On Scalar Weak Commutative Algebras

G.Gopalakrishnamoorthy¹, S.Geetha², S.Anitha³

¹Principal, Sri krishnasamy Arts and Science College, Sattur – 626203, Tamilnadu. ²Dept. of Mathematics, Pannai College of Engineering and Technology, Keelakkandani, Sivagangai - 630561. ³Lecturer, Raja Doraisingam Government Arts College, Sivagangai – 630 561, Tamil Nadu.

Abstract: The concept of scalar commutativity defined in an algebra A over a ring R is mixed with the concept of weak-commutativity defined in a Near-ring to coin the new concept of scalar weak commutativity in an algebra A over a ring R and many interesting results are obtained.

I. Introduction

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $x, y \in A$, there exists $\alpha \in R$ depending on x, y such that $xy = \alpha yx$.Rich[8] proved that if A is scalar commutative over a field F, then A is either commutative or anti-commutative. KOH, LUH and PUTCHA [6] proved that if A is scalar commutative with 1 and if R is a principal ideal domain , then A is commutative. A near-ring N is said to be weak-commutative if xyz = xzy for all $x, y, z \in N$ (Definition 9.4, p.289, Pliz[7]. In this paper we define scalar weak commutativity in an algebra A over a commutative ring R and prove many interesting results analogous to Rich and LUH.

II. Preliminaries

In this section we give some basic definitions and well known results which we use in the sequel.

2.1 Definition [7]:

Let N be a near-ring.N is said to be weak commutative if xyz = xzy for all $x,y,z \in N$.

2.2 Definition:

Let N be a near-ring.N is said to be anti-weak commutative if xyz = -xzy for all $x,y,z \in N$.

2.3 Definition [8]:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $x, y \in A$, there exists $\alpha = \alpha(x, y) \in R$ depending on x, y such that $xy = \alpha yx$. A is called scalar anticommutative if $xy = -\alpha yx$.

2.4 Lemma[5]:

Let N be a distributive near-ring. If $xyz = \pm xzy$ for all $x,y,z \in N$, then N is either weak commutative or weak anti-commutative.

III. Main Results

3.1 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar weakcommutative if for every $x,y,z \in A$, there exists $\alpha = \alpha(x,y,z) \in R$ depending on x,y,z such that $xyz = \alpha xzy$. A is called scalar anti-weak commutative if $xyz = -\alpha xzy$.

3.2 Theorem:

Let A be an algebra (not necessarily associative) over a field F.If A is scalar weak commutative, then A is either weak commutative or anti- weak commutative.

Proof:

Suppose xyz = xzy for all $x,y,z \in A$, there is nothing to prove. Suppose not we shall prove that xyz = -xzy for all $x,y,z \in A$. We shall first prove that, if $x,y,z \in A$ such that $xyz \neq xzy$, then $x y^2 = x z^2 = 0$. Let $x,y,z \in A$ such that $xyz \neq xzy$. Since A is scalar weak commutative, there exists $\alpha = \alpha$ (x,y,z) \in F such that $xyz = \alpha xzy \rightarrow (1)$ Also there exists $\gamma = \gamma$ (x,y+z,z) \in F such that $x (y+z) z = \gamma xz (y+z) \rightarrow (2)$ (1) -(2) gives $xyz - xyz - x z^2 = \alpha xzy - \gamma xzy - \gamma x z^2$. $\gamma x z^2 - x z^2 = (\alpha - \gamma) xzy$. $\begin{array}{l} x \ z^2 - \gamma \ x \ z^2 = (\gamma - \alpha) \ xzy & \rightarrow (3) \\ \text{Now, } xzy \neq 0 \ \text{for if } xzy = 0, \text{then from}(1), \text{we get } xyz = 0 \ \text{and so } xyz = xzy; \\ \text{contradicting our assumption that } xyz \neq xzy. \\ \text{Also } \gamma \neq 1, \text{for if } \gamma = 1, \text{then from } (3) \ \text{we get} \\ \alpha = \gamma = 1. \end{array}$

Then from (1) we get

xyz = xzy, again contradicting assumption that $xyz \neq xzy$.

