Some Applications of Order Statistics in Inventory Control

Dr.T.Venkatesan¹, Dr.G.Arivazhagan², Dr.C.Muthu³

¹(Assistant Professor, Department of Statistics, St. Joseph's College, Trichy, Tamil Nadu / India) ²(Assistant Professor, Department of Statistics, Raja Serfij Govt College (Autonomous), Thanjavur, Tamil Nadu) 3(Associate Professor, Department of Statistics, St. Joseph's College, Trichy, Tamil Nadu / India)

Abstract: Among the various inventory systems, the stations in series is an interesting one. There may be a number of nodes in between the starting point or node and the end point or final node. The production process starts at the first node and the finished products are at the last node. The output of the previous node happens to be the input for the next. Using this concept a model with two machines M_1 and M_2 in series are considered and there is an inventory of semi finished products in order to keep uninterrupted supply to the machine at the end point. This is due to possibility of breakdown of the machine at the first node. In this paper the optimal reserve inventory between the two machines is obtained assuming that the breakdown duration of M_1 is a random variable follows the first order statistic. Similarly, this problem can be extended to the case of three machines in series and in such a case the reserve S_1 is the quantity of semi finished product by M_2 . The optimal size of the reserves S_1 and S_2 are obtained under the assumption that the breakdown duration of the first machine M_1 is a random variable distributed as first order statistic.

Keywords: Optimal reserve, Semi finished products, Machines in series, First order statistic.

I. Optimal Reserve inventory between two machines in series

There are many manufacturing industries in which the methods of inventory control need to be applied. The optimal stock size of the raw materials, the semi finished products and also the finished products are a matter of vital importance. The profits earned by the industry depend upon the use of appropriate stock management which requires the appropriate application of inventory policies. In this paper a model for the determination of optimal reserve inventory between two machines in series is discussed.

A system in which there are two machines M_1 and M_2 in series is considered. The output of M_1 is the input for the following is the configuration of the system.

Whenever the machine M_1 suffers a breakdown, then the supply of raw materials to M_2 is not available and is forced to be in down or idle state. The consumption rate of M_2 is a constant 'r'. The idle time cost of M_2 is very high and prohibitive. The breakdown duration or repair time of M_1 is a random variable. To avoid the idle time of M_2 due to the break downs of M_1 a reserve inventory of output of M_1 is kept in between M_1 and M_2 . If on the other hand there is shortage due to inadequate inventory size then M_2 is forced to go to idle state and it is very costly. The interarrival times between M_2 the successive break downs of M_1 are also random variables. The problem is to determine the optimal reserve inventory between M_1 and M_2 . The basic model using this concept has been discussed in Hanssmaan (1962) as under:

1.1 Assumptions

- 1. There are two machines in series and the output of M_1 is the input for M_2
- 2. The break downs of M_1 results in the idle time of M_2
- 3. The idle time of M_2 is costly.

- 4. The repair times of machine M_1 are i.i.d random variables.
- 5. The inter arrival times between the successive break downs of M_1 are also i.i.d random variables.

1.2 Notations

- h = inventory holding cost per unit / unit time for the reserve.
- d = idle time cost per unit time for M_2
- τ = a continuous random variable denoting the repair time or break down duration of M_1 and the p.d.f is g (.) and c.d.f G(.)
- $r = constant consumption rate of M_2$
- X = a continuous random variable denoting the inter arrival times between successive break downs of M_1 and $X \sim \exp(\mu)$

II. Results

If the reserve inventory between two machines is denoted as 'S' then $\frac{S}{r}$ is the time taken by M_2 to the exhaust the reserve size of 'S' Idle time of

$$M_2 = 0$$
 if $\tau \le \frac{S}{r}$
 $= \tau - \frac{S}{r}$ if $\tau > \frac{S}{r}$

If $\tau \leq \frac{S}{r}$ then the repair of M_1 is completed before the reserve inventory is exhausted by M_2 . Hence the idle time is zero. If $\tau > \frac{S}{r}$ then the reserve inventory is exhausted before the machine M_1 is brought to upstate and hence $\tau - \frac{S}{r}$ is the idle time of M_2 .

