Properties of α -Interior and α -Closure in Intuitionistic Topological Spaces

Gnanambal Ilango¹, T.A.Albinaa²

¹(Department of Mathematics ,Government Arts College, India) ²(Department of Mathematics ,Government Arts College, India)

Abstract: The purpose of this research article is to study about intuitionistic α -open sets and discuss interior and closure properties of intuitionistic sets.

I. Introduction

After the introduction of fuzzy sets by Zadeh[11], there have been a number of generalizations of this fundamental concept. Using the notion of intuitionistic fuzzy sets, Coker[4] introduced the notion of intuitionistic fuzzy topological spaces. The concept of intuitionistic set in topological space was first introduced by Coker[3]. He has studied some fundamental topological properties on intuitionistic sets. Open sets play a vital role in general topology and they are now the research topics of many researchers worldwide. Njastad[9] studied semi open sets, pre open sets, α -open sets and semipro open sets in general topological spaces. Maheswari[8] has studied the properties of α -interior and α -closure in topological spaces. In this paper, the properties of intuitionistic α -open sets are introduced and characterized.

II. Preliminaries

Definition 2.1 [5] :Let X be a non empty set. An intuitionistic set (IS for short) A is an object having the form A $= \langle X, A_1, A_2 \rangle$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of members of A, while A_2 is called the set of non-members of A.

Definition 2.2 [5] :Let X be a non empty set and let A, B are intuitionistic sets in the form $A = \langle X, A_1, A_2 \rangle$, $B = \langle X, B_1, B_2 \rangle$ respectively. Then

(a) $A \subseteq B$ iff $A_1 \subseteq B_1$ and $B_2 \subseteq A_2$ (b) A = B iff $A \subseteq B$ and $B \subseteq A$ (c) $A^c = \langle X, A_2, A_1 \rangle$ (d) [] $A = \langle X, A_1, (A_1)^c \rangle$ (e) $A - B = A \cap B^C$. (f) $\phi_{\sim} = \langle X, \phi, X \rangle, X_{\sim} = \langle X, X, \phi \rangle$ (g) $A \bigcup B = \langle X, A_1 \bigcup B_1, A_2 \cap B_2 \rangle$. (h) $A \cap B = \langle X, A_1 \cap B_1, A_2 \cup B_2 \rangle$.

Definition 2.3 [5] :An intuitionistic topology (for short IT) on a non empty set X is a family of IS's in X satisfying the following axioms.

(i) $\phi_{\sim}, X_{\sim} \in \tau$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.

(iii) $\bigcup G_{\alpha} \subseteq \tau$ for any arbitrary family $\{G_i: G_{\alpha}/\alpha \in J\} \subseteq \tau$ where (X,τ) is called an intuitionistic topological space (for short ITS(X)) and any intuitionistic set in is called an intuitionistic open set (for short IOS) in X. The complement A^c of an IOS A is called an intuitionistic closed set (for short ICS) in X.

Definition 2.4[5] : Let (X,τ) be an intuitionistic topological space (for short ITS(X)) and

 $A = \langle X, A_1, A_2 \rangle$ be an IS in X. Then the interior and closure of A are defined by

Icl (A) = \cap {K: K is an ICS in X and A \subseteq K},

 $Iint(A) = \bigcup \{G : G \text{ is an IOS in } X \text{ and } G \subseteq A\}.$

It can be shown that Icl(A) is an ICS and Iint(A) is an IOS in X and A is an ICS in X iff Icl(A) = A and is an IOS in X iff Iint(A) = A.

Definition 2.5[5]: Let X be a non empty set and $p \in X$. Then the IS p defined by $p = \langle X, \{p\}, \{p\}^c \rangle$ is called an intuitionistic point (IP for short) in X. The intuitionistic point p is said to be contained in $A = \langle X, A_1, A_2 \rangle$ (i.e $p \in A$) if and only if $p \in A_1$.

Definition 2.6[10]

Let (X,τ) be an ITS(X). An intuitionistic set A of X is said to be

- (i) Intuitionistic semiopen if $A \subseteq Icl(Iint(A))$.
- (ii) Intuitionistic preopen if $A \subseteq Iint(Icl(A))$.
- (iii) Intuitionistic regular open if A = Iint(Icl(A)).
- (iv) Intuitionistic α -open if A \subseteq Iint(Icl(Iint(A))).

The family of all intuitionistic pre open, intuitionistic regular open and intuitionistic α -open sets of (X,τ) are denoted by IPOS, IROS and I α OS respectively.

Definition 2.7 [5]

(a) If $B = \langle Y, B_1, B_2 \rangle$ is an IS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IS in X defined by $f^{-1}(B) = \langle X, f^{-1}(B_1), f^{-1}(B_2) \rangle$.

If $A = \langle X, f(A_1), f(A_2) \rangle$ is an IS in X, then the image of A under f, denoted by f(A) is the IS in Y defined by $f(A) = \langle Y, f(A_1), f_-(A_2) \rangle$, where $f_-(A_2) = Y - (f(X-A_2))$.

III. Properties of Intuitionistic $\,^{\alpha}$ -Open Set

Definition 3.1: An intuitionistic point x in an intuitionistic topological space (X, τ) is said to be an intuitionistic α -interior point of A if and only if there exists an intuitionistic α -open set U in X such that $U \subseteq A$.

Definition 3.2: The set of all intuitionistic α -interior points of A \subseteq X is said to be the intuitionistic α -interior of A or equivalently the union of all intuitionistic α -open sets which are contained in A is called the intuitionistic α -interior of A and is denoted by I α int(A).

Note 3.3: Since every open set is intuitionistic α -open, it follows that every intuitionistic interior point of $A \subseteq X$ is an intuitionistic α -interior point of A. Hence $Iint(A) \subseteq I \alpha int(A)$.But converse is not true.

Theorem 3.4: If S is a nonempty intuitionistic α -open set in an intuitionistic topological space (X, τ) then $Iint(S) \neq phi$.

Proof: Since S is a intuitionistic α -open set, S \subseteq Iint(Icl(Iint(S))). Let us suppose that Iint(S) is empty. Then we have S $\subseteq \phi$ and hence S= ϕ . It is contrary to the hypothesis that S is nonempty. Therefore, Iint(S) is not empty.

Theorem 3.5: If $A \subseteq B \subseteq Iint(Icl(IintA))$, then B is an intuitionistic α -open set.

Proof: Since $A \subseteq B$, $Iint(Icl(IintA)) \subseteq Iint(Icl(IintB))$. This inclusion along with the hypothesis implies B $\subseteq Iint(Icl(IintB))$. That is B is an intuitionistic α -open set.

Theorem 3.6: A set B is intuitionistic α -open iff there exists an intuitionistic open set D such that $D \subseteq B \subseteq \text{Iint}(\text{Icl}(D))$

Proof: Let us suppose that there exists an intuitionistic open set D such that $D \subseteq B \subseteq Iint(Icl(D))$. Since $B \subseteq Iint(Icl(D)) = Iint(Icl(Iint(D))) \subseteq Iint(Icl(Iint(B)))$. This implies B is intuitionistic α -open. Conversely, B is intuitionistic α -open, then $B \subseteq Iint(Icl(Iint(B)))$. Let IintB = D. Since $IintB \subseteq B$. $D \subseteq B$ and also $B \subseteq Iint(Icl(D))$. Hence $D \subseteq B \subseteq Iint(Icl(D))$.

Theorem 3.7: A is intuitionistic α -closed iff there exists an intuitionistic closed set B such that Icl(Iint(B)) $\subseteq A \subseteq B$.

Proof: Let A be intuitionistic α -closed. Then Icl(Iint(Icl(A))) \subseteq A.Let Icl(A) = B.Since A \subseteq Icl(A), A \subseteq B and by hypothesis, Icl(Iint(B)) \subseteq A. Thus there exists B such that Icl(Iint(B)) \subseteq A \subseteq B. Conversely, suppose that there exists B such that Icl(Iint(B)) \subseteq A \subseteq B. Since B is intuitionistic closed Icl(B) = B. By hypothesis, Icl(int(B)) \subseteq A this implies Icl(Iint(Icl(B))) \subseteq A. As A \subseteq B, Icl(Iint(Icl(A))) \subseteq Icl(Iint(Icl(B))) \subseteq A. Thus A is intuitionistic α -closed.

Lemma 3.8: Let A be an intuitionistic subset of X. Then $x \in I \alpha$ cl(A) iff for any intuitionistic α -open set U containing x, A $\bigcap U \neq \phi$.

Proof: Necessity: Let $x \in I \alpha$ cl(A) and U be an intuitionistic α -open set containing x such that $A \cap U = \phi$. This implies, $A \subseteq X$ -U. But, X-U is intuitionistic α -closed set. Since $I \alpha$ cl(A) is the smallest intuitionistic α -closed set containing A, I α cl(A) \subseteq X-U. Since $x \notin X$ -U $\Rightarrow x \notin I \alpha$ cl(A) which is a contradiction. Hence for any intuitionistic α -open set U containing x, A $\bigcap U \neq \phi$

Sufficiency: Let us suppose that every intuitionistic α -open set of X containing x meets A. If $x \notin I \alpha$ cl(A), there exists intuitionistic α -closed set F of X such that $A \subseteq F$ and $x \notin F$. Therefore $x \in X - F \in I \alpha$ OS(X). Hence X-F is an intuitionistic α -open set in X containing x but (X-F) $\bigcap A = \phi$ which is a contradiction to the hypothesis. Consequently $x \in I \alpha$ cl(A).

Theorem 3.9: Let (X, τ) be an intuitionistic topological space and $A = \langle X, A_1, A_2 \rangle$ and $B = \langle Y, B_1, B_2 \rangle$ be two intuitionistic sets over X. Then,

- 1. A is an intuitionistic α -closed set iff $A = I \alpha cl(A)$.
- 2. A is an intuitionistic α -open set iff $A = I \alpha$ int(A).
- 3. $(I \alpha cl(A))^c = I \alpha int(A^c)$
- 4. $(I \alpha int(A))^c = I \alpha cl(A^c)$
- 5. $A \subseteq B \Longrightarrow I \alpha int(A) \subseteq I \alpha int(B)$
- 6. $A \subseteq B \Longrightarrow I \alpha \operatorname{cl}(A) \subseteq I \alpha \operatorname{cl}(B)$
- 7. I α cl(ϕ) = ϕ and I α cl(X) = X
- 8. I α int(ϕ) = ϕ and I α int(X) = X
- 9. $I \alpha \operatorname{cl} (A \bigcup B) = I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B)$
- 10. $I \alpha int(A \cap B) = I \alpha int(A) \cap I \alpha int(B)$
- 11. $I \alpha \operatorname{cl} (A \cap B) \subset I \alpha \operatorname{cl}(A) \cap I \alpha \operatorname{cl}(B)$
- 12. $I\alpha int (A \bigcup B) \supset I\alpha int(A) \bigcup I\alpha int(B)$
- 13. I α cl(I α cl(A)) = I α cl(A)
- 14. I α int(I α int(A)) = I α int(A)

Proof:

- 1. Let A be an intuitionistic α -closed set. Then it is the smallest intuitionistic α -closed set containing itself (Since arbitrary intersection of intuitionistic α -closed set is intuitionistic α -closed). Hence A= I α cl(A). Conversely, let A = I α cl(A). Since I α cl(A) being the intersection of intuitionistic α -closed sets is intuitionistic α -closed, so I α cl(A) is an intuitionistic α -closed set. This implies A is an intuitionistic α -closed set of an intuitionistic topological space.
- 2. Let A be intuitionistic α -open. Since arbitrary union of intuitionistic α -open sets is intuitionistic α -open, A is the largest intuitionistic α -open set contained in A. Hence A = I α int(A). Conversely, let A = I α int(A). Since I α int(A) being the union of intuitionistic α -open sets is intuitionistic α -open, this implies A is intuitionistic α -open in an intuitionistic topological space.
- 3. $(I \alpha \operatorname{cl}(A))^{c} = (\bigcap \{ K:K \text{ is an } I \alpha \operatorname{CS} \text{ in } X \text{ and } A \subseteq K \})^{c}$ $= (\bigcup \{ K^{c} \}: \{ K^{c} \} \text{ is an } I \alpha \operatorname{OS} \text{ in } X \text{ and } \{ K^{c} \} \subseteq \{ A^{c} \} \})$ $= I \alpha \operatorname{int} \{ A^{c} \}$ 4. $(I \alpha \operatorname{int}(A))^{c} = (\bigcup \{ G:G \text{ is an } I \alpha \operatorname{OS} \text{ in } X \text{ and } G \subseteq A \})$ $= (\bigcap \{ G^{c}: G^{c} \text{ is an } I \alpha \operatorname{CS} \text{ in } X \text{ and } G^{c} \supseteq A^{c} \})$ $= (\bigcap \{ G^{c}: G^{c} \text{ is an } I \alpha \operatorname{CS} \text{ in } X \text{ and } A^{c} \subseteq G^{c} \})$ $= I \alpha \operatorname{cl} \{ A^{c} \}$ 5. $I \alpha \operatorname{int}(A) = (\bigcup \{ G:G \text{ is an } I \alpha \operatorname{OS} \text{ in } X \text{ and } G \subseteq A \})$ $I \alpha \operatorname{int}(B) = (\bigcup \{ G:G \text{ is an } I \alpha \operatorname{OS} \text{ in } X \text{ and } G \subset B \})$
 - Now I α int(A) \subseteq A \subseteq B. This implies I α int(A) \subseteq B. Since I α int(B) is the largest intuitionistic α -open set contained in B. Hence I α int(A) \subseteq I α int(B).
- 6. $I \alpha \operatorname{cl}(A) = (\bigcap \{K:K \text{ is an } I \alpha CS \text{ in } X \text{ and } A \subseteq K \})$ $I \alpha \operatorname{cl}(B) = (\bigcap \{K:K \text{ is an } I \alpha CS \text{ in } X \text{ and } B \subseteq K \})$ Since $A \subseteq I \alpha \operatorname{cl}(A)$ and $B \subseteq I \alpha \operatorname{cl}(B) \Longrightarrow A \subseteq B \subseteq I \alpha \operatorname{cl}(B) \Longrightarrow A \subseteq I \alpha \operatorname{cl}(B)$. But $I \alpha \operatorname{cl}(A)$ is smallest intuitionistic α -closed containing A. Therefore, $I \alpha \operatorname{cl}(A) \subseteq I \alpha \operatorname{cl}(B)$.

- 7. Since ϕ and X are intuitionistic α -closed sets, then by (1) $I \alpha cl(\phi) = \phi$ and $I \alpha cl(X) = X$.
- 8. Since ϕ and X are intuitionistic α open sets, then by (2) I α int(ϕ) = ϕ and α int(X) = X.
- 9. Since $A \subseteq A \bigcup B$, $B \subseteq A \bigcup B$ and $A \subseteq B \Rightarrow I \alpha \operatorname{cl}(A) \subseteq I \alpha \operatorname{cl}(A) \subseteq I \alpha \operatorname{cl}(A) \subseteq I \alpha \operatorname{cl}(A \bigcup B)$,

 $I \alpha \operatorname{cl}(B) \subseteq I \alpha \operatorname{cl}(A \bigcup B) \Longrightarrow I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B) \subseteq I \alpha \operatorname{cl}(A \bigcup B). \text{Now } I \alpha \operatorname{cl}(A), I \alpha \operatorname{cl}(B) \text{ is intuitionistic}$ $\alpha \operatorname{-closed}.$ This implies $I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B)$ is intuitionistic $\alpha \operatorname{-closed}.$ Then $A \subseteq I \alpha \operatorname{cl}(A)$ and $B \subseteq I \alpha \operatorname{cl}(B)$ $\Rightarrow A \bigcup B \subseteq I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B)$ that is $I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B)$ is intuitionistic $\alpha \operatorname{-closed}$ containing $A \bigcup B$. But $I \alpha \operatorname{cl}(A \bigcup B)$ is smallest intuitionistic $\alpha \operatorname{-closed}$ containing $A \bigcup B$. Hence $I \alpha \operatorname{cl}(A \bigcup B) \subseteq I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B)$. $\alpha \operatorname{cl}(B).$ Therefore $I \alpha \operatorname{cl}(A \bigcup B) = I \alpha \operatorname{cl}(A) \bigcup I \alpha \operatorname{cl}(B).$

- 10. Since $A \cap B \subset A$, $A \cap B \subset B$ and $A \subseteq B \Rightarrow I \alpha$ int $(A) \subseteq I \alpha$ int(B). Then, $I \alpha$ int $(A \cap B) \subseteq I \alpha$ int(B). Now $I \alpha$ int(A), $I \alpha$ int(B) is intuitionistic α -open in X. This implies $I \alpha$ int $(A \cap I) I \alpha$ int(B) is intuitionistic α -open in X. Then $I \alpha$ int $(A) \subset A$ and $I \alpha$ int $(B) \subset B \Rightarrow I \alpha$ int $(A) \cap I \alpha$ int $(B) \subset A \cap B$ that is $I \alpha$ int $(A) \cap I \alpha$ int(B) is an intuitionistic α -open set contained in $A \cap B$. Therefore $I \alpha$ int $(A) \cap I \alpha$ int $(B) \subset I \alpha$ int $(A \cap B)$. $I \alpha$ int $(A \cap B) = I \alpha$ int $(A) \cap I \alpha$ int(B).
- 11. $A \cap B \subset A \text{ and } A \cap B \subset B \Rightarrow I \alpha \operatorname{cl}(A \cap B) \subset I \alpha \operatorname{cl}(A) \text{ and } I \alpha \operatorname{cl}(A \cap B) \subset I \alpha \operatorname{cl}(B)$ $\Rightarrow I \alpha \operatorname{cl}(A \cap B) \subset I \alpha \operatorname{cl}(A) \cap I \alpha \operatorname{cl}(B).$
- 12. $A \subset A \bigcup B$ and $B \subset A \bigcup B \Rightarrow I \alpha \operatorname{int}(A) \subset I \alpha \operatorname{int}(A \bigcup B)$ and $I \alpha \operatorname{int}(B) \subset I \alpha \operatorname{int}(A \bigcup B)$ $\Rightarrow I \alpha \operatorname{int}(A \bigcup B) \Rightarrow I \alpha \operatorname{int}(A) \bigcup I \alpha \operatorname{int}(B) \subset I \alpha \operatorname{int}(A \bigcup B).$
- 13. A is intuitionistic α -closed iff A = I α cl(A). Since I α cl(A) is intuitionistic α -closed, I α cl(I α cl(A)) = I α cl(A).
- 14. Since I α int(A) is intuitionistic α -open and A is intuitionistic α -open iff A=I α int(A), therefore I α int(I α int(A)) = I α int(A).

Example 3.10: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, A, B\}$ where $A = \langle X, \{a\}, \{b, c\} \rangle$, $B = \langle X, \{a, b\}, \{c\} \rangle$ $C = \langle X, \{c\}, \{a\} \rangle$ then I α cl(B) = $\langle X, \{a, b, c\}, \phi \rangle$, I α cl(C) = $\langle X, \{c\}, \{a\} \rangle$, I α cl(B \cap C) = $\langle X, \phi, \{a, c\} \rangle$, I α cl(B) \cap I α cl (C) = $\langle X, \{c\}, \{a\} \rangle$. From above we get that I α cl(B \cap C) \subset I α cl(B) \cap I α cl (C) but the converse is not true.

Example 3.11: Let $X = \{a,b,c\}$ and $\tau = \{ \phi, X, A, B \}$ where $A = \langle X, \{a\}, \{b,c\} \rangle$, $B = \langle X, \{a,b\}, \{c\} \rangle \}$ $C = \langle X, \{c\}, \{a\} \rangle$ then I α int(B) = $\langle X, \{a,b\}, \{c\} \rangle$, $I\alpha$ int(C) = $\langle X, \phi, \{a,b,c\} \rangle$, $I\alpha$ int(B $\bigcup C$) = $\langle X, \{a,b,c\}, \phi \rangle$, I α int(B) $\bigcup I\alpha$ int (C) = $\langle X, \{a,b\}, \{c\} \rangle$. From above we get that $I\alpha$ int(B) $\bigcup I\alpha$ int (C) $\subset I\alpha$ int(B $\bigcup C$) but the converse is not true.

Definition 3.12: In an intuitionistic topological space (X,τ) a point $p \in X$ is called intuitionistic α -limit point of A if any intuitionistic α -open set containing p contains a point of A disjoint from p. The set of all intuitionistic α -limit points is denoted as I α d(A).

