On Scalar Weak Commutative Algebras

G.Gopalakrishnamoorthy ${ }^{1}$, S.Geetha ${ }^{2}$, S.Anitha ${ }^{3}$
${ }^{1}$ Principal, Sri krishnasamy Arts and Science College, Sattur - 626203, Tamilnadu.
${ }^{2}$ Dept. of Mathematics, Pannai College of Engineering and Technology, Keelakkandani, Sivagangai - 630561.
${ }^{3}$ Lecturer, Raja Doraisingam Government Arts College, Sivagangai - 630 561,Tamil Nadu.

Abstract

The concept of scalar commutativity defined in an algebra A over a ring R is mixed with the concept of weak-commutativity defined in a Near-ring to coin the new concept of scalar weak commutativity in an algebra A over a ring R and many interesting results are obtained.

I. Introduction

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exists $\alpha \in \mathrm{R}$ depending on x, y such that $\mathrm{xy}=\alpha \mathrm{yx}$.Rich[8] proved that if A is scalar commutative over a field F ,then A is either commutative or anti-commutative. $\mathrm{KOH}, \mathrm{LUH}$ and PUTCHA [6] proved that if A is scalar commutative with 1 and if R is a principal ideal domain ,then A is commutative. A near-ring N is said to be weak-commutative if $\mathrm{xyz}=\mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$ (Definition 9.4, p.289, Pliz[7]. In this paper we define scalar weak commutativity in an algebra A over a commutative ring R and prove many interesting results analogous to Rich and LUH.

II. Preliminaries

In this section we give some basic definitions and well known results which we use in the sequel

2.1 Definition [7]:

Let N be a near-ring. N is said to be weak commutative if $x y z=x z y$ for all $x, y, z \in N$.

2.2 Definition

Let N be a near-ring. N is said to be anti-weak commutative if $\mathrm{xyz}=-\mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$.

2.3 Definition [8]:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ depending on x, y such that $\mathrm{xy}=\alpha \mathrm{yx}$. A is called scalar anticommutative if $x y=-\alpha y x$.

2.4 Lemma[5]:

Let N be a distributive near-ring.If $\mathrm{xyz}= \pm \mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$,then N is either weak commutative or weak anti-commutative.

III. Main Results

3.1 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar weakcommutative if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{xyz}=\alpha \mathrm{xzy}$. A is called scalