Rightarrow 144+r^{4}=40 \mathrm{x} \mathrm{r} 2$
$\Rightarrow r^{4}-40 r^{2}+144=0$
$\Rightarrow r^{4}-36 r^{2}-4 r^{2}+144=0$
$\Rightarrow r^{2}\left(r^{2}-36\right)-4\left(r^{2}-36\right)=0$
$\Rightarrow\left(r^{2}-36\right)\left(r^{2}-4\right)=0$
$\Rightarrow\left(r^{2}-36\right)=0$
$\Rightarrow r^{2}=36$
\Rightarrow r $=6$, -6
or
$\Rightarrow\left(\mathrm{r}^{2}-4\right)=0$
$\Rightarrow r^{2}=4$
=> r=2,-2
From eqn (iii)
$\mathrm{P}=12 / \mathrm{r}$
$\mathrm{P}=12 / 6=2[\mathrm{r}=6]$
$\mathrm{p}=12 / 2=6[\mathrm{r}=2]$
The values of three numbers as $2,4,6$ or $6,4,2$ or $-2,-4,-6$, (even)
Solution: 2.1.3)
Let, $\mathrm{p}, \mathrm{q}, \mathrm{r}$ is three integers, According to the question as
$x^{2}+y^{2}+z^{2}=83-------(i)$,
$\mathrm{xX} \mathrm{z}=21$
(ii),
x = 21/z \qquad
Constant $\mathrm{R}=8$
According to the rana's theory.
$\left\{x^{2}-y^{2}\right\}-\left\{y^{2}-z^{2}\right\}=8$
$\Rightarrow x^{2}-2 y^{2}+z^{2}=8$
$\Rightarrow x^{2}+y^{2}+z^{2}=8+3 y^{2}$
$\Rightarrow 83=8+3 y^{2}$
$\Rightarrow 83-8=3 y^{2}$
$\Rightarrow 75=3 y^{2}$
$\Rightarrow y^{2}=25$
$\Rightarrow y=+5,-5$
From eqn (i)
$x^{2}+y^{2}+z^{2}=83$
$\Rightarrow x^{2}+5^{2}+z^{2}=83$
$\Rightarrow \mathrm{x}^{2}+\mathrm{z}^{2}=83-25$
$\Rightarrow x^{2}+z^{2}=58$----(iv)
From eqn (iv) \& (iii)
$\Rightarrow x^{2}+z^{2}=58$
$\Rightarrow(21 / z)^{2}+z^{2}=58$
$\Rightarrow 441 / z^{2}+z^{2}=58$
$\Rightarrow\left(441+z^{4}\right) / z^{2}=58$
$\Rightarrow 441+\mathrm{z}^{4}=58 \mathrm{z}^{2}$
$\Rightarrow 441-58 z^{2}+z^{4}=0$
$\Rightarrow 441-49 z^{2}-9 z^{2}+z^{4}=0$
$\Rightarrow 49\left(9-z^{2}\right)-z^{2}\left(9-z^{2}\right)=0$
$\Rightarrow\left(49-z^{2}\right)\left(9-z^{2}\right)=0$
$\Rightarrow 49=z^{2}$ or $9=z^{2}$
=> $-7,7=\mathrm{z}$ or $-3,3=\mathrm{z}$
From eqn (iii)
$x=21 / \mathrm{z}$
$x=21 / 7=3[z=7]$
$\mathrm{x}=21 / 3=7[\mathrm{z}=3]$
The values of three numbers as $3,5,7$ or $7,5,3$ or $-3,-5,-7$ (odd), Proved
Solution: 2.1.4)
Let, $1, \mathrm{~m}, \mathrm{n}$ is three integers, According to the question as
$1^{2}+m^{2}+n^{2}=14-------(i)$,
$1 \mathrm{xn}=3$
$1=3 / n$
Constant $\mathrm{R}=2$
According to the rana's theory.
$\left\{1^{2}-m^{2}\right\}-\left\{m^{2}-n^{2}\right\}=2$
$\Rightarrow 1^{2}-2 m^{2}+n^{2}=2$
$\Rightarrow 1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=2+3 \mathrm{~m}^{2}$
$\Rightarrow 14=2+3 \mathrm{~m}^{2}$
$\Rightarrow 14-2=3 \mathrm{~m}^{2}$
$\Rightarrow 12=3 \mathrm{~m}^{2}$
$\Rightarrow m^{2}=4$
$\Rightarrow \mathrm{m}=+2,-2$
from eqn (i)
$\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=14$
$\Rightarrow 1^{2}+2^{2}+n^{2}=14$
$\Rightarrow 1^{2}+n^{2}=14-4$
$\Rightarrow 1^{2}+n^{2}=10$----(iv)
From eqn (iv) \& (iii)
$\Rightarrow 1^{2}+n^{2}=10$
$\Rightarrow(3 / \mathrm{n})^{2}+\mathrm{n} 2=10$
$\Rightarrow 9 / n^{2}+n^{2}=10$
$\Rightarrow\left(9+n^{4}\right) / n^{2}=10$
$\Rightarrow 9+\mathrm{n}^{4}=10 \mathrm{n}^{2}$
$\Rightarrow 9-10 n^{2}+n^{4}=0$
$\Rightarrow 9-n^{2}-9 n^{2}+n^{4}=0$
$\Rightarrow 1\left(9-n^{2}\right)-n^{2}\left(9-n^{2}\right)=0$
$\Rightarrow\left(9-n^{2}\right)\left(1-n^{2}\right)=0$
$\Rightarrow 9=n^{2}$ or $1=n^{2}$
$\Rightarrow-3,3=n$ or $-1,1=n$
From eqn (iii)
$1=3 / n$
$\mathrm{l}=3 / 1=3[\mathrm{n}=1]$
$1=3 / 3=1[n=3]$
The values of three numbers as $1,2,3$ or $3,2,1$ or $-1,-2,-3$ (integer) Proved

