Regular Weakly Generalized Locally Closed Sets in Ideal Topological Spaces

¹S.Maragathavalli and ²C.R.Parvathy

¹Department of Mathematics, Govt. Arts College, Udumalpet, Tamilnadu, India ²Department of Mathematics, PSGR Krishnammal College for women, Coimbatore, Tamilnadu, India

Abstract: In this paper we have introduced the concept of regular weakly generalized locally closed sets in ideal topological spaces. Properties and characterizations are discussed. **Keywords:** I_{rwe} -lc set, I_{rwe} lc^{**} set, I_{rwe} lc^{**} set.

I. Introduction

A nonempty collection I of subsets on a topological space (X, τ) is called a topological ideal [3] if it satisfies the following two conditions:

(i) If $A \in I$ and $B \subset A$ implies $B \in I$ (heredity)

(ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite additivity)

Local function in topological spaces using ideals was introduced by Kuratowski [3]. Donchev [2] introduced the concept of I-locally closed sets. After that Navaneetha Krishnan and Sivaraj [4] introduced I - locally *-closed sets and Ig-locally *-closed sets.

II. Preliminaries

Definition 2.1.: A subset A of a topological space (X, τ, I) is called

(i) I-locally *-closed [4] if there exist an open set U and a *-closed set F such that $A = U \cap F$,

(ii) I_g-locally *-closed [4] if there exist an I_g-open set U and a *-closed set F such that $A = U \cap F$.

Definition 2.2: For a subset A of a topological space (X, τ) is said to be

(i) $A \subseteq GLC^{*}(X, \tau)[1]$ if there exist a g-open set U and a closed set F of (X, τ) such that $A = U \cap F$,

(ii) $A \subseteq GLC^{**}(X, \tau)[1]$ if there exist a open set U and a g-closed set F of (X, τ) such that $A = U \cap F$.

Definition 2.3: A subset A of an ideal topological space (X, τ, I) is called a

(i) rpsIlc-set [5] if there exists a rpsI-open set U and a rpsI-closed set F of (X, τ, I) such that $A = U \cap F$,

(ii) rpsIlc^{*}-set [5] if there exists a rpsI-open set U and a closed set F of (X, τ, I) such that $A = U \cap F$,

(iii) rpsIlc^{**}-set [5] if there exists a open set U and a rpsI-closed set F of (X, τ , I) such that A = U \cap F.

III. I_{rwg}LC SETS AND I_{rwg}LC^{*} SETS

In this section, regular weakly generalized locally closed sets are and introduced.

Definition 3.1: A subset A of an ideal topological spaces (X, τ, I) is said to be a regular weakly generalized locally closed ($I_{rwg}lc$) set if $A = U \cap F$ where U is I_{rwg} -open and F is I_{rwg} -closed in X.

Definition 3.2: A subset A of an ideal topological space (X, τ, I) is said to be $I_{rwg}lc^*$ if there exist an I_{rwg} -open set U and a closed set F of X such that $A = U \cap F$.

Definition 3.3: A subset A of an ideal topological spaces (X, τ , I) is said to be $I_{rwg}lc^{**}$ if there exist a open set U and a I_{rwg} -closed set F of X such that $A = U \cap F$.

The collection of all $I_{rwg}lc$ - sets (resp. $I_{rwg}lc^*$ and $I_{rwg}lc^{**}$) of (X, τ , I) is denoted by $I_{rwg}LC$ in (X, τ) (resp. $I_{rwg}LC^*(X,\tau)$ and $I_{rwg}LC^{**}(X,\tau)$.

Theorem 3.4: For a ideal topological space (X, τ , I) the following implications hold.

(i) ILC (X , τ) \subseteq IRWGLC^{*}(X , τ) \subseteq IRWGLC (X , τ)

(ii) ILC (X, τ) \subseteq IRWGLC^{**}(X, τ) \subseteq IRWGLC (X, τ)

The reverse implications need not be true as seen from the following example.

Example 3.5: Let $X = \{a,b,c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}, I = \{\emptyset, \{a\}\}, \text{ then } I_{g}\text{ lc closed sets are } \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, X\} \text{ and the } I_{rwg}\text{ lc sets are } \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, X\}.$ Hence $\{a,c\}$ is an $I_{rwg}\text{ lc sets but not Ilc set.}$

 I_{rwg} cl(A) is the smallest I_{rwg} -closed set containing A. **Theorem 3.7:** Let A be any subset of X, then (i) A is I_{rwg} -closed in X if and only if $A = I_{rwg}$ cl(A)

(ii) I_{rwg} -cl(Å) is I_{rwg} -closed in X

(iii) $x \in I_{rwg} cl(A)$ if and only if $A \cap U \neq \emptyset$ for every I_{rwg} -open set U containing x.

Proof: (i) and (ii) are trivially true.

(iii) Suppose that there exists an I_{rwg} -open set U containing x such that $A \cap U = \emptyset$. Since X - U is I_{rwg} -closed and $A \subseteq X - U$, $I_{rwg}cl(A) \subseteq X - U$. Therefore $x \notin I_{rwg}cl(A)$. Conversely suppose that $x \notin I_{rwg}cl(A)$. Then $U = X - I_{rwg}cl(A)$ is I_{rwg} -open set containing x and $A \cap U = \emptyset$.

Theorem 3.8: For a subset A of (X, τ, I) , the following statements are equivalent.

(i)
$$A \in I_{rwg}LC(X, \tau)$$

(ii) $A = U \cap I_{rwg} cl(A)$ for some I_{rwg} -open set U.

(iii)
$$I_{rwg}cl(A) - A$$
 is I_{rwg} -closed.

(iv) $A \cup (X - I_{rwg} cl(A))$ is I_{rwg} -open.

Proof: (i) \Rightarrow (ii) Suppose $A \in I_{rwg}LC(X, \tau)$. Then there exists an I_{rwg} -open subset U and I_{rwg} - closed subset F such that $A = U \cap F$. Since $A \subseteq U$ and $A \subseteq I_{rwg}cl(A)$, $A \subseteq U \cap I_{rwg}cl(A)$. Also by Theorem 3.7, $I_{rwg}cl(A)$ is I_{rwg} -closed in X. Hence $I_{rwg}cl(A) \subseteq F$ and $U \cap I_{rwg}cl(A) \subseteq U \cap F = A$. Therefore $A = U \cap I_{rwg}cl(A)$.

(ii) \Rightarrow (i) By Theorem 3.7, $I_{rwg}cl(A)$ is I_{rwg} -closed and hence $A = U \cap I_{rwg}cl(A) \in I_{rwg}LC(X, \tau)$.

(iii) \Rightarrow (iv) Let $S = I_{rwg}cl(A) - A$. Then, by assumption S is I_{rwg} -closed which implies X - S is I_{rwg} -open and $X - S = X \cap (X - S) = X \cap ((X - (I_{rwg}cl(A) - A)) = A \cup (X - I_{rwg}cl(A))$. Thus $A \cup (X - I_{rwg}cl(A))$ is I_{rwg} -open.

(iv) \Rightarrow (iii) Let W = A \cup (X - $I_{rwg}cl(A)$). Then W is I_{rwg} -open. This implies that X - W is I_{rwg} -closed and X - W = X - (A \cup (X - $I_{rwg}cl(A)$) = $I_{rwg}cl(A) \cap X - A = I_{rwg}cl(A) - A$. Thus $I_{rwg}cl(A) - A$ is closed.

(iv) \Rightarrow (ii) Let $U = A \cup (X - I_{rwg}cl(A))$. Then U is I_{rwg} -open. $U \cap I_{rwg}cl(A) = (A \cup (X - I_{rwg}cl(A))) \cap I_{rwg}cl(A) = (I_{rwg}cl(A) \cap A) \cup (I_{rwg}cl(A) \cap X - I_{rwg}cl(A)) = A \cup \emptyset = A$. Therefore, $A = U \cap I_{rwg}cl(A)$ for some I_{rwg} -open set U.

(ii) \Rightarrow (iv) Let $A = U \cap I_{rwg}$ cl(A), for some I_{rwg} -open set U. $A \cup (X - I_{rwg}cl(A)) = (U \cap I_{rwg}cl(A) \cup (X - I_{rwg}cl(A))) = U \cap (I_{rwg}cl(A) \cup (X - I_{rwg}cl(A))) = U \cap (X - I_{rwg}cl(A)) = U \cap (X - I_$

Theorem 3.9: For a subset A of (X , τ , I), the following statements are equivalent.

(i) $A \in I_{rwg}LC^{*}(X, \tau)$

(ii) $A = U \cap cl(A)$ for some I_{rwg} -open set U.

(iii) $cl^*(int(A)) - A$ is I_{rwg} -closed.

(iv) $A \cup (X - cl^*(int(A)))$ is I_{rwg} -open.

Proof: The proof is similar to that of above theorem

Theorem 3.10: Let A be a subset of (X, τ, I) . If $A \in I_{rwg}LC^{**}(X, \tau)$ then $I_{rwg}cl(A) - A$ is I_{rwg} -closed and $A \cup (X - I_{rwg}cl(A))$ is I_{rwg} -open.