Now from (3) we get $x z^{2} = \frac{\gamma - \alpha}{1 - \gamma} \quad xzy.$ i.e., $x z^{2} = \beta xzy$ for some $\beta \in F$. \rightarrow (4) Similarly $x y^2 = \delta xzy$ for some $\delta \in F$ \rightarrow (5) Now corresponding to each choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in F, there is an $\eta \in F$ such that $\mathbf{x}(\alpha_1\mathbf{y} + \alpha_2\mathbf{z}) (\alpha_3\mathbf{y} + \alpha_4\mathbf{z}) = \eta \mathbf{x}(\alpha_3\mathbf{y} + \alpha_4\mathbf{z}) (\alpha_1\mathbf{y} + \alpha_2\mathbf{z})$ x ($\alpha_1 \alpha_3 y^2 + \alpha_1 \alpha_4 yz + \alpha_2 \alpha_3 zy + \alpha_2 \alpha_4 z^2$) $= \eta \mathbf{x} (\alpha_3 \alpha_1 \mathbf{y}^2 + \alpha_3 \alpha_2 \mathbf{y} \mathbf{z} + \alpha_4 \alpha_1 \mathbf{z} \mathbf{y} + \alpha_4 \alpha_2 \mathbf{z}^2)$ $\alpha_1 \alpha_3 x y^2 + \alpha_1 \alpha_4 x yz + \alpha_2 \alpha_3 xzy + \alpha_2 \alpha_4 xz^2$ $= \eta(\alpha_3 \alpha_1 xy^2 + \alpha_3 \alpha 1\alpha_2 xyz + \alpha_4 \alpha_1 xzy + \alpha_4 \alpha_2 xz^2)$ \rightarrow (6) Using (4) and (5) we get, $\alpha_1 \alpha_3 \delta xzy + \alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 xzy + \alpha_2 \alpha_4 \beta xzy$ $= \eta(\alpha_3 \alpha_1 \delta xzy + \alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 xzy + \alpha_4 \alpha_2 \beta xzy).$ Using (1) we get, $\alpha_1 \alpha_3 \delta \alpha^{-1} xyz + \alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 \alpha^{-1} xyz + \alpha_2 \alpha_4 \beta \alpha^{-1} xyz$ $= \eta(\alpha_3 \alpha_1 \delta xzy + \alpha_3 \alpha_2 \alpha xzy + \alpha_4 \alpha_1 xzy + \alpha_4 \alpha_2 \beta xzy).$ $(\alpha_1 \alpha_3 \delta \alpha^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} + \alpha_2 \alpha_4 \beta \alpha^{-1})$ xyz $= \eta(\alpha_3 \alpha_1 \delta + \alpha_3 \alpha_2 \alpha + \alpha_4 \alpha_1 + \alpha_4 \alpha_2) xzy$ \rightarrow (7) If in (7), we choose $\alpha_2 = 0$, $\alpha_3 = \alpha_1 = 1$, $\alpha_4 = -\delta$, the right hand side of (7) is zero Whereas the left hand side of (7) is $(\delta \alpha^{-1} - \delta)$ xyz = 0. i.e., $\delta (\alpha^{-1} - 1) xyz = 0$. Since $xyz \neq 0$ and $\alpha \neq 1$, we get $\delta = 0$. Hence from (5) we get $xy^2 = 0$. Also, if in (7), we choose $\alpha_3 = 0$, $\alpha_4 = \alpha_2 = 1$ and $\alpha_1 = -\beta$, the right hand side of (7) is zero whereas the left hand side of (7) is $(-\beta + \beta \alpha^{-1})$ xyz = 0 i.e., $\beta (\alpha^{-1} - 1) xyz = 0$. Since $xyz \neq 0$ and $\alpha \neq 1$, we get $\beta = 0$. Hence from (4), we get $xz^2 = 0$. Then (6) becomes $\alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 xzy = \eta (\alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 xzy).$ $\alpha_1 \alpha_4 xyz + \alpha_2 \alpha_3 \alpha^{-1} xyz = \eta (\alpha_3 \alpha_2 xyz + \alpha_4 \alpha_1 \alpha^{-1} xyz).$ $(\alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1})$ xyz = $\eta (\alpha_3 \alpha_2 + \alpha_4 \alpha_1 \alpha^{-1})$ xyz. This is true for any choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in F$. Choose $\alpha_1 = \alpha_3 = \alpha_4 = 1$ and $\alpha_2 = -\alpha^{-1}$. We get $(1 - (\alpha^{-1})^2)$ xyz = 0. Since $xyz \neq 0$, $1 - (\alpha^{-1})^2 = 0$. Hence $(\alpha^{-1})^2 = 1$. i.e., $\alpha = \pm 1$. Since $\alpha \neq 1$, we get $\alpha = -1$. i.e., xyz = -xzy for $x,y,z \in A$. Thus A is either weak commutative or anti-weak commutative.

3.3 Lemma:

Let A be an algebra(not necessarily associative)over a commutative ring R.Suppose A is scalar weak commutative. Then for all x,y,z \in A, $\alpha \in$ R, $\alpha xyz = 0$ if and only if $\alpha xzy = 0$. Also xyz = 0 if and only if xzy = 0.

Proof:

Let x,y,z \in A and $\alpha \in$ R such that α xyz = 0. Since A is scalar weak commutative, there exists $\beta = \beta (\alpha x, z, y) \in \mathbb{R}$ such that $\alpha xzy = \beta \alpha xyz = 0$. Similarly if α xzy = 0, then there exists $\gamma = \gamma (\alpha x, y, z) \in \mathbb{R}$ such that α xyz = $\gamma \alpha$ xzy = 0. Thus $\alpha xyz = 0$ iff $\alpha xzy = 0$. Assume xyz = 0. Since A is scalar commutative, there exists $\delta = \delta(x, y, z) \in \mathbb{R}$ such that $xzy = \delta xyz = 0$. Similarly if xzy = 0, there exists $\eta = \eta (x, y, z) \in \mathbb{R}$ such that $xyz = \eta xzy = 0$. Thus xyz = 0 if and only if xzy = 0. 3.4 Lemma: Let A be an algebra over a commutative ring R.Suppose A is scalar weak commutative. Let x,y,z,u $\in A$, $\alpha, \beta \in R$ such that zu = uz, $xzy = \alpha xyz$ and $x(y+u)z = \beta xz(y+u)$. Then x ($zu - \alpha zu - \beta zu + \alpha \beta zu$) = 0. **Proof:** Given $x (y + u) z = \beta xz (y + u)$ \rightarrow (1) \rightarrow (2) $xzy = \alpha xyz$ and zu = uz \rightarrow (3) From (1) we get $xyz + xuz = \beta xzy + \beta xzu.$ $xyz + xuz = \beta \alpha xzy + \beta xzu.$ (using (2))x { $yz + uz - \alpha\beta yz - \beta zu$ } = 0. x { $yz + uz - \alpha\beta yz - \beta uz$ } = 0. (using (3)) x ($y + u - \alpha \beta y - \beta u$) z = 0. By Lemma 3.3 we get xz (y + u - $\alpha\beta\gamma - \beta u$) = 0. i.e., $xzy + xzu - \alpha\beta xyz - \beta xzu = 0$. i.e., $\alpha xyz + xzu - \alpha \beta xyz - \beta xzu = 0$. using (2) \rightarrow (4) Now from (1) we get $xyz + xuz = \beta xzy + \beta xzu.$ $xyz - \beta xzy = \beta xzu - xuz.$ Multiplying by α we get, $\alpha xyz - \alpha \beta xzy = \alpha \beta xzu - \alpha xuz.$ \rightarrow (5) From (4) and (5) we vget $xzu - \beta xzu + \alpha \beta xzu - \alpha xuz = 0.$ i.e., x { $zu - \beta zu + \alpha \beta zu - \alpha uz$ } = 0 (using (3)) x { $zu - \alpha zu - \beta zu + \alpha \beta uz$ } = 0.

3.5 Corollary:

Taking u = z, we get x { $z^2 - \alpha z^2 - \beta z^2 + \alpha \beta z^2$ } = 0. i.e., x (z (z - αz) - βz (z - αz)) = 0. i.e., $x(z - \alpha z) (z - \beta z) = 0$.

3.6 Theorem:

Let A be an algebra over a commutative ring R.Suppose A has no zero divisors. If A is scalar weak commutative, then A is weak commutative.

Proof:

Let x,y,z \in A.Since A is scalar weak commutative, there exist scalars $\alpha = \alpha$ (x,z,y) \in R and $\beta = \beta (x, y + z, z) \in R$ such that \rightarrow (1)

 $xzy = \alpha xy$ and x (y + z) z = β xz (y + z) \rightarrow (2) Then by the above corollary, we get $x(z-\alpha z)(z-\beta z) = 0.$ Since A has no zero divisors $z = \alpha z$ or $z = \beta z$. If $z = \alpha$ z,then from (1) we get

DOI: 10.9790/5728-130201107114

xzy = xyzIf $z = \beta z$, then from (2) we get x (y + z) z = x z (y + z) $xyz + xz^2 = xzy + xz^2$ i.e., xyz = xzy. Thus A is weak commutative.

3.7 Definition:

Let R be any ring and $x,y,z \in R$. We define xyz - xzy as the weak commutator of x,y,z. i.e., xyz - xzy = x [y,z] is called the weak commutator of x,y,z. **3.8 Theorem:**

Let A be an algebra over a commutative ring R.Let A be scalar weak commutative. If A has an identity, then the square of every weak commutator is zero.

i.e., $(xyz - xzy)^2 = 0$ for all $x, y, z \in A$.

Proof:

Let $x,y,z \in A$.Since A is scalar weak commutative, there exist scalars $\alpha = \alpha (x,y,z) \in R$ and $\beta = \beta (x, y+1, z) \in R$ such that

```
xzy = \alpha xyz
                                                                                                            \rightarrow (1)
                                                                                                  \rightarrow (2)
           x (y + 1)z = \beta xz (y + 1)
           From (2) we get
                  xyz + xz - \beta xzy - \beta xz = 0
                   xyz + xz - \beta \alpha xyz - \beta xz = 0
                                                                    (\text{ using } (1))
                   xyz + xz - \alpha\beta xyz - \beta xz = 0
              i.e., x (y + 1- \alpha\betay - \beta) z = 0
             Using Lemma 3.3 we get
                    xz ( y + 1- \alpha\betay - \beta ) z = 0
                    x z y + xz - \alpha \beta xzy - \beta xz = 0
                    \alpha x yz + xz - \alpha \beta xzy - \beta xz = 0
                                                                     (\text{ using }(1))
                                                                                                \rightarrow (3)
             Also from (2) we get
                    xyz + xz = \beta xzy + \beta xz
            Multiplying by \alpha we get
                     \alpha xyz + \alpha xz = \alpha \beta xzy + \alpha\beta xz
              i.e., \alpha xyz - \alpha \beta xzy = \alpha \beta xz - \alpha xz.
                                                                                                \rightarrow (4)
              From (3) and (4) we get
                    xz - \beta xz + \alpha \beta xz - \alpha xz = 0.
              i.e., xz - \alpha xz - \beta xz + \alpha \beta xz = 0.
               i.e., x(z - \alpha z) = x(\beta z - \alpha \beta z)
            Multiplying by y+1 on the right we get
                 x \{ z (y+1) - \alpha z (y+1) \} = x \{ \beta z (y+1) - \alpha \beta z (y+1) \}
                                                       = \beta xz (y+1) - \alpha \beta xz (y+1)
                                                       = x (y+1) z - \alpha x (y+1) z
                                                                                                         (using (2))
                                                        = x \{ (y+1) z - \alpha (y+1) z \}
         i.e., x \{ z (y+1) - \alpha z (y+1) \} = x \{ (y+1) z - \alpha (y+1) z \}
         i.e., x \{ z (y+1) - (y+1) z \} = x \{ \alpha z (y+1) - \alpha (y+1) z \}
         i.e., x { zy + z - yz - z } = \alpha x { zy + z - yz - z }
               x \{ zy - yz \} = \alpha x \{ zy - yz \}
         i.e., x \{zy - \alpha zy\} = x \{yz - \alpha yz\}
         i.e., xyz - \alpha xyz = xzy - \alpha xzy
                                   = \alpha xyz - \alpha \alpha xyz
i.e., xyz - 2 \alpha xyz + \alpha^2 xyz = 0
i.e., x (y - 2 \alpha y + \alpha^2 y) z = 0
                                                                                                          \rightarrow (5)
Now, (xyz - xzy)^2 = (xyz - \alpha xyz)^2 (using (1))
                            = (xyz - \alpha xyz) (xyz - \alpha xyz)
                                = xyz xyz - \alpha xyz xyz - \alpha xyz xyz + \alpha^2 xyz xyz
                                = xyz xyz - 2 \alpha xyz xyz + \alpha^2 xyz xyz
                           = x (y - 2\alpha y + \alpha^2 y) zxyz
                                = 0. xyz
                                                                         (\text{ using }(5))
                           = 0.
Thus (xyz - xzy)^2 = 0.
```

i.e., Square of every weak commutator is zero.

3.9 Definition:

Let R be a P.I.D (principal ideal domain) and A be an algebra over R.Let $a \in A$. Then the order of a,denoted an O (a) is defined to be the generator of the ideal $I = \{ \alpha \in R \mid \alpha a = 0 \}$. O(a) is unique upto associates and O(a) = 1 if and only if a = 0.

3.10 Lemma:

Let A be an algebra with unity over a principal ideal domain R.If A is scalar weak commutative, $z \in A$ such that O(z) = 0, then xyz = xzy for all $x, y, z \in A$. **Proof:** Let $z \in A$ with O(z) = 0. For x,y \in A,there exists scalars $\alpha = \alpha$ (x,y,z) \in R and $\beta = \beta$ (x, y+1,z) \in R such that $xzy = \alpha xyz$ \rightarrow (1) $x(y+1)z = \beta xz(y+1)$ \rightarrow (2) From (2) we get $xyz + xz - \beta xzy - \beta xz = 0$ $xyz + xz - \alpha\beta xyz - \beta xz = 0$ x (y+1 - $\alpha\beta$ y - β .1) z = 0 Using Lemma 3.3 we get xz (y+1 - $\alpha\beta$ y - β .1) = 0 $xzy + xz - \alpha\beta xzy - \beta xz) = 0$ $\alpha xzy + xz - \alpha \beta xzy - \beta xz = 0$ (using (1)) \rightarrow (3) From (2) we get $xyz + xz = \beta xzy + \beta xz$ Multiplying by α we get α xyz + α xz = $\alpha\beta$ xzy + $\alpha\beta$ xz i.e., α xyz - $\alpha\beta$ xzy = $\alpha\beta$ xz - α xz \rightarrow (4) From (3) and (4) we get $xz - \beta xz + - \alpha \beta xz - \alpha xz = 0$ $(1-\alpha)(1-\beta)xz = 0 \quad \forall x \in A.$ Then there exist scalars $\gamma \in \mathbb{R}$, $\delta \in \mathbb{R}$ such that $\gamma xz = 0$ \rightarrow (6)

and

$$\delta (x+1) z = 0 \qquad \rightarrow (7)$$

From (7) $\delta xz + \delta z = 0$ Multiply by γ $\gamma \delta xz + \gamma \delta z = 0$ \rightarrow (8) From (6) we get $\gamma \delta xz = 0$ \rightarrow (9) From (8) and (9) we get $\gamma \delta z = 0$ Since O(z) = 0 we get $\gamma = 0$ and $\delta = 0$. Then from $1 - \alpha = 0$ or $1 - \beta$. If $\alpha = 1$, from (1) we get xzy = xyz. If $\beta = 1$, from (2) we get x (y+1) z = xz (y+1) xyz + xz = xzy + xzxyz = xzy

3.10 (a) Lemma:

Let A be an algebra with identity over Principal ideal domain R.If A is scalar weak commutative, $y \in R$ with O(y) = 0, then y is in the center of A. **Proof:** Let $y \in A$ with O(y) = 0. For any $x \in A$, there exist scalars $\alpha = \alpha (1, x, y) \in R$ and $\beta = \beta (1, y, x+1) \in R$ such that (i.e) $1. xy = \alpha . 1. yx.$ $xy = \alpha yx \rightarrow (1)$

and 1. y (x+1) = β .1.(x+1)y (i.e)., y (x+1) = β (x+1)y \rightarrow (2) From (2) we get $yx + y = \beta xy + \beta y$ $yx + y = \alpha\beta xy + \beta y$ (using (1)) $yx + y - \alpha\beta xy - \beta y = 0.$ 1.y $(x+1 - \alpha\beta x - \beta .1) = 0.$ By Lemma 3.3 $(x+1 - \alpha\beta x - \beta .1)y = 0$ 1 $xy + y - \alpha\beta xy - \beta y = 0$ \rightarrow (3) Also from (2) $yx + y - \beta xy - \beta y = 0.$ Multiply by α α yx + α y - $\alpha\beta$ xy - $\alpha\beta$ y = 0 $xy + \alpha y - \alpha \beta xy - \alpha \beta y = 0$ (using (1)) \rightarrow (4) From (3) and (4) we get $\mathbf{y} - \boldsymbol{\beta}\mathbf{y} - \boldsymbol{\alpha}\mathbf{y} + \boldsymbol{\alpha}\boldsymbol{\beta}\mathbf{y} = \mathbf{0}$ $(y - \beta y) - \alpha (y - \beta y) = 0$ $(1-\alpha)(y-\beta y) = 0$ $(1 - \alpha)(1 - \beta)y = 0$ Since O(y) = 0, we get $\alpha = 1$ or $\beta = 1$. If $\alpha = 1$, from (1) we get xy = yx. If $\beta = 2$, from (2) we get y(x+1) = (x+1)yi.e., yx + y = xy + yyx = xyi.e., y commutes with x. As $x \in A$ is arbitrary, y is in the center.

3.11 Lemma:

Let A be an algebra with identity over a P.I.D R.Suppose that A is scalar weak commutative. Assume further that there exists a prime $p \in R$ and positive integer $m \in z^+$ such that $p^m A = 0$. Then A is Weak commutative.

Proof:

Let $O(xy) = p^k$ for some $k \in Z^+$. We prove by induction on k that uxy = uyx for all $u \in A$. If k = 0, then $O(xy) = p^0 = 1$ and so xy = 0. So uxy = 0. Also by Lemma 3.3 uyx = 0. Hence uxy = uyx for all $u \in A.So$, assume that k > 0 and that the statement is true for l > k. We first prove that for any $u \in A$, $uxy - uyx \neq 0$ implies $\omega(uy) x - \omega x(uy) = 0$ for all $\omega \in A$. So, let $uxy - uyx \neq 0$. Since A is scalar weak commutative, there exist scalars $\alpha = \alpha$ (u,x,y) $\in \mathbb{R}$ and $\beta = \beta$ (u,x+1,y) $\in \mathbb{R}$ such that $uxy = \alpha uyx$ \rightarrow (1) $u(x+1) y = \beta uy(x+1)$ \rightarrow (2) and From (2) we get $\mathbf{u}\mathbf{x}\mathbf{y}+\mathbf{u}\mathbf{y} = \boldsymbol{\beta}\mathbf{u}\mathbf{y}\mathbf{x} + \boldsymbol{\beta}\mathbf{u}\mathbf{y}.$ $\alpha uyx + uy = \beta uyx + \beta uy$ (using (1)) $(\alpha -)$ uyx = $(\beta - 1)$ uy \rightarrow (3) If $(\alpha - \beta)$ uyx = 0 then $(\beta - 1)$ uy = 0 and so β uy = uy.So from (2) we get u(x+1)y = uy(x+1)i.e., uxy + uy = uyx + uy. i.e., uxy - uyx = 0, contradicting our assumption that $uxy - uyx \neq 0$. So $(-\beta)$ uyx $\neq 0$. In particular $\alpha - \beta \neq 0$. Let $\alpha - \beta = p^t \delta$ for some $t \in Z^+$ and $\delta \in R$ with $(\delta, p) = 1$. If $t \ge k$, then since $O(xy) = p^k$, we would

get $(\alpha - \beta)$ uxy = 0, a contradiction. Hence t < k. Now, since $p^k uxy = 0$, by Lemma 3.3, we have $p^k uyx = 0.$ So from (3), $p^{k-t} (\beta - 1) uy = p^{k-t} (\alpha - \beta) uyx$ = $p^{k-t} \delta uyx$. = $p^k \delta uyx = 0$. Let $O(uy) = p^i$ for some $i \in Z^+$. If i<k then by induction hypothesis uxy = uyx, contradiction to our assumption that $uxy - uyx \neq 0$. So $i \ge k$. Hence $P^{k} | P^{i} | p^{k-t} (\beta - 1).$ Thus $p^t | \beta - 1$ and let $\beta - 1 = p^t \gamma$ for some $\gamma \in \mathbb{R}$. From (3) we get $(\alpha - \beta)uyx = (\beta - 1)uy.$ $p^{t} \delta uyx = p^{t} \gamma uy$ (using (4) and (5))i.e., $p^{t}((uy) (\delta x - \gamma .1)) = 0$. Hence by induction hypothesis $\omega (uy) (\delta x - \gamma.1) = \omega (\delta x - \gamma.1) (uy)$ $\omega (uy) \delta x - \omega (uy) \gamma.1 = \omega \delta x (uy) - \omega \gamma.1 (uy)$ $\forall \omega \epsilon A$ i.e., ω (uy) $\delta x - \gamma . \omega$ (uy) = $\omega \delta x$ (uy) - $\gamma \omega$ (uy) $\delta \{ (uy) x - \omega x (uy) \} = 0$ \rightarrow (6). Since $(\delta, p) = 1$, there exist $\gamma \in \mathbb{R}$ such that $\mu p^m + \gamma \delta = 1$. $\therefore \mu p^{m} \{ \omega (uy) x - \omega x (uy) \} + \gamma \delta \{ \omega (uy) x - \omega x (uy) \}$ $= \{ (uv) x - \omega x (uv) \}$ 0 + 0 $= \omega (uy) x - \omega x (uy)$ $(:: p^m A = 0)$ i.e., ω (uy) x = ω x (uy) i.e., $uyx \neq uxy$ implies $\omega(uy) x = \omega x(uy)$ for all $\omega \in A$ \rightarrow (7) Now, we proceed to show that uxy = uyx for all $u \in A$. Suppose not there exist $u \in A$ such that $uyx \neq uxy$ \rightarrow (8) Then we also have $(u+1)yx \neq (u+1)xy$ \rightarrow (9) From (7) and (8) we get ω (uy) x = ω x (uy) for all $\omega \in A$ \rightarrow (10) ω (u+1) yx \neq (u+1) xy for all $\omega \in A$ \rightarrow (11) From (11) we get ω (uy) x + ω yx = ω x(uy) + ω xy for all $\omega \in A$. i.e., $\omega yx = \omega xy$ for all $\omega \in A$ (using (10)) a contradiction. This contradiction prove that uxy = uyx for all $u \in A$.

Thus A is vweak commutative.

3.12 Lemma:

Let A be an algebra with identity over a principal ideal domain R.If A is scalar weak commutative, then A is weak commutative.

Proof:

Suppose A is not weak commutative, there exists $z \in A$ such that $xyz \neq xzy$ for all $x, y \in A$. Also $xy(z+1) \neq x(z+1)y$. Hence by Lemma 3.9, $O(z) \neq 0$ and $O(z+1) \neq 0$. Hence $O(1) \neq 0$. Let $O(1) = d \neq 0$. Then d is not a unit and hence $d = p_1^{i_1} p_2^{i_2} p_3^{i_3} \dots p_k^{i_k}$ for Some primes $p_1, p_2, p_3, \dots, p_k \in A$ some positive integers i_1, i_2, \dots, i_k .

Let $A_j = \{ a \in A \mid p_i^{i_{j_a}} = 0 \}$. Then each A_j is a non zero subalgebra of A and

 $\mathbf{A} = \mathbf{A}_1 \bigoplus \mathbf{A}_2 \quad \dots \bigoplus \quad \mathbf{A}_k \, .$

Being subalgebras of A, each A_i is scalar weak commutative. Being homomorphic image of A, all the Ai['] s have identity elements. By Lemma 3.10 each A_i is weak commutative and hence A is weak commutative, a contradiction. Then contradiction proves that A is weak commutative.

References

- [1]. R.Coughlin and M.Rich, On Scalar dependent algebras, Canada J.Math, 24(1972), 696-702.
- [2]. [3].
- R.Coughlin and K.Kleinfield and M.Rich, Scalars dependent algebras, Proc.Amer.Math.Soc, 39 (1973), 69 73. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Quasi weak m-power Commutative Near-rings and Quasi weak (m,n) power commutativenear - rings, IOSR Jour.of.Math, vol 12(4), (2016), 87-90.
- [4]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Quasi-weak Commutative Boolean-like near-rings, Malaya Journal of Mathematik , 3(3) , (2015), 318 – 326. [5]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Weak m power Commutative Near-ring and Weak (m,n) power
- commutative near- rings. K.Koh,J.Luh and M.S.Putcha, On the associativity and commutativity of algebras over Commutative rings, Porcific Journal of [6].
- Math, 63, No. 2 ,(1976), 423 430.
- Pliz, Glinter, Near rings, North Holland, Aneter dam, (1983). [7].
- [8]. M.Rich, A Commutativity theorem for algebras, Amer, Math, Monthly, 82 (1975), 377 - 379.