The average number of break downs of M_1 per unit of time is $\frac{1}{\mu}$.

The total expected cost per unit of time is

$$E(C) = hs + \frac{d}{\mu} \int_{\frac{s}{r}}^{\infty} \left(\tau - \frac{S}{r}\right) g(\tau) d\tau \qquad \dots (1)$$

To determine the optimal S, we take

$$\frac{d E(C)}{ds} = 0 \qquad \dots (2)$$

Using the Lebinitz rule the optimal solution is obtained as $G\left(\frac{\hat{S}}{r}\right) = 1 - \frac{r\mu h}{d}$

It may be observed that in the above solution to the model there is a constraint that $\frac{r\mu h}{d} < 1$. Otherwise the solution could not be obtained. However if we consider the model as

$$E(C) = hr \int_{0}^{\frac{1}{r}} \left(\frac{S}{r} - \tau\right) g(\tau) d\tau + \frac{d}{\mu} \int_{\frac{S}{r}}^{\infty} \left(\tau - \frac{S}{r}\right) g(\tau) d\tau$$

DOI: 10.9790/5728-1301052229

Using Lebinitz rule, we have $G\left(\frac{\hat{S}}{r}\right) = \frac{d}{r\mu h + d} < 1$ fo all d, μ h.

It may be noted that there is no constraint on the values of r, d, h, and μ in this model. Ramachandran and Sathiyamoorthy (1981) have given a modified version of this model. Rajagopal and Sathiyamoorthy (2003) have extended this model to the case of the three machines in series. Srinivasan et.al (2007) have discussed a different versions of this model using the concept of order statistics to represent the inter arrival times of successive break downs of machine M_1 .

III. Revised model I

A modification of the model discussed here ,using the concept of order statistics. It is assumed that the repair time τ of machine M_1 is a random variable and hence a sample of n – observations from the value of τ are taken. These values are arranged in increasing order magnitude. So that $\tau_{(1)} \leq \tau_{(2)} \leq \dots \leq \tau_{(n)}$ for order statistics.

Let $\tau_{(1)}$ denote the first order or minimum order statistic Now assuming the repair time following first order statistic the optimal reserve inventory between M_1 and M_2 is obtained as follows

$$g(\tau_{(1)}) = n \left[1 - G(\tau)\right]^{n-1} g(\tau)$$

Hence

$$E(C) = hr \int_{0}^{\overline{r}} \left(\frac{S}{r} - \tau\right) g_{(1)}(\tau) d\tau + \frac{d}{\mu} \int_{\frac{S}{r}}^{\infty} \left(\tau - \frac{S}{r}\right) g_{(1)}(\tau) d\tau$$

= $hr \int_{0}^{\frac{S}{r}} \left(\frac{S}{r} - \tau\right) n [1 - G(\tau)]^{n-1} g(\tau) d\tau + \frac{d}{\mu} \int_{\frac{S}{r}}^{\infty} \left(\tau - \frac{S}{r}\right) n [1 - G(\tau)]^{n-1} g(\tau) d\tau$

If $\tau \sim \exp(\theta)$

$$\frac{d E(C)}{ds} = 0 \text{ gives}$$
$$e^{-\frac{\partial us}{r}} = \frac{h}{\left(\frac{rh\mu + d}{\mu r}\right)}$$

$$e^{\frac{\partial ns}{r}} = \frac{\mu r h + d}{\mu r h}$$

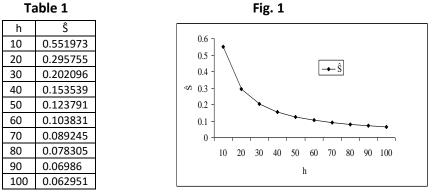
$$\hat{S} = \frac{r}{\theta n} \log \left(1 + \frac{d}{\mu r h} \right)$$

This is the optimal reserve inventory between M_1 and M_2 .

IV. Numerical illustration

The changes in \hat{S} for the changes in the inventory holding cost h is given in the following table (1)

r =20 μ = 1.5 d =100 n = 20 h θ = 1.2 are all fixed



The changes in \hat{S} for the changes in the inventory holding cost d given following table (2) r =20 μ = 1.5 h =10 n = 20 θ = 1.2 are all fixed

Table -2

d	Ŝ
100	0.239713
120	0.280401
130	0.319169
140	0.356211
150	0.391717
160	0.425687
170	0.458506
180	0.48979
190	0.520114
200	0.549478

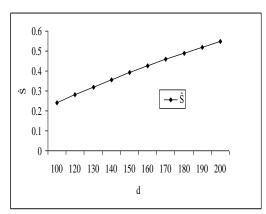
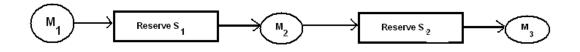


Fig-2

V. Determination of optimal reserve of semi finished products between three machines in series.

It is assumed that there are three machines M_1, M_2 and M_3 in series. The output of M_1 is the input for M_2 and the output of M_2 is the input for M_3 . The following diagram shows the arrangement.



The size of the optimal reserves S_1 and S_2 are determined under the assumption that the random duration of breakdown of machine M_1 is a random variable which follows order statistics

5.1 Assumptions:

- 1. There are three machines in series . The output of M_1 is the input for M_2 and similarly the output of M_2 is the input for M_3 .
- 2. Machine M_1 undergoes breakdown for a random duration. Hence the break down duration or the repair time of M_1 is a random variable.
- 3. M_2 and M_3 are in upstate, but when the input is not available they are forced to go to the idle state.
- 4. The inter arrival times between the breakdowns of M_1 are i.id random variables.
- 5. The break down duration of M_1 is taken as a random variable which is distributed as a first order statistics and similarly the nth order statistics.

5.2 Notations

- (i) $r_1 r_2$ denote the consumption rate of M_2 , M_3 respectively.
- (ii) h_1 , h_2 denote the inventory holding costs per unit of S_1 and S_2 respectively.
- (iii) d_1, d_2 denote the downtime costs of M_2, M_3 respectively.
- (iv) μ_1 , μ_2 denote the average time between breakdowns M_1 , M_2 respectively.
- (v) τ , denote the down time duration of M_1 , and is a which are random variable that follow first order statistic and similarly n^{th} order statistic.
- (vi) $g_{(1)}(\tau)$ are the p.d.f of first order statistic .

5.3 Results

$$E(C) = h_1 r_1 \int_0^{s_1/r_1} \left(\frac{s_1}{r_1} - \tau\right) g_{(1)}(\tau) d\tau + h_2 s_2 + \frac{d_1}{\mu_1} \int_{s_1/r_1}^{\infty} \left(\tau - \frac{s_1}{r_1}\right) g_{(1)}(\tau) d\tau + \frac{d_2}{\mu_1} \int_{\frac{s_1+s_2}{r_1+r_2}}^{\infty} \left(\tau - \frac{s_2}{r_2} - \frac{s_1}{r_1}\right) g_{(1)}(\tau) d\tau$$

Since τ follows $\exp(\lambda)$, the p.d.f of first order statistic is $g_{(1)}(\tau) = n\lambda \left[e^{-\lambda\tau}\right]^n$

$$\mathsf{A} \Rightarrow \int_{0}^{s_{1}/r_{1}} \left(\frac{s_{1}}{r_{1}} - \tau\right) \left[e^{-\lambda \tau}\right]^{n} d\tau$$

Using Leibenitz rule for differentiation of an integral ,we get

$$A = \frac{1}{n \lambda r_1} \left[1 - e^{-n\lambda \frac{s_1}{r_1}} \right]$$
$$B \Longrightarrow \int_{\substack{s_1/r_1\\/r_1}}^{\infty} \left(\tau - \frac{s_1}{r_1} \right) \left[e^{-n\lambda \tau} \right] d\tau$$

Similarly

$$B = \frac{-1}{n \lambda r_1} \left[e^{-n\lambda \frac{s_1}{r_1}} \right] \text{ and}$$

$$C = \int_{\frac{s_1 + s_2}{r_1 - r_2}}^{\infty} \left(\tau - \frac{s_2}{r_2} - \frac{s_1}{r_1} \right) \left[e^{-\lambda \tau} \right]^n d\tau = 0$$

$$C = \frac{-1}{n \lambda r_1} \left[e^{-n\lambda \left(\frac{s_1 + s_2}{r_1 - r_2} \right)} \right]$$

Substituting A, B, C in (1)

on simplification

Again

$$\frac{d E(C)}{ds_2} = 0 \Longrightarrow$$

$$h_2 + \frac{d_2}{\mu_1} n\lambda \int_{\frac{s_1}{r_1} + \frac{s_2}{r_2}}^{\infty} \left(\tau - \frac{s_2}{r_2} - \frac{s_1}{r_1}\right) e^{-n\lambda\tau} d\tau = 0$$

$$h_2 - \frac{d_2}{\mu_1 r_2} \left[e^{-n\lambda \left(\frac{s_1}{r_1} + \frac{s_2}{r_2}\right)}\right] = 0$$

Solving (2) and (3) we get

$$e^{-n\lambda \frac{s_1}{r_1}} = \frac{\mu_1(h_1 r_1 - h_2 r_2)}{(h_1 \mu_1 r_1 + d_1)}$$
$$\hat{s}_1 = \frac{r_1}{n\lambda} \log \left[\frac{\mu_1(h_1 r_1 - h_2 r_2)}{(d_1 + h_1 \mu_1 r_1)}\right]^{-1}$$

Again from (3)

$$h_{2} - \frac{d_{2}}{\mu_{1}r_{2}} \left[e^{-n\lambda \left(\frac{s_{1}+s_{2}}{r_{1}+r_{2}}\right)} \right] = 0$$
$$\hat{s}_{2} = \frac{r_{2}}{n\lambda} \left[\log \left[\frac{h_{2}r_{2}(d_{1}+h_{1}\mu_{1}r_{1})}{d_{2}(h_{1}+r_{1}-h_{2}+r_{2})} \right] \right]^{-1}$$

on simplification

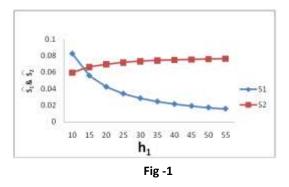
.....(3)

DOI: 10.9790/5728-1301052229

5.4 Numerical illustration:

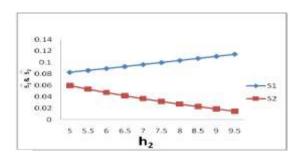
The Changes in \hat{S}_1 and \hat{S}_2 for the changes in h₁ is given in the following table. h₁=10, h₂=5, r₁=20, r₂=5, d₁=50, d₂=100, λ =1.5, μ =1, n=25

Table 1			
h ₁	\hat{S}_1	\hat{S}_2	
10	0.082614	0.059621	
15	0.055858	0.066309	
20	0.042229	0.069717	
25	0.033956	0.071785	
30	0.028397	0.073175	
35	0.024403	0.074173	
40	0.021395	0.074925	
45	0.019048	0.075512	
50	0.017165	0.075983	
55	0.015621	0.076369	



The Changes in \hat{S}_1 and \hat{S}_2 for the changes in h₂ is given in the following table. h₁=10, h₂=5, r₁=20, r₂=5, d₁=50, d₂=100, λ =1.5, μ =1, n=25

