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 Abstract: In this paper we will present some properties of generalized k-Fibonacci sequence 

kqUqUUkUU kknknknk   1,0,,1,2, ,,  by matrix  methods (Multiplication and Addition of Matrices) such as 

the nth power for the matrix representation of generalized k-Fibonacci sequence, Cassini’s Identity of generalized 

k-Fibonacci sequence and some identities will be presented on the relations between k-Fibonacci and generalized 

k-Fibonacci sequence. 
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I. Introduction 
 Many authors have studied k-Fibonacci numbers by different ways to discuss the different properties of 

these numbers in [4, 6, 8, 9]. The well-known Fibonacci numbers and k-Fibonacci numbers are defined as  

1,0,1, 1011   FFnFFF nnn
 (1.1) 

1,0,1, 1,0,1,,1,   kknknknk FFnFkFF  (1.2) 

In addition to this many researchers from time to time studied the Fibonacci numbers in terms of 

matrices. In 1960 Charles H. King introduced and studied the matrix for classical Fibonacci numbers in his Master 

thesis which is known as Q-matrix which is to be discussed in the koshy’s book [10] and Q-matrix is given as 
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He showed with the help of matrices and determinants that  
n

nnn FFF )1(2

11   which is known as Cassini’s Identity. 

After that in 1983 1983 Sam Moore introduced M- matrix for classical Fibonacci numbers for this case one can 

see [10] and M-matrix is defined as 
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In [7] Silvester derived a number of properties of the Fibonacci sequence by considering a matrix representation if  
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In [3] many properties have been presented about Fibonacci and Lucas sums with the help of two cross two 

matrices which are given as 
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In [5] authors discussed the matrix representations of Jacobsthal and Jacobsthal-Lucas numbers. In which they 

considered Jacobsthal F-matrix and Jacobsthal M-matrix and these are defined as 














































122

212

1

1

2

2
and

2

2
then

21

23
and

01

11

nn

nnn

nn

nnn

JJ

JJ
M

JJ

JJ
FMF  

where nJ  is the thn  Jacobsthal number. In [1] authors derived results for k-Fibonacci and k-Lucas sequences 

and obtained a Binet’s form of these sequences by matrix diagonalization. In doing so they considered a matrix 

F which is called a generating matrix. 
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In [2] Godase gave the matrix properties of generalized k-Fibonacci Like sequence to do so he considered a two 

cross two matrix P and proved an one of the important result as follows 
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where  0,,,,  nLmFM nknknk  

II. Two Cross Two Matrix Representation of a Generalized k-Fibonacci Sequence 

 So in the present paper we are going to study a generalized k-Fibonacci sequence by some matrix 

methods after using a two cross two matrix representation for the generalized k-Fibonacci sequence.  Hence the 

generalized k-Fibonacci is defined as 

Definition 2.1.  For the integers 0and0  kn  and for fixed positive integer q the generalized k-Fibonacci 

sequence is recurrently defined by 

kqUqUUkUU kknknknk   1,0,,1,2, ,,   (2.1) 

and the two cross two matrix representation for the generalized k-Fibonacci sequence is given as 
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III. Main Results 

Theorem 3.1.  For any positive integer n  the nth power of a matrix U is given by 
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Proof:  To prove the result we shall use induction on n .  

For 
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,  that is true using initial conditions of the sequence. Suppose that 

(3.1) is true for n . Now we show that (3.1) is true for 1n  then  
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Hence the result.              

Theorem 3.2.  For any positive integer n  the nth power of a matrix U is given by 
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Proof:  To prove the result we shall use induction on n .  

For 
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(3.2) is true for n . Now we show that (3.2) is true for 1n  then  
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as required. 

Theorem 3.3.  For any positive integer n  

12,2,  nknk qFU  (3.3) 

Proof:  By equating the equations (3.1) and (3.2) we can get the desired result. 

Theorem 3.4. (Cassini’s Identities) For any positive integer n  
22

12,22,2, qUUU nknknk   and  (3.4) 

12

2,12,12,  nknknk FUF  (3.5) 

Proof:  The ongoing theorem can be simply proved by using concept of determinant to matrices U and nU in 

equations (2.1), (3.1) and (3.2). 

Theorem 3.5.  For any positive integer n  

nknknknknk FUFUU ,1,1,,2,    (3.6) 

1,1,,,12,   nknknkknnk FUFUU  (3.7) 
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nknknknknk FUFUU ,1,1,,2,    and  

1,1,,,12,   nknknkknnk FUFUU  

Theorem 3.6.  For any integers n and m  

0,1,2,12,2,2,22,   mnFUFUU mknkmknkmnk  (3.7)  

1,,12,12,2,2,122,   mnFUFUU mknkmknkmnk  (3.8) 

Proof:   
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Theorem 3.7.  For any integers n and m  

mnmnUUUUU mknkmknkmnk   ,1,,12,12,22,2,22,  (3.9)  

mnmnUUUUU mknkmknkmnk   ,1,,12,2,2,12,122,  (3.10) 

Proof:   
1)(   mnmn UUU  
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Therefore 

mnmnUUUUU mknkmknkmnk   ,1,,12,12,22,2,22,    

mnmnUUUUU mknkmknkmnk   ,1,,12,2,2,12,122,  

Theorem 3.8.  For any integers n and m  

mnmnFUFUU mknkmknkmnk   ,1,,12,12,12,2,22,  (3.11)  

mnmnFUFUU mknkmknkmnk   ,1,,2,2,12,12,122,  (3.12) 

Proof:  It can be proved same as theorem (3.7) 
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Theorem 3.10.  For any integers n and m  
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Theorem 3.11.  For any positive integer n   
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Proof: Here we shall use induction on n . Indeed the result is true for 1n . Assume that the result is true for n . 

Now we show that the result is true for 1n then  
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Since the result is true for n  then 
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as required. 

Corollary 3.12.  For any positive integer n   
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Proof: It can be easily seen by using the concept of theorem (3.3) in theorem (3.11) and after that we get the 

desired result.  

Theorem 3.13.  For any positive integer n   
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Proof: To prove the result we shall use induction on n . Clearly the result is true for 1n . Assume that the result 

is true for n . Now we show that the result is true for 1n  then 
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as required. 

Corollary 3.14.  For any positive integer n   
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Theorem 3.15.  For any integers n and m  
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Proof: we can prove it easily by using 2
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Theorem 3.16.  For any integers n and m  
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Multiplying both sides by mU , we get 
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Now by using theorem (3.15), we have 
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Hence, 
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IV. Conclusion 
In the present paper properties of generalized k-Fibonacci sequence have been presented by matrix methods. 
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