Theorem 3.13: A is intuitionistic α -closed iff $I \alpha d(A) \subseteq A$

Proof: Necessity:

Let A be an intuitionistic α -closed set and $p \in I \alpha d(A)$. Assume $p \notin A$ then $p \notin X$ -A. As X-A is intuitionistic α -open and disjoint from A, $p \notin I \alpha d(A)$, which is a contradiction. Hence $p \in A$. Thus $I \alpha d(A) \subseteq A$. Sufficiency:

Suppose I α d(A) \subseteq A. Let $p \in X$ -A, then $p \notin A$ and so $p \notin I \alpha$ d(A). Hence there is an intuitionistic α -open set B which contains p but contains no point of A. Since $p \notin A \Rightarrow p \in B \subseteq X$ -A. As p is an arbitrary point of X-A and arbitrary union of intuitionistic α -open sets is intuitionistic α -open, X-A is the union of intuitionistic α -open sets and hence intuitionistic α -open. Hence A is intuitionistic α -closed.

Theorem 3.14: I α d(I α d(A)) - A \subseteq I α d(A).

Proof:Let $p_{\sim} \in I \alpha d(I \alpha d(A))$ -A and B be any intuitionistic α -open set containing p_{\sim} . Then $B \bigcap (I \alpha d(A) - p_{\sim}) \neq \phi$. Let $q_{\sim} \in B \bigcap (I \alpha d(A) - p_{\sim})$. Since $q_{\sim} \in I \alpha d(A)$ and $q_{\sim} \in B$, so $B \bigcap (A - q_{\sim}) \neq \phi$. Let $r_{\sim} \in B \bigcap (A - q_{\sim})$. Then $r_{\sim} \neq p_{\sim}$ for $r_{\sim} \in A$ but $p_{\sim} \notin A$. Therefore $B \bigcap (A - p_{\sim}) \neq \phi$. Hence $p_{\sim} \in I \alpha d(A)$.

Theorem 3.15: $I \alpha d(A \bigcup I \alpha d(A)) \subseteq A \bigcup I \alpha d(A).$

Proof: Let $p_{\sim} \in I \alpha d(A \bigcup I \alpha d(A))$ and $p_{\sim} \notin A$. If B is an intuitionistic α -open set containing p_{\sim} then B \cap $[(A \bigcup I \alpha d(A)) - p_{\sim}] \neq \phi$. This implies B $\cap (A - p_{\sim}) \neq \phi$. For, if B $\cap [I \alpha d(A) - p_{\sim}] \neq \phi$ then by proof in previous theorem, B $\cap [A - p_{\sim}] \neq \phi$. Hence $p_{\sim} \in I \alpha d(A)$.

References

- [1]. Andrijevic D, Some Properties of the Topology of a Sets, Mat. Vesnik 36(1984),1-10.
- [2]. Andrijevic D, Semi Preopen Sets, Mat. Vesnik 38(1986), 24-32.
- [3]. Coker D, A note on intuitionistic sets and intuitionistic points. Turkish J. Math. 1996; 20(3):343-351.
- [4]. Coker D, An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems. 1997; 88(1):81-89.
- [5]. Coker D, An introduction to intuitionistic topological spaces. Busefal. 2000; 81:51-56.
- [6]. Gnanambal Ilango, S. Selvanayaki. Generalized preregular closed sets in intuitionistic topological spaces. Internat. J. Math. Archive. 2014; 5(4):1-7.
- [7]. Gnanambal Ilango, S.Girija. Some More Results on Intuitionistic Semi Open Sets. Int. Journal of Engineering Research and Applications.Vol 4, Issue 11, Nov 2014, pp.70-74
- [8]. Maheswari and Thakur,{Some Problems In Topology}, Ph.D Thesis.
- [9]. Olav Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15, No.3,(1965) 961 -970.
- [10]. Younis J. Yaseen, Asmaa G. Raouf. On generalization closed set and generalized continuity on intuitionistic topological spaces. J.of Al-Anbar University for Pure Science, 2009; 3(1).
- [11]. Zadeh L.A, Fuzzy Sets, Inform and Control,8,(1965),338-353.