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Abstract:- In the present paper we introduce some Finsler space with Euclidean space and many types of 

curvature forms. Finally we give some visual conditions of curvature and give the application of Finsler space 

and metric with curvature in theorem (13.1), (13.2), (13.3)and (13.4). 
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I. Introduction 
The anions carton in natural elegant manner and corresponding Finsler connections. In the present age the 

models of Finsler geometry has much importance in applications. Therefore we give some special spaces which 

are based with their metrics torsion tensors and curvature Tensors. 

 

1.1. Geometrical meaning of curvature:- [9] Let 𝑡 and 𝑡 + 𝛿𝑡 be unit tangent vector at two consective 

point P and Q respectively and 𝛿Ψbe the angle between these vectors. 

L𝑒𝑡𝑡 = 𝑄𝑅 ,         𝑡 + 𝛿𝑡 = 𝑄𝑆       Then 𝑅𝑆      = 𝛿𝑡  

Now  𝑅𝑁 + 𝑁𝑆 = 𝑄𝑅 sin
𝛿Ψ

2
+ 𝑄𝑆 sin

𝛿Ψ

2
 

= 2𝑄𝑅 sin
𝛿Ψ

2
 𝑄𝑅 = 𝑄𝑆   

⇒ 𝑅𝑆 = 2𝑄𝑅 sin
𝛿Ψ

2
→  𝑅𝑆       = 2 𝑄𝑅       sin

𝛿Ψ

2
 

⇒  𝛿𝑡  = 2 𝑡   sin
𝛿Ψ

2
 ⇒

 𝛿𝑡  

𝛿Ψ
=

sin 
𝛿Ψ

2

𝛿Ψ
 

⇒  
𝛿𝑡 

𝛿Ψ
 =

ln
𝛿Ψ

2
𝛿Ψ

2

𝑡𝑎𝑘𝑖𝑛𝑔𝑡𝑒𝑙𝑖𝑚𝑖𝑡𝑄 → 𝑃 

⇒ 𝛿Ψ → 0 𝑤𝑒𝑟𝑒  
𝑑𝑡 

𝑑Ψ
 = 1 

⇒  
𝑑𝑡 

𝑑𝑠
.
𝑑𝑠

𝑑Ψ
 = 1 ⇒  

𝑑𝑡 

𝑑𝑠
  

𝑑𝑠

𝑠Ψ
 = 1 

⇒ 𝐾  
𝑑𝑠

𝑑Ψ
 = 1 ⇒ 𝐾 =  

𝑑Ψ

𝑑𝑠
 =

𝑑Ψ

𝑑𝑠
 

 

Some Important case: - 

1.11- A given curve to be a straight lineif𝐾 = 0. 

1.12-A curve to be helix is that if curvature and torsion are in a constant ratio. 

1.13-At any point of the surface in conjugate direction the sum radii of normal curvature isconstant. 

 

1.2. Normal Curvature: - curvature of the normal section is called normal curvature denoted by 𝐾𝑛  .Its 

by𝜌𝑛 . reciprocal is called radius of normal curvature; denoted 

Obviously 𝑁 = 𝑛 𝑎𝑛𝑑
𝑑𝑡 

𝑑𝑠
= 𝐾𝑛  

Hence 𝑟′′ = 𝐾𝑛 = 𝐾𝑛𝑁  

⇒ 𝑁. 𝑟′′ = 𝐾𝑛𝑁 𝑁  

⇒ 𝐾𝑛 = 𝑁 𝑟′′ 

In form of fundamental  metric coefficient , 

𝐾𝑛 =
𝐿𝑑𝑢2+2𝑀𝑑𝑢𝑑𝑣 +𝑁𝑑𝑣2

𝐸𝑑𝑢2+2𝐹𝑑𝑢𝑑𝑣 +𝐺𝑑𝑣2  

Wherer =r (u, v) be the surface, H = 𝐸𝐹 − 𝐺2   , E =r1 r1 , G =r2 r2 , F =r1 r2  
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L =r11𝑁 , M =r12𝑁 , N =r22𝑁   and 𝑁  =  
r1 ×r2

| r1 ×r2|
  = 

r1 ×r2

𝐻
 

Also if K is Normal Curvature at (𝑢, 𝑣) in direction 𝑑𝑢, 𝑑𝑣 . Then 

𝐾 = 𝐿
𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2
 

 

1.3. Geodesic curvature: - The vector𝐾𝑔
   = 𝜆𝑟1 + 𝜇𝑟2 is called the curvature vector and its Magnitude is 

GeodesicCurvature [9]. 

 

1.4.Parallel Transport:-we are given two much closed point 𝑥  and  𝑦 in a Riemannian manifold is there a 

way to complexes a tangent vector at 𝑥 and a tangent vector at 𝑦even though they live, a priori, in different 

vector space .This is done by via parallel transport [10] 

 

Visual Introductionto Curvature, Parallel Transport of 𝑤𝑥Along V. 

 
Let 𝑤𝑥𝑏𝑒 a tangent vector at𝑥, we  are looking for a tangent vector 𝑤𝑦  at𝑦which would be the same as 𝑤𝑥  

since𝑥and 𝑦 are very closed , we may assume the𝑦 is the end point  of small tangent vector 𝑣 at𝑥. For 

simplicity, we will assume the 𝑤𝑦  is orthogonal to v and  that the norm of 𝑤𝑦  is very small then there exist a 

particular tangent vector 𝑤𝑦  at 𝑦 .It is the one whose end point is closest to the end point of 𝑤𝑥  , given the 

restrictions that 𝑤𝑦  be orthogonal to v . The vector 𝑤𝑦 is the best condition to be the same as 𝑤𝑥  . 

Move generally parallel transport of a vector w along any smooth curve starting at 𝑥can be define by 

decomposing the curve into small intervals and performing successive parallel transports along these 

subintervals. 

 

II:-Curvature:- 
The Study of curvature is based on Riemann curvature tensor                                                                                                           

(2.1)𝑅𝜐𝛼𝛽
𝜇

=
𝜕Γ𝜐𝜇 𝛽

𝜕𝑥2 −
𝜕Γ𝜐𝜇 𝛼

𝜕𝑥
+ Γ𝜌𝛼

𝜇 Γ𝜐𝛽
𝜌

− Γ𝜌𝛽
𝜇

Γ𝜐𝛼
𝜌

 

is a co-ordinate frame. The covariant component of the Riemann tensor are connected by several symmetries 

(2.2) 

 

𝑅𝛼𝛽𝛾𝛿 = 𝑅𝛾𝛿𝛼𝛽

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛽𝛾𝛿𝛼

𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛼𝛽𝛿𝛾

𝑅𝛼[𝛽𝛾𝛿 ] = 0  
 
 

 
 

 

      

The (symmetric) Ricci tensor and Ricci Scalar are formed from the Riemann tensor                                                    

(2.3)𝑅𝛼𝛽 = 𝑅𝜇 ∝ 𝜇𝛽,𝑅 = 𝑅∝ ∝ 

Weyl   tensor  

(2.4)eλμυk = 𝑅λμυk −
1

2
 𝑔𝜆𝛽 𝑅𝜇𝑘 − 𝑔𝜆𝑘 𝑅𝜇𝜐 − 𝑔𝜇𝜐 𝑅𝜆𝑘 + 𝑔𝜇𝑘 𝑅𝜆𝑣 +

1

6
 𝑔𝜆𝜐 𝑔𝜇𝑘 − 𝑔𝜆𝑘 𝑔𝜇𝑣  𝑅 

is also called theconformal tensor due to its invariance under conformal transformation. Its vanishes if and only 

if the metric is conform ally flat the extrinsic curvature tensor of a hyper surface which has unit normal a and 

which is spanned by basis vector𝑒𝑗 , 𝑒𝑗  …is denoted by k, with components 

(2.5)𝐾𝑖𝑗 = −𝑒𝑖∇in                                                                                                   

III. Curvatures of d-connection 
The irreducible components of curvature in a space V

n+m
 provided with additional N-connection structure.For 

space with N-connection, we use write the corresponding formula by using “boldfaced” symbols and changethe 

usual differential d intro N-adapted operator    (3.1)𝑇𝛼 ∶= 𝐷𝛾𝛼 = 𝛿𝜐𝛼 + Γ𝛽
𝛾

∧ 𝛾𝛽    (3.2)  

𝑅𝛽
𝛼 = 𝐷Γ𝛽

𝛼 = 𝛿Γ𝛽
𝛼 − Γ𝛽

𝛾
∧ Γγ

α 
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Finsler geometry and generalizations consider very general linear connection 𝐷 = 𝐷[], 𝐷[𝜐] in space 𝑉𝑛+𝑚  is 

defined as an operator (d-tensor field) adapted to N-connection structure 

 (3.3)𝑅 𝑥, 𝑦 𝑧 = 𝐷𝑥𝐷𝑦𝑧 − 𝐷𝑦𝑋𝑥𝑧 − 𝐷 𝑥 ,𝑦 𝑧 

 

IV. Thethreecurvatures Tensor of Carton:- 

(4.1)𝑆𝑗𝑘 
𝑖 = 𝐴𝑘𝑟

𝑖 𝐴𝑗
𝑟 − 𝐴𝑟

𝑖 𝐴𝑗𝑘
𝑟       ,  is called I

st
Carton Curvature Tensor. 

(4.2)𝑅𝑗𝑘
𝑖 = 𝐾𝑗𝑘

𝑖 + 𝐶𝑗𝑚
𝑖 𝐾𝑟𝑘

𝑚 𝑥𝑚     ,    is called third curvature Tensor of Carton.                                

(4.3)𝑃𝑗𝑘 
𝑖 = 𝐹

𝜕Γ𝑗𝑘
𝑖

𝜕𝑥𝑘 + 𝐴𝑗𝑚
𝑖 𝐴𝑘𝑙𝑟

𝑚 𝑙𝑟 − 𝐴𝑗𝑟𝑙
𝑖    ,  is called second curvature Tensor of Carton.           

 

V. Identities Satisfied by the Curvature Tensors:- 
As in Riemannian geometry, the structure of the Curvature tensor is such that they satisfy a large number of 

identities          

(5.1)𝑅𝑗𝑘
𝑖 = 𝑅𝑗𝑘 

𝑖  ;  𝐾𝑗𝑘
𝑖 = −𝐾𝑗𝑘

𝑖  

 (5.2)                      𝑆𝑗𝑘
𝑖 = −𝑆𝑗𝑘 

𝑖  

(5.3)                        𝑅𝑗𝑘
𝑖 = −𝑅𝑗𝑘 

𝑖  

(5.4)                        𝑆𝑖𝑗𝑘  =  𝑔𝑟𝑗 𝑆𝑖𝑘
𝑟  

(5.5)                        𝑃𝑖𝑗𝑘  = 𝑔𝑟𝑗 𝑃𝑖𝑘
𝑟  

(5.6)                        𝑆𝑗𝑖𝑘  = −𝑆𝑖𝑗𝑘  

(5.7)                        𝑃𝑗𝑖𝑘 = −𝑃𝑖𝑗𝑘  

Note: -if curvature tensor of a Finsler space 𝐹𝑛  (With n>2) satisfies the relation 

(5.8)  𝐾𝑖𝑘𝑗
 𝑙𝑖 = 𝑅(𝑙𝑘𝑆𝑗

 − 𝑙𝑗 𝛿𝑘
) 

VI. The Projection Curvature Tensor 
In this section we shall introduce the so-called “projective” transformation or changes which will lead us to 

various projective curvature tensor. Strictly speaking, this topic forms on integral part of the general geometry 

of paths for it is in connection with the latter that these concepts wave originally defined: nevertheless we shall 

see that the projective curvature tensor play an important role in the theory of special classes of Finsler spaces. 

Thus, while we shall derive the analysis of the first two parts of the section against the back –ground of the 

general geometry of paths, the reader may easily translatic, This Theory into the terminology of 

Finslergeometry, regarding the paths as geodesic. 

 

VII:-Higher order curvature gravity in Finsler geometry:- 
Finsler geometry is characterized in the first order of the weak approximation by an order parameter 𝜇 related to 

the cartontorsion tensor and desorbing the anisotropy using palatine formalizingflat Finsler space with an 

𝑓 𝑅 = 𝑅𝑛  action and where its variation is taken with respect to independent osculating metric and affine 

connection , the generalized conservation law and 𝐹𝑅𝑊 field equation modulo surface terms load if  1 + 𝛽 𝛿 =
3𝜇

8
(𝑛 ≃ 0.32) where 𝛽 =

−3(𝑛−1)2

[2𝑛 𝑛−2 ]
and 𝛿 =

𝜇𝛽

3
 to the following expression of the luminosity displace as a 

function of the red shift z 

(7.1)𝐷𝐿 ≃
𝐺1/𝛼

𝛼𝐴𝐶
[𝐺2𝐹2  𝑐, 1, 𝑐 + 1, −

𝐵

𝐴
 − 2𝐹1(𝑐, 1, 𝑐 = 1 −

𝐵

𝐴
 )]      

where,𝐵 =
𝜇

3𝐻
, 𝐴 = 1 − 𝐵, 𝐶 =

1+𝛼

𝛼
𝐺 =  1 + 2𝜇 , 

𝛼 = 4.76 And 22𝐹1(𝑎, 𝑏, 𝑐, 𝑥) is the caws hyper geometric formation. [8] 

 

VIII:-Riemann curvature for two dimensional space times:- 
For 𝑑𝑠2 = 𝑑𝑣2 − 𝑣2𝑑𝑣2 , the only no vanishing Christoffel symbols are  Γ𝑣𝑢

𝑣 = 𝑣𝑎𝑛𝑑Γ𝑢𝑣
𝑣 = Γ𝑣𝑢

𝑢 = 𝑣−1 so that 

(8.1)                   𝑅𝑣𝑢𝑣𝑢 = R𝑢𝑣𝑢
𝑣 = Γ𝑣𝑢 ,𝑣

𝑣 + Γ𝑣𝛼
𝑣 Γ𝑢𝑣

𝛼 − Γ𝑢𝛼
𝑣 Γ𝑢𝑣

𝛼  

 = 1 − 0 + 0 − 1 = 0 
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Since there is only one independent Riemann Component in two dimensions we conclude that 𝑅𝛼𝛽𝛾𝛿 = 0 and 

the space time in flat. 

 

IX. E-Curvature:- 

Let F be a Finsler metric on manifold M. The geodesics of F are characterized locally by the equation 
𝑑2𝑥 𝑖

𝑑𝑡2 =

2𝐺𝑖  𝑟.
𝑑𝑥

𝑑𝑡
 = 0, where𝐺𝑖   are coefficients of spray defined on M denoted by𝐺 𝑥, 𝑦 = 𝑦𝑖 𝜕

𝜕𝑥 𝑖 − 2𝐺𝑖 𝜕

𝜕𝑦 𝑖. A 

Finsler metric F is called Berwald metric if 𝐺𝑖 =  
1

2
Γ𝑗𝑘

𝑖 𝑦𝑗 𝑦𝑘  are quadratic in 𝑦 ∈ 𝑇𝑥M for any 𝑥 ∈M.Taking a 

trace curve of berwald curvature yields mean Berwald curvature on E-curvature. The E –curvature is an 

important quantity defined using the spray of F it is a kind of non-Riemann quantities [1, 2] Chen and Shen 

obtained an equivalent condition for a Randers metric to be E-curvature and S-curvature [3]. Then they studied 

the relationship between isotropic E-curvature and relatively isotropic Landsberg for curvature on a Douglas 

manifold for [4]. Lungu got a condition for Randers spaces to be simultaneously with scalar flag curvature and 

with constant E-curvature [5]. For  𝛼. 𝛽 - metrics in the form 𝐹 =α+ε𝛽+
𝑥2

𝛽
𝑘 D. Tang obtained an equivalent 

condition about E-curvature and S-curvature [6].Tayebi,Nankali and Peyghan proved that every m-root Carton 

space of E-curvature reduce to weakly Berwald spaces [7]. 

 

X. Finsler Space:- 
Finsler geometry is a kind of differential geometry, which was originated by P. Finslerian 1918. It is usually 

considered as a generalization of Riemannian geometry. The definition of Finsler space is -Suppose that we are 

given a function L  𝑥𝑖 , 𝑦𝑖  of the line element  𝑥𝑖 , 𝑦𝑖  of a curve defined in R. We shall assume L as a function 

of class at least C
5
 in all its 2n-arguments. If we define the infinitesimal distance 𝑑𝑠 between two points 𝑃(𝑥𝑖) 

and Q  𝑥𝑖 + 𝑑𝑥𝑖  of R by the relation                     

𝑑𝑠 = 𝐿 𝑥𝑖 , 𝑑𝑥𝑖  

then the manifold 𝑀𝑛  requipped with the fundamental function L defining the Metric is called a Finsler space .if 

L  𝑥𝑖 , 𝑑𝑥𝑖  satisfies the following conditions. 

 

Condition A-The function L  𝑥𝑖 , 𝑦𝑖  is positively homogeneous of degree one in 𝑦𝑖  i.e. 

𝐿 𝑥𝑖 , 𝑘𝑦𝑖 = 𝑘𝐿 𝑥𝑖 , 𝑦𝑖 , k > 0 

Condition B-The function L  𝑥𝑖 , 𝑦𝑖  is positively if not all 𝑦𝑖  vanish simultaneously i.e. 

𝐿 𝑥𝑖 , 𝑦𝑖 > 0 𝑤𝑖𝑡  (𝑦𝑖)2 ≠ 0

𝑖

 

Condition C-The quadratic form 

𝜕𝑗
 𝐿2 𝑥, 𝑦 𝜀𝑖𝜀𝑗 =

𝜕2𝐿2 𝑥, 𝑦 

𝜕𝑦𝑖𝜕𝑦𝑗
𝜀𝑖𝜀𝑗  

is assumed to be positive definite for any variable 𝜀𝑖 . 

Form Euler’s theorem on homogenous functions, we have𝜕 
𝑖𝐿 𝑥, 𝑦 𝑦𝑖 = 𝐿 (𝑥, 𝑦)  

𝜕𝑖
 𝜕𝑗

 𝐿2 𝑥, 𝑦 𝑦𝑖 = 0 

We put 𝑔𝑖𝑗  𝑥, 𝑦 =
1

2
𝜕𝑖
 𝜕𝑗

 𝐿2 𝑥, 𝑦  

Using the theory of quadratic form and the condition C, we deduce that- 

𝑔 𝑥, 𝑦 = 𝑔𝑖𝑗  𝑥, 𝑦 > 0 

For all line elements , if the function L is of particular form 

𝐿 𝑥𝑖 , 𝑑𝑥𝑖 = [𝑔𝑖𝑗  𝑥
𝑘 𝑑𝑥𝑖𝑑𝑥 𝑗 ]1/2 

Where the coefficients 𝑔𝑖𝑗  𝑥
𝑘  are independent of𝑑𝑥𝑖 , the metric defined by this function is called Riemannian 

metric and manifold 𝑀𝑛  is called a Riemannian space. Throughout the paper,  𝐹𝑛𝑜𝑟 (𝑀𝑛 , 𝐿) will denote the n-

dimensional finsler space, where as n-dimensional Riemannian space will be denoted by𝑅𝑛 . 

 

XII:-Some Special Form of Finsler Space:- 
(11.1):- Berwald space. If the connection coefficient𝐺𝑗𝑘

𝑖 .of the Berwald's connection 𝐵Гgiven by  

𝐺𝑗𝑘
𝑖 = 𝜕𝑗 𝐺𝑘

𝑖  

are functions of position alone, the space is called a Berwald space.  

(11.2):-Landsberg space. A Finsler space is called a Landsberg space if the Berwaldconnection BГ is h-

metrical i.e.                                                                                        𝑔𝑖𝑗 𝑘 = 0.  
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(11.3):-C-reducible Finsler space.A Finsler space of dimension n, more than two, is called C-reducible if 𝐶𝑖𝑗𝑘  

is written in the form  

𝐶𝑖𝑗𝑘 =
1

𝑛 + 1
 𝑖𝑗 𝐶𝑘 + 𝑗𝑘 𝐶𝑖 + 𝑘𝑖𝐶𝑗   

where𝐶𝑖𝑗𝑘 = 𝐶𝑖𝑗𝑘 𝑔𝑗𝑘 is the torsion vector and 𝑖𝑗 is the angular metric tensor given by𝑖𝑗 = 𝑔𝑖𝑗 − 𝑙𝑖𝑙𝑗  

(11.4) - Semi C-reducible Finsler space. A Finsler space of dimension n, more than two, is called semi C-

reducible if 𝐶𝑖𝑗𝑘  is written in the form  

𝐶𝑖𝑗𝑘 =
𝑝

𝑛 + 1
 𝑖𝑗 𝐶𝑘 + 𝑗𝑘 𝐶𝑖 + 𝑘𝑖𝐶𝑗  +

𝑞

𝐶2
𝐶𝑖𝐶𝑗 𝐶𝑘  

where𝐶2 = 𝑔𝑖𝑗 𝐶𝑖𝐶𝑗 and𝑝 +  𝑞 = 1.  

(11.5):-P-reducible Finsler space. A Finsler space of dimension n, more than two, is called P-reducible if (v) 

hv torsion tensor 𝑃𝑖𝑗𝑘  of 𝐶Гis written in the form  

𝑃𝑖𝑗𝑘 =
1

𝑛 + 1
 𝑖𝑗 𝐶𝑘0 + 𝑗𝑘 𝐶𝑖0 + 𝑘𝑖𝐶𝑗0  

(11.6):-C2-like Finsler space. A Finsler space is called C2-like Finsler space if  

𝐶𝑖𝑗𝑘 =
1

𝐶2
𝐶𝑖𝐶𝑗 𝐶𝑘  

(11.7):-C3-like Finsler space. A Finsler space is called C3-like Finsler space if  

𝐶𝑖𝑗𝑘 = 𝑆 𝑖𝑗𝑘   𝑖𝑗 𝑎𝑘 + 𝐶𝑖𝐶𝑗 𝑏𝑘 , 

where𝑎𝑘  and 𝑏𝑘are components of arbitrary indicatory tensors. 

 

(11.8):-S3-like Finsler space. A Finsler space 𝐹𝑛  with fundamental function 𝐿(𝑥, 𝑦) is called𝑆3-like Finsler 

space if v-curvature tensor𝑆 𝑖𝑗𝑘  of CГ is written in the form 𝐿2𝑆𝑖𝑗𝑘 = 𝑆 𝑗 𝑖𝑘 − 𝑘𝑖𝑗  . 

 

(11.9):-S4-like Finsler space. A Finsler space 𝐹𝑛  is called S4-like Finsler space if v-curvature tensor 𝑆 𝑖𝑗𝑘  of 

CГis written in the form  

𝑆𝑖𝑗𝑘 = 𝑗 𝑀𝑖𝑘 + 𝑀𝑗 𝑖𝑘 − 𝑘𝑀𝑖𝑗 − 𝑀𝑖𝑗 − 𝑖𝑗  

where𝑀𝑖𝑗  are components of a symmetric covariant tensor of second order and are(-2) p-homogeneous in 𝑦𝑖  

satisfying 𝑀0𝑗 = 0. 

 

(11.10):-R3-like Finsler space. A Finsler space of dimension more than three, is called R3-like Finslerspace if 

h-curvature tensor 𝑅𝑖𝑗𝑘  ofCГ written in the form  

𝑅𝑖𝑗𝑘 = 𝑔𝑗 𝐿𝑖𝑘 + 𝐿𝑗 𝑔𝑖𝑘 − 𝑔𝑘𝐿𝑖𝑗 − 𝐿𝑘𝑔𝑖𝑗  . 

where𝐿𝑖𝑗 are components of a covariant tensor of second order.  

 

(11.11):-Finsler space of scalar curvature. A Finslerspace of scalar curvature K is characterized by 

𝑅𝑖 0 𝑗 = 𝐾𝐿2𝑖𝑗      ,        where 𝑅𝑖𝑗𝑘 are components of (v) h'-torsion tensor of CГ.  

 

(11.12):-Finsler space with  𝜶, 𝜷  metric.A Finsler metric 𝐿(𝑥, 𝑦) is called an  𝛼, 𝛽 metric, when L is 

positively homogeneous function𝐿 𝛼, 𝛽  of first degree in two variables 𝛼 𝑥, 𝑦 =  𝑎𝑖𝑗  𝑥 𝑥𝑖𝑦𝑗  
1/2

 and 

𝛽 𝑥, 𝑦 = 𝑏𝑖 𝑥 𝑦𝑖  
 

XII.Various special Finsler spaces with special  𝜶, 𝜷  metric have their particular 

names which are given below. 
(12.1):-Randers space. The α , β − metric L = α + βis called a Randers metric and Finsler space equipped 

with this metric is called a Randers space. 

 

(12.2):- Kropinaspace.The α, β − metric L = α2/β iscalled a Kropina metric and Finsler space equipped with 

this metric is called a Kropina space. 

 

(12.3):-Generalized m- Kropinaspace.The α, β − metric, L = αm +1β
−m m ≠ 0, −1 is called a generalized 

m-Kropina metricandFinsler space equipped with this metric is called a generalized m-Kropina space.  

 

(12.4):- Matsumoto space. An n-dimensional  𝛼, 𝛽 − 𝑚𝑒𝑡𝑟𝑖𝑐𝐿 =
𝛼2

𝛼−𝛽
is called a slope metric or Matsumoto 

metric and a Finsler space equipped with this metric is called a Matsumoto space. 
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(12.5):-Finsler space with cubic metric. A Finsler metric 𝐿 𝑥, 𝑦  is called a cubic metric when 𝐿 𝑥, 𝑦 =

 𝑎𝑖𝑗𝑘  𝑥 𝑦𝑖𝑦𝑗 𝑦𝑘 
1/3

and .the space with such metric is called Finsler space with cubic metric.  

 

(12.6):-Finsler space with 𝒎𝒕𝒉 root metric. A Finsler metric L(x, y) is called a 𝑚𝑡 root metric if 𝐿 𝑥, 𝑦 =

 𝑎𝑖1𝑖2…𝑖𝑚
 𝑥 𝑦𝑖1𝑦𝑖2 − − − 𝑦𝑖𝑚  

1/𝑚
and the space with such metric is called Finsler space with 𝑚𝑡  root metric. 

 

(12.7):-Finsler space with one form metric. A Finsler metric L(x, y) is called one form metric if L is positively 

homogeneous function 𝐿 𝑎𝛼 where 𝑎𝛼 = 𝑎𝑖
𝛼𝑦𝑖 linearly independent differential 1-form and the space are is 

called the one-form Finsler space. 

XIII. Application of Curvature:- 
1. If we choose a co-ordinate system geared to the surface .Let 𝑥1 , 𝑥2vary and 𝑥3, 𝑥4be constant on the surface 

.The only contra variant components of C and D are then the 1 and 2 components. Weare interested then 

only in the Riemann components with indices 1 and 2, but there is only one such independent component, 

the non-vanishing Riemann Components of this type are related by symmetries which can be expressed as 

𝑅𝑖𝑗𝑘𝑙 ∝  𝑔𝑖𝑘𝑔𝑖𝑙 − 𝑔𝑖𝑙𝑔𝑗𝑘  𝑖, 𝑗, 𝑘, 𝑙 = 1,2,  

It follows immediately that in this coordinate system K is Independent of C and D .Since K is clearly co-

ordinate independent the desired result is proved. 

Theorem 13.1:- Let C and D be two linearly independent vectors tangent at appoint to a two dimensional 

surface, in a space of dimension≥ 2. The Riemannian curvature of the 2-surface at the point is defined as 

𝐾 =
𝑅𝛼𝛽𝛾𝛿 𝐶𝛼𝐶𝛽𝐷𝛼𝐷𝛽

(𝑎𝛼𝛽 𝑔𝛾𝛿 − 𝑔𝛼𝛿 𝑔𝛽𝛾 )𝐶𝛼𝐶𝛽𝐷𝛼𝐷𝛽
 

Show that K is unchanged if C and D are replaced by linear combinational of C and D. 

 

 

 

2. Since the metric is always covariantly constant 

𝑅𝛼𝛽𝛾𝛿 ;𝜆 = 𝐾𝜆 𝑔𝛼𝛾 𝑔𝛽𝛿 − 𝑔𝛼𝛿 𝑔𝛽𝛾   

Now substituting in the Bianchi identities 

0 = 𝑅𝛼𝛽𝛾𝛿 ;𝜆 + 𝑅𝛼𝛽𝜆𝛾 ;𝛿 + 𝑅𝛼𝛽𝛿𝜆 ;𝛾  

                             and contract on 𝛼, 𝛽and𝛾, 𝛿 to find 𝐾,𝜆 = 0 i.e. K is Constant. 

Theorem 13.2:- If the Riemann curvature is isotropic, the Riemann curvature tensor can be written as 

𝑅𝛼𝛽𝛾𝛿 = 𝐾(𝑔𝛼𝛾 𝑔𝛽𝛿 − 𝑔𝛼𝛿 𝑔𝛽𝛾 ) 

Use the Bianchi identities to show (Schurz’s theorem) that K must be a constant. 

 

 

 

3. The metric has form  

𝑑𝑠2 = −𝑑𝑟2 + 𝑔𝑖𝑗 𝑔𝑥𝑖𝑔𝑥 𝑗  

                                        where𝑔𝑖𝑗 = 𝑎2 𝑟 𝜆𝑖𝑗  𝑥
𝑘 . 

The normal vector to the r=constant surfaces is∇𝑖=
𝜕

𝜕𝑥
 , Thus 

𝐾𝑖𝑗 = −𝑒𝑗 . ∇𝑖𝑛 = 𝑛. ∇𝑖𝑒𝑗 = Γ𝑛𝑗𝑖 = −
1

2
𝑔𝑖𝑗 ,𝑛 =

−𝑎 ,𝑟

𝑎
𝑔𝑖𝑗 . 

 

Theorem(13.3):- What is the extrinsic curvature of the r = constant slice of the metric,  

𝑑𝑠2 = −𝑑𝑟2 + 𝑎2 𝑟  𝑦𝑖𝑗  𝑥
𝑘 𝑑𝑥𝑖𝑑𝑥 𝑗   

 

 

4. Since there is no favored direction in the spherical surface the extrinsic curvature tensor must 

be 𝐾𝑖𝑗 ∝ 𝛿𝑖𝑗 is an orthonormal basis; this implies that any vector is an eigenvector. From the 

definition of K as the rate of change of n, the eigenvector must be − 
1

𝑠𝑝𝑒𝑟𝑒 ′𝑠 𝑟𝑎𝑑𝑖𝑢𝑠
= −

1

𝑎
  . 

We can give the mathematical development of these intuitive results by going to the usual spherical co-

ordinates  𝑟, 𝜃, 𝜙. These are clearly Gaussian normal co-ordinates and 

𝑑𝑠2 = 𝑔𝑖𝑘𝑑𝑥𝑖𝑑𝑥𝑘 = 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) 

Now𝐾𝑖𝑗 = −
1

2
𝑔𝑖𝑗 ,𝑛 = −

1

2
𝑔𝑖𝑗 ,𝑟  𝑠𝑜 
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𝐾𝜃 𝜃 =
1

𝑔𝜃𝜃

𝐾𝜃𝜃 = 𝑟
1

2
 −

1

2
𝑟2 ,𝑟 = −

1

𝑎
 

                              𝐾𝜙 𝜙 =
1

𝑔𝜙𝜙

𝐾𝜙𝜙 =
1

𝑟2𝑠𝑖𝑛2𝜃
 −

1

2
𝑟2𝑠𝑖𝑛2𝜃 , 𝑟 = −

1

𝑎
. 

Theorem (13.4):- The Eigen values and Eigen vectors of the extrinsic curvature tensor are called curvature and 

directions for the following surfaces embedded in a 3-dimensions Euclidean space 

𝑠𝑝𝑒𝑟𝑒:     𝑥2 + 𝑦2 + 𝑧2 = 𝑎2. 
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