On ray properties of Hurwitz polynomials

Taner Büyükköroğlu, Vakif Dzhafarov
Department of Mathematics, Faculty of Science, Anadolu University, Turkey

Abstract

In this paper, we investigate some geometric properties of the Hurwitz set which corresponds to the set of stable monic polynomials in a parameter space. We firstly consider the segment stability. After we study properties of rays in the Hurwitz sets, which corresponds with inclusion or non-inclusion of certain rays in the Hurwitz sets.

Keywords: Hurwitz polynomials, monic polynomials, ray properties, segment stability

I. Introduction

The celebrated theorem Kharitonov [1] on the stability of prisms of polynomials gave an impetus to the research in this old and ever-important field and in the last decades many new results concerning stability of diamonds, edges, segments, polygones, polytopes etc. have been obtained (see [2-15]). A remarkable new approach has been towards understanding the geometry (and topology) of (all or part of) stable polynomials.

First of all, we identify a non-monic polynomial $p(s)=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ with the point (or vector) $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}$. A stable (or Hurwitz) polynomial is a polynomial with roots lying in the open left half of the complex plane. (A necessary but not sufficient condition for stability is that all of $a_{0}, a_{1}, \ldots, a_{n}$ have the same sign. There are well-known necessary and sufficient conditions for stability such as the Routh-Hurwitz and Hermite-Biehler criterions and the separation property [16-17]) We will denote the set of such vectors by $\mathcal{H}^{n} \subset \mathbb{R}^{n+1}$ and the subset of \mathcal{H}^{n} with positive leading coefficients ($a_{0}>0$) with \mathcal{H}_{+}^{n}. The important special case of monic polynomials ($a_{0}=1$), which for the consideration of stability are equivalent to the general case, are thus identified with vectors of the form $\left(1, a_{1}, \ldots, a_{n}\right)$. On the other hand, they are often identified with the vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and this causes a minor nuisance of notation. To prevent ambiguity, we will denote the set of stable monic polynomials by \mathcal{H}_{1}^{n} if they are taken as elements $\left(1, a_{1}, \ldots, a_{n}\right)$ of \mathbb{R}^{n+1}, and by $\widetilde{\mathcal{H}}_{1}^{n}$ if they are taken as elements $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of \mathbb{R}^{n}. Unless explicitly stated otherwise, we will represent the nth order monic polynomials $p(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ with $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$.
Thus, the open sets $\mathcal{H}_{+}^{n} \subset \mathbb{R}^{n+1}$ and $\widetilde{\mathcal{H}}_{1}^{n} \subset \mathbb{R}^{n}$ are defined as follows:

- $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathcal{H}_{+}^{n} \Leftrightarrow a_{0}>0$ and the polynomial $p(s)=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ is stable,
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \widetilde{\mathcal{H}}_{1}^{n} \Leftrightarrow$ the polynomial $p(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ is stable.

It is obvious that for $k>0$ and $p=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \widetilde{\mathcal{H}}_{1}^{n}$

- $k p \in \widetilde{\mathcal{H}}_{1}^{n} \Leftrightarrow$ the polynomial $p_{k}(s)=s^{n}+k a_{1} s^{n-1}+k a_{2} s^{n-2} \cdots+k a_{n}$ is stable.

The first geometric property of interest is the convexity and it is well-known that $\widetilde{\mathcal{H}}_{1}^{n}$ (and thus \mathcal{H}_{+}^{n}) is non-convex. The next question of interest is the following: Given two elements from \mathcal{H}_{+}^{n} (or $\widetilde{\mathcal{H}}_{1}^{n}$), under which conditions it can be stated that the segment in \mathbb{R}^{n+1} (or in \mathbb{R}^{n}) with these end points belong to \mathcal{H}_{+}^{n} (or $\widetilde{\mathcal{H}}_{1}^{n}$)? Several authors gave results and discussions in this direction (see [4,6]), but the most important result is due to Rantzer [3] and implies the others. In Section 2, we give a simple new case (Remark 1) and some important consequence (Corollary 1 and Corollary 2) not obtainable by Rantzer's theorem.

Section 3 contains the main results where we investigate some other geometric properties of rays, but before stating them we want to introduce some additional terminology. Given a vector $p \in \mathbb{R}^{n}$ (which corresponds to a monic polynomial of degree n), we call the set $\{k p: k>0\} \subset \mathbb{R}^{n}$ the radial ray through p. Likewise, we will call the set $\{k p: k \geq 1\} \subset \mathbb{R}^{n}$ the radial ray starting at p and the set $\{k p: 0<k \leq 1\} \subset \mathbb{R}^{n}$ the radial ray till p. Now we state the properties proven in Section 3. Given any vector $p \in \widetilde{\mathcal{H}}_{1}^{n}(n \geq 3)$, there exists $k_{0} \in(0,1)$ such that the part $\left\{k p: 0<k \leq k_{0}\right\}$ of the radial ray till p lies outside $\widetilde{\mathcal{H}}_{1}^{n}$ and the part $\left\{k p: k_{0}<k \leq 1\right\}$ lies inside $\widetilde{\mathcal{H}}_{1}^{n}$ (Theorem 1).

On the other hand, for every $n \geq 2$ there is a vector $p \in \widetilde{\mathcal{H}}_{1}^{n}$ (actually infinitely many) such that the radial ray starting at p lies completely inside $\widetilde{\mathcal{H}}_{1}^{n}$ (Theorem 2). For $n=2,3$ and 4 all radial rays starting at any $p \in \widetilde{\mathcal{H}}_{1}^{n}$ lie completely in $\widetilde{\mathcal{H}}_{1}^{n}$.

For $n \geq 5$ there exists a vector $p \in \widetilde{\mathcal{H}}_{1}^{n}$ (actually infinitely many) such that for a certain $k_{0}>1$ the part $\left\{k p: 1<k \leq k_{0}\right\}$ of the radial ray starting at p lies in $\widetilde{\mathcal{H}}_{1}^{n}$, but the part $\left\{k p: k \geq k_{0}\right\}$ lies outside $\widetilde{\mathcal{H}}_{1}^{n}$ (Corollary 3).

II. Segment-Stability And Properties Concerning Rays

The following result comes from [6]: Given two stable polynomials $p(s)=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+$ $a_{n-1} s+a_{n} \quad\left(a_{0}>0\right)$ and $q(s)=b_{0} s^{n}+b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}\left(b_{0}>0\right)$ then the segment $[p, q]$ is stable if $a_{i}=b_{i}$ either for even entries or odd entries (consult also [8,9,13]).
Proposition 1 Let $p(s)=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}\left(a_{0}>0\right)$ and $q(s)=b_{0} s^{n}+b_{1} s^{n-1}+\cdots+$ $b_{n-1} s+b_{n}\left(b_{0}>0\right)$ be stable polynomials. If even (or odd) part of $q(s)$ is a positive scalar multiple of the even (or odd) part of $p(s)$ then the segment $[p, q]$ of their convex combinations is also stable.
It is enough to see this for the case of even parts, the case of odd parts being similar. One can re-arrange $p(s)$ and $q(s)$ as $p(s)=h\left(s^{2}\right)+s g_{1}\left(s^{2}\right), q(s)=k h\left(s^{2}\right)+s g_{2}\left(s^{2}\right)$ where $k>0$ is a fixed scalar. Denote $q_{*}(s)=$ $\frac{q(s)}{k}$, then the convex combination of $p(s)$ and $q_{*}(s)$ is stable by [6]. Hence for every $\lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{1}+\lambda_{2}>$ 0 the polynomial $\lambda_{1} p(s)+\lambda_{2} q_{*}(s)$ is stable, since

$$
\lambda_{1} p(s)+\lambda_{2} q_{*}(s)=\left(\lambda_{1}+\lambda_{2}\right)\left[\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} p(s)+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} q_{*}(s)\right] .
$$

Therefore, assigning $\lambda_{1}=(1-\lambda)$ and $\lambda_{2}=k \lambda$ the polynomial $\lambda_{1} p(s)+\lambda_{2} q_{*}(s)=(1-\lambda) p(s)+\lambda q(s)$ is stable for all $\lambda \in[0,1]$.
Corollary 1 Let $p(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ and $q(s)=s^{n}+b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}$ be two stable polynomials. Identify $p(s)$ with $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $q(s)$ with $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and assume that $\left(b_{1}, b_{2}, \ldots, b_{n}\right)=k\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for a positive scalar k. Then the segment $[p, q]$ in \mathbb{R}^{n} is stable. In other words, segments on radial rays with stable end points are stable.
Proof. Either the even or odd parts of p and q are proportional according to n being odd or even. The result follows from Proposition 1.
Corollary 2 If the radial ray emanating from the origin enters the $\widetilde{\mathcal{H}}_{1}^{n}$ and then leaves it, it cannot re-enter it. In other words, for $p \in \widetilde{\mathcal{H}}_{1}^{n}$ if $k_{0} p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for $k_{0}<1$ then $k p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for any $k<k_{0}$ and similarly if $k_{1} p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for $k_{1}>1$, then $k p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for any $k>k_{1}$.

We now prove the theorems stated in the introduction.
Theorem 1 For any vector $p \in \widetilde{\mathcal{H}}_{1}^{n},(n \geq 3)$, there exists $k_{0} \in(0,1)$ such that

- $\quad k p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for all k with $0<k \leq k_{0}$
- $\quad k p \in \widetilde{\mathcal{H}}_{1}^{n}$ for all k with $k_{0}<k \leq 1$

Proof. By the separation property of stable polynomials, a necessary and sufficient condition for $p(s)=s^{n}+$ $a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ to be stable is that the curve $p(j \omega)$, where $0 \leq \omega<\infty$, cuts the real and imaginary axes alternatively n times precisely.

If $n=4 m$ then for

$$
k_{*}=-\frac{\omega_{*}^{n}}{a_{n}-a_{n-2} \omega_{*}^{2}+\cdots-a_{2} \omega_{*}^{n-2}}
$$

we have $0<k_{*}<1$ and $p_{k_{*}}\left(j \omega_{*}\right)=0$, where $p_{k}(s)=s^{n}+k a_{1} s^{n-1}+k a_{2} s^{n-2} \cdots+k a_{n}$ and ω_{*} corresponds with the point of intersection with the real axis. If $n=4 m+1$ then for

$$
k_{*}=-\frac{\omega_{*}^{n}}{a_{n-1} \omega_{*}-a_{n-3} \omega_{*}^{3}+\cdots-a_{2} \omega_{*}^{n-2}}
$$

we have $0<k_{*}<1$ and $p_{k_{*}}\left(j \omega_{*}\right)=0$, where ω_{*} corresponds with the point of intersection with the imaginary axis. Similar procedure can be applied to the cases $n=4 m+2$ and $n=4 m+3$. Thus for any $n \geq 3$ and any $p \in \widetilde{\mathcal{H}}_{1}^{n}$ there exists $k_{*} \in(0,1)$ such that $k_{*}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \notin \widetilde{\mathcal{H}}_{1}^{n}$. From Corollary 2 the desired result follows.
Theorem 1 shows that if we move radially towards the origin starting from an arbitrary polynomial $p \in \widetilde{\mathcal{H}}_{1}^{n}$, then we certainly leave $\widetilde{\mathcal{H}}_{1}^{n}$.
The following properties are about what can happen when we move in reverse direction.
Theorem 2 For $n \geq 2$ there exists infinitely many $p \in \widetilde{\mathcal{H}}_{1}^{n}$ such that $k p \in \widetilde{\mathcal{H}}_{1}^{n}$ for all $k \geq 1$.
To prove this theorem we first prove the following proposition.
Proposition 2 Let $q(s)=a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n},\left(a_{1}>0\right)$ be a stable polynomial. Then there exists $\varepsilon_{0}>0$ such that for all ε with $0<\varepsilon \leq \varepsilon_{0}$ the polynomial $p_{\varepsilon}(s)=\varepsilon s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ is stable.
Proof. Let n be an even number. Then we can write $q(s)=q_{1}\left(s^{2}\right)+s q_{2}\left(s^{2}\right)$, where $q_{1}(u)$ and $q_{2}(u)$ are polynomials of order $m=\frac{n-2}{2}$. Let $u_{1}, u_{2}, \ldots, u_{m}$ and $v_{1}, v_{2}, \ldots, v_{m}$ denote the roots of $q_{1}(u)$ and $q_{2}(u)$ respectively. Then by the Hermite-Biehler theorem

$$
v_{1}<u_{1}<v_{2}<u_{2}<\cdots<v_{m}<u_{m}<0
$$

The polynomial $p_{\varepsilon}(s)$ can be written as $p_{\varepsilon}(s)=\left[\varepsilon\left(s^{2}\right)^{m+1}+q_{1}\left(s^{2}\right)\right]+s q_{2}\left(s^{2}\right)$. If we look into graphs of functions $y=q_{1}(u)$ and $y=-\varepsilon u^{m+1}$, we see that these graphs, for small $\varepsilon>0$, intersect each other in $m+1$ points and when $\varepsilon \rightarrow 0, m$ of these intersection points approaches to $u_{1}, u_{2}, \ldots, u_{m}$, whereas the other root to $-\infty$. Therefore for the roots $u_{0}^{\varepsilon}, u_{1}^{\varepsilon}, u_{2}^{\varepsilon}, \ldots, u_{m}^{\varepsilon}$ of $\varepsilon u^{m+1}+q_{1}(u)$, there exists $\varepsilon_{0}>0$ satisfying

$$
u_{0}^{\varepsilon}<v_{1}<u_{1}^{\varepsilon}<v_{2}<\cdots<v_{m}<u_{m}^{\varepsilon}<0
$$

for all $0<\varepsilon \leq \varepsilon_{0}$. Then by the Hermite-Biehler theorem the stability of $p_{\varepsilon}(s)$ follows. The case of odd n can be carried out similarly.
Proof of Theorem 2. Let $q(s)=a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n}$ be a stable polynomial. From Proposition 2 it follows that there exists $t_{0}>0$ such that for all $t \geq t_{0}$ the polynomial

$$
p_{t}(s)=\frac{1}{t} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=\frac{1}{t}\left(s^{n}+t a_{1} s^{n-1}+\cdots+t a_{n}\right)
$$

is stable. If we choose $p=\left(t_{0} a_{1}, t_{0} a_{2}, \ldots, t_{0} a_{n}\right)$, then $p \in \widetilde{\mathcal{H}}_{1}^{n}$ and for all $k \geq 1$ we have $k p \in \widetilde{\mathcal{H}}_{1}^{n}$.
Proposition 3 For $n=2,3$ and 4 the property stated in Theorem 2 is true for all $p \in \widetilde{\mathcal{H}}_{1}^{n}$.
The proof is ommited.
Remark 1 It might seem that the Proposition 2 could plausibly be expected to be "naturally" true but the situation is more intricate than it seems, because there comes a surprise when we add two small terms: Let $s^{n}+2 s^{n-1}+\cdots$ be stable polynomial, then for no $\varepsilon>0$ the polynomial $\varepsilon s^{n+2}+\varepsilon s^{n+1}+s^{n}+2 s^{n-1}+\cdots$ is stable.
Theorem 3 Let $n \geq 5$. Then for all $k>0, k \neq 1$, there exists $p=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \widetilde{\mathcal{H}}_{1}^{n}$ such that $k p=$ $\left(k a_{1}, k a_{2}, \ldots, k a_{n}\right) \notin \widetilde{\mathcal{H}}_{1}^{n}$. That is to say the polynomial $p(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ is stable but $p_{k}(s)=s^{n}+k a_{1} s^{n-1}+\cdots+k a_{n-1} s+k a_{n}$ is not stable.
Proof. The proof is based on the Hermite-Biehler theorem. Suppose that n is an odd integer and $m=\frac{n-1}{2}$. Choose arbitrary numbers $v_{1}, v_{2}, \ldots, v_{m}$ satisfying $v_{1}<v_{2}<\cdots<v_{m}<0$ and define the polynomial $g(u)=$ $\left(u-v_{1}\right)\left(u-v_{2}\right) \cdots\left(u-v_{m}\right)=u^{m}+b_{1} u^{m-1}+\cdots+b_{m}$.
Let $k>0, k \neq 1$ is given. Consider the polynomials $g_{k}(u)=u^{m}+k b_{1} u^{m-1}+\cdots+k b_{m}$. Firstly suppose that the roots of $g_{k}(u)$ satisfies the condition $v_{1}^{\prime}<v^{\prime}{ }_{2}<\cdots<v_{m}^{\prime}<0$. It is not difficult to see that $g(u)$ and $g_{k}(u)$ have no common root. Then we can find $u_{1}, u_{2}, \ldots, u_{m}$ satisfying $v_{1}<u_{1}<v_{2}<u_{2}<\cdots<v_{m}<u_{m}<$ 0 and not satisfying at least one of the following inequalities $v_{1}^{\prime}<u_{1}<v^{\prime}{ }_{2}<u_{2}<\cdots<v_{m}^{\prime}<u_{m}<0$ (here we use $m \geq 2$). The Hermite-Biehler theorem ensures that $p(s)=h\left(s^{2}\right)+s g\left(s^{2}\right)$ is stable, where $h(u)=$ $\left(u-u_{1}\right)\left(u-u_{2}\right) \cdots\left(u-u_{m}\right)$. If we write down $p(s)$ as $p(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}$ then $p_{k}(s)=$ $s^{n}+k a_{1} s^{n-1}+\cdots+k a_{n-1} s+k a_{n}=k h\left(s^{2}\right)+s g_{k}\left(s^{2}\right)$ and the Hermite-Biehler theorem also guarantees the unstability of $p_{k}(s)$.
If the roots of $g_{k}(u)$ does not satisfy $v_{1}^{\prime}<v^{\prime}{ }_{2}<\cdots<v^{\prime}{ }_{m}<0$ then $p_{k}(s)$ is also unstable. By a similiar scheme one may prove the theorem for even n. \square
Remark 2 As it is seen from the proof of Theorem 3, the point p depends on $v_{1}, v_{2}, \ldots, v_{m}$. By changing these numbers we can obtain infinitely many p satisfying Theorem 3 .
Corollary 3 There exists a point $p \in \widetilde{\mathcal{H}}_{1}^{n},(n \geq 5)$ with the following property: There exists a number $k_{0}>1$ such that

- $k p \in \widetilde{\mathcal{H}}_{1}^{n}$ for all $1 \leq k<k_{0}$,
- $\quad k p \notin \widetilde{\mathcal{H}}_{1}^{n}$ for all $k \geq k_{0}$.

Proof. Choose $k=2$. Then by Theorem 3 there exists $p \in \widetilde{\mathcal{H}}_{1}^{n}$ such that $2 p \notin \widetilde{\mathcal{H}}_{1}^{n}$. Then the claim follows from Corollary 2.
Remark 3 There exists a radial ray in the positive quadrant of \mathbb{R}^{n} which lies completely outside $\widetilde{\mathcal{H}}_{1}^{n}(n \geq 4)$. The polynomial $p_{k}(s)=s^{n}+k s^{n-1}+k s^{n-2}+\cdots+k s+k$ is unstable for all $k>0$. But for $n=3$ there is no such ray.

III. Conclusion

In this paper it is established that in a parameter space of polynomials segments on radial rays with stable end points are stable. We show that there is a stable svector such that the radial ray starting at this point lies completely inside the stability region. We also show that for any positive scalar differing one, there exists a stable vector such that the multiplication of this vector by this scalar is not stable.

References

[1] V.L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential'nye Uravneniya, 14, 1978, 2086-2088.
[2] A.C. Bartlett, C.V. Hollot, H. Lin, Root location of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals and Systems 1(1), 1988, 61-71.
[3] A. Rantzer, Stability conditions for polytopes of polynomials, IEEE Transactions on Automatic Control, 37, 1992, 79-89.
[4] I.R. Petersen, A new extension to Kharitonov's theorem, IEEE Transactions on Automatic Control, 35, 1990, 825-828.
[5] B.R. Barmish, New tools for robustness of linear systems (New York: MacMillan, 1994).
[6] S. Bialas, J. Garloff, Convex combinations of stable polynomials, Journal of the Franklin Institute, 319(3), 1985, 373-377.
[7] Y.C. Soh, Y.K. Foo, Generalized edge theorem, Systems \& Control Letters, 12(3), 1989, 219-224.
[8] E.R. Panier, M.K.H. Fan, A.L. Tits, On the robust stability of polynomials with no cross-coupling between the perturbations in the coefficients of even and odd powers, Systems \& Control Letters, 12(4), 1989, 291-299.
[9] L.J. Pujara, On the stability of uncertain polynomials with dependent coefficients, IEEE Transactions on Automatic Control, 35, 1990, 756-759.
[10] M.Y. Fu, A class of weak Kharitonov regions for robust stability of linear uncertain systems, IEEE Transactions on Automatic Control, 36, 1991, 975-978.
[11] B.R. Barmish, R. Tempo, C.V. Hollot, H.I. Kang, An extreme point result for robust stability of a diamond of polynomials, IEEE Transactions on Automatic Control, 37, 1992, 1460-1462.
[12] L.R. Pujara, N. Shanbhag, Some stability theorems for polygones of polynomials, IEEE Transactions on Automatic Control, 37, 1992, 1845-1849.
[13] E.R. Panier, M.K.H. Fan, A.L. Tits, Comments on the stability of uncertain polynomials with dependent coefficients, IEEE Transactions on Automatic Control, 37, 1992, 1201.
[14] V.L. Kharitonov, R. Tempo, On the stability of weighted diamond of real polynomials, Systems \& Control Letters, 22(1), 1994, 5-7.
[15] G.R. Duan, M.Z. Wang, Properties of the entire set of Hurwitz polynomials and stability analysis of polynomial families, IEEE Transactions on Automatic Control, 39, 1994, 2490-2494.
[16] F.R. Gantmacher, Applications of the theory of matrices (New York: Interscience, 1959).
[17] E.A. Guillemin, The mathematics of circuit analysis (Cambridge MA: MIT Press, 1965).