Table 2			
h ₂	\hat{S}_1	\hat{S}_2	
5	0.082614	0.059621	
5.5	0.085947	0.053268	
6	0.089328	0.047385	
6.5	0.092760	0.041892	
7	0.096243	0.036730	
7.5	0.099779	0.031850	
8	0.103370	0.027215	
8.5	0.107018	0.022793	
9	0.110724	0.018557	
9.5	0.114490	0.014484	



VI. Conclusions for Model I

- 1. As the value of 'h' namely the inventory holding cost increases there is a decreases in the size of the optimal inventory \hat{S} both in the case of the repair time being first order statistic
- 2. As the shortage cost 'd' increases the models suggests that the optimal inventory size namely \hat{S} should be higher. This is found to be true in both the cases namely when the repair time ' τ ' follows first order statistic
- 3. It may be noted that as the value of θ which is the parameter of exponential distribution for the duration of break down ' τ ' increases it implies that $E(\tau) = \frac{1}{\theta}$ decreases. Therefore the average duration of breakdown

is smaller and therefore the repair will be carried out quickly. So a smaller inventory is sufficient so that S decreases.

4. When μ which is the average of the inter arrival times between the breakdowns of M_1 increases then $\frac{1}{2}$

decreases. In other words the average number of breakdowns per unit of time decreases. So a smaller inventory is sufficient.

VII. Conclusions for Model II

On the basis of the numerical illustrations worked out the following interesting conclusions are observed. In the case of the breakdown duration being distributed as first order statistic, the following are the conclusions.

- 1. As the inventory holding cost h_1 for the reserve at stage 1 namely S_1 increases, the size of S_1 decreases which is in agreement with inventory control theory. Also it is seen that if the size of S_1 is decreasing then a higher level of S_2 is advocated since the shortage cost due to M_3 should be minimum.Hence a higher stock level of S_2 is desirable.This indicated in table (1) and Fig(1).
- 2. As h_2 namely the inventory holding cost at stage2 namely that of S_2 increases then a smaller inventory S_2 is advocated. but at the same time a higher inventory at stage 1, namely S_1 is desirable.
- 3. If r_1 which is the consumption rate of M_2 is on the increase then a small inrease in S_1 is suggested. Similarly an increase in S_2 is also indicated. This is due to the fact that if consumption rate is on the increase then a higher reserve will reduce the chance of break down of M_2 and M_3 .
- 4. When r_2 which is the conumption rate of machine M_3 is on the increase, it is observed that S_1 increases, but there is a derease in S_2 . This is due to the fact that the overall cost E(C) should be a minimum.
- 5. As d_1 which is the shortage cost associated with M_2 is on the increase then a higher level of S_1 is suggested and hence S_1 increases. But to reduce the overall cost, a decrease in S_2 is suggested
- 6. As d_2 which is the down time or shortage cost of M_3 increases then a higher level of S_2 is advocated, but S_1 is remains the same. Similarly we can Proceed this model for nth order statistic

References

- [1]. Hannsmaan (1962). Operations Research in Production and Inventory Control, John Wiley and Sons, Inc. New York.
- [2]. Ramachandran and Sathiyamoorthi (1981). Optimal Reserve for two machines, IEEE Trans on Reliability, Vol. R-30, No. 4, p. 397.
 [3]. Rajagopal and Sathiyamoorthi (2003). An Extension of the Optimal Reserve Inventory ----- between Machines Model Proceeding
- [5]. Rajagopa and Sauryanoothi (2003). An Extension of the Optimal Reserve Inventory ----- between Machines Model Proceeding of the Second National Conference on Mathematical and Computational Models PSG College of Engg., Dec. 11 12.
 [4] Sripiyasan Sulainan and Sathiyamoothi (2007). Optimal Pacarya Inventory Batwaen two machines under SCRZ Property of
- [4]. Srinivasan, Sulaiman and Sathiyamoorthi (2007). Optimal Reserve Inventory Between two machines under SCBZ Property of Interarrival Times between Breakdowns, Ultra Science, Vol. 9 (2) M, pp. 261 – 266.