Solution: 2.1.5)
Let, a, b, c is three integers
According to the question
$a^{2}+b^{2}+c^{2}=29------$ (i)
$\mathrm{ac}=8$
a=8/c
constant $\mathrm{R}=2$.
According to the rana's theory.

```
\(\left\{a^{2}-b^{2}\right\}-\left\{b^{2}-c^{2}\right\}=2\)
\(\Rightarrow a^{2}-2 b^{2}+c^{2}=2\)
\(\Rightarrow a^{2}+b^{2}+c^{2}=2+3 b^{2}\)
\(\Rightarrow 29=2+3 b^{2}\)
\(\Rightarrow 29-2=3 b^{2}\)
"> \(27=3 b^{2}\)
\(\Rightarrow b^{2}=9\)
\(\Rightarrow b=+3,-3\)
from eqn (i)
\(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=29\)
\(\Rightarrow \mathrm{a}^{2}+3^{2}+\mathrm{c}^{2}=29\)
\(\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=29-9\)
\(\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=20\)----(iv)
```

From eqn (iv) \& (iii)
$\Rightarrow \mathrm{a}^{2}+\mathrm{c}^{2}=20$
$\Rightarrow(8 / \mathrm{c})^{2}+\mathrm{c}^{2}=20$
$\Rightarrow 64 / \mathrm{c}^{2}+\mathrm{c}^{2}=20$
$\Rightarrow 64 / c^{2}+c^{2}=20$
$\Rightarrow\left(64+c^{4}\right) / c^{2}=20$
$\Rightarrow 64+\mathrm{c}^{4}=20 \mathrm{x} \mathrm{c}^{2}$
$\Rightarrow c^{4}-20 c^{2}+64=0$
$\Rightarrow c^{4}-16 c^{2}-4 c^{2}+64=0$
$\Rightarrow c^{2}\left(c^{2}-16\right)-4\left(c^{2}-16\right)=0$
$\Rightarrow\left(c^{2}-16\right)\left(c^{2}-4\right)=0$
$\Rightarrow\left(c^{2}-16\right)=0$
Or $\left(c^{2}-4\right)=0$
=> $c=2,-2$
or
$\Rightarrow\left(c^{2}-16\right)=0$
$\Rightarrow c^{2}=16$
=> c $=4,-4$
From eqn (iii)
a=8/c
$\mathrm{a}=8 / 2=4[\mathrm{c}=2]$
$a=8 / 4=2[c=4]$

The values of three numbers as $2,3,4$ or 4, 3, 2 (integer), Proved

V. Conclusion

At this point, the classification project came within. Its almost incredible conclusion that all finite simple number belongs to certain standard families. The achievements of Mohammad Makbul Hossain (Rana) is the extraordinary, in-depth and influential. His complements each other's and together forms the backbone of modern number theory
Learning this theory the mathematics student will benefited like the followings:

1. Power of Math in a single equation.
2. Odd and Even Number
3. Relation between 1 to $\mathrm{n}-1$ number (Odd Number)
4. Relation Between 1 to $n+1$ number (even number)
5. Relation between 1 to n number (integer number)
6. Negative and positive numbers in a same relation.
7. Infinity Relation for number.
8. Common relation from all number in integer and odd, even number.
9. It is a "Trai Rashiq" equation so it needs two values to determine the third value.

Acknowledgements

I gratefully acknowledge my indebtedness to Late Rias uddin (Teacher, Dhanua sarkary Primary school),Late Abdul Matin (Teacher, Mowna High School) Md. Afzal Hossain and Abul Hasem (Asst./Professor, Bhawal Badra alam Govt. University College) who have acted as my guideline/supervisor. They inspire me to introduce to the research step to step" in Global context give some extra ordinary invention in the course of my life. In different step of my study they give proper education and made me confident that I can carry on further research as ferric alarm from waste iron, natural color cotton, ak goror langol, Sliver to fabrics manufacturing system, number theory in this research work, also Mr. Fazlul Karim patwary (Director IIT, Jahangirnagar University), Dr. Zakir Hossain \& Dr. Iyub Nabi (Directory Primeasia University), Md. Ismail Hossain (Sr.Teacher, sher-e-banglanagar govt, boys high school) Dr. Monibur Chowdhury and Mr. Seriazul Islam (Prof/ head department Math Dept, Dhaka University) Abdullah Mohammad Zubair help and guidance have been an outstanding factor for the completion of this work.

I take this opportunity to express my heart full thanks to all of the Authority of IOSRJM for providing me all sorts of valuable information. And Professional institute of Sciences and fashion Technology.Finally, I extend my indebtedness to my wife Dr. Mariam Akter swapna, friends, office colleague, my beloved parents in the form of financial support, encouragement and advice, it can never be returned adequately and these support and blessing have made it possible to carry out this and continuing research work to completion

References

[1]. $\quad 17^{\text {th }}$ science and technology fair 1993 "Number playing by mathematics" DT: 7-9 Th December 1993
[2]. Copyright Registration No. 10482 COPR DT: 31/08/2008
[3]. Theory of number
[4]. Real number analysis as Sequence of number as In Number
$\mathbf{1 2}=1 \quad 282=784$
$42=16 \quad 292=841$
$52=25 \quad 302=900 \ldots \ldots$.
$\mathbf{2 5 2}=\mathbf{6 2 5} \quad \mathbf{5 0 2}=\mathbf{2 5 0 0} \mathrm{n} \ldots \ldots \ldots \ldots . \mathrm{n} 2$
[5]. Shown / Approved by Member secretary of Bangladesh mathematics society and chairman, math department Dhaka University.