Proof: Let $A \in I_{rwg}LC^{**}(X, \tau)$. Then there exists an open set U such that $A = U \cap I_{rwg}cl(A)$. $A \cup (X - I_{rwg}cl(A)) = (U \cap I_{rwg}cl(A)) \cup (X - I_{rwg}cl(A)) = U \cap (I_{rwg}cl(A) \cup (X - I_{rwg}cl(A))) = U \cap X = U$, is open. Since every open set is I_{rwg} -open, $A \cup (X - I_{rwg}cl(A))$ is I_{rwg} -open. Let $W = A \cup (X - I_{rwg}cl(A))$. Then W is I_{rwg} -open implies X - W is I_{rwg} -closed and $X - W = X - (A \cup (X - I_{rwg}cl(A))) = I_{rwg}cl(A) \cap X - A = I_{rwg}cl(A) - A$. Thus $I_{rwg}cl(A) - A$ is I_{rwg} -closed.

Theorem 3.11: Let A and B be subsets of (X, τ, I) . If $A \in I_{rwg}LC(X, \tau)$ and B is I_{rwg} -open, then $A \cap B \in I_{rwg}LC(X, \tau)$.

Proof: Let $A \in I_{rwg}LC(X, \tau)$. Then $A = U \cap F$ where U is I_{rwg} -open and F is I_{rwg} -closed. So $A \cap B = U \cap F \cap B$ = $U \cap B \cap F$. This implies that $A \cap B \in I_{rwg}LC(X, \tau)$.

Theorem 3.12: Let A and B be subsets of (X, τ, I) . If $A \in I_{rwg}LC^*(X, \tau)$ and $B \in I_{rwg}LC^*(X, \tau)$ then $A \cap B \in I_{rwg}LC^*(X, \tau)$.

Proof: Let A and B $\in I_{rwg}LC^*(X, \tau)$. Then there exists I_{rwg} -open sets P and Q such that $A = P \cap cl(A)$ and $B = Q \cap cl(B)$. Therefore $A \cap B = P \cap cl(A) \cap Q \cap cl(B) = P \cap Q \cap cl(A) \cap cl(B)$ where $P \cap Q$ is I_{rwg} -open and cl(A) and cl(B) is closed. This shows that $A \cap B \in I_{rwg}LC^*(X, \tau)$.

Theorem 3.13: If $A \in I_{rwg}LC^{**}(X, \tau)$ and B is I_{rwg} -open, then $A \cap B \in I_{rwg}LC^{**}(X, \tau)$.

Proof: Let $A \in I_{rwg}LC^{**}(X, \tau)$. Then there exists an open set U and an I_{rwg} -closed set F such that $A = U \cap F$. So $A \cap B = U \cap F \cap B = U \cap B \cap F$. This proves that $A \cap B \in I_{rwg}LC^{**}(X, \tau)$.

Theorem 3.14: Let A and Z be subsets of (X, τ, I) and let $A \subseteq Z$. If Z is I_{rwg} -open in (X, τ, I) and $A \in I_{rwg}LC^*$ $(Z, \tau/_{Z})$, then $A \in I_{rwg}LC^*(X, \tau)$.

Proof: Suppose that A is $I_{rwg}lc^*$, then there exist an I_{rwg} -open set U of $(Z, \tau/Z)$ such that $A = U \cap cl_z(A)$. But $cl_z(A) = Z \cap cl(A)$. Therefore, $A = U \cap Z \cap cl(A)$ where $U \cap Z$ is I_{rwg} -open. Thus $A \in I_{rwg}LC^*(X, \tau)$.

References

- [1]. Arochiarani. I, Balachandran. K and Ganster. M, Regular generalized locally closed sets and RGL-continuous functions, Indian J. pure appl. Math. 28(5), 661-669, 1997. Dotchev.J, Ganster. M, Rose.D, Ideal reslivability. Topology and its applications, 93(1):(1999), 1-16
- [2].
- Kuratowski.K, Topology, Vol I, Academic Press, New Yprk, 1966. [3].
- Navaneethakrishnan.M and Sivaraj. D, Generalized locally closed sets in Ideal topological spaces, Bulletin of the Allahabad Mathematical Society, Golden Jubilee year Volume 2008. [4].
- Sakthi Sathya.B,Murugesan.S, Regular presemi I locally closed sets in ideal topological spaces, Asian Journal of current [5]. Engineering and Maths, Oct(2013) 312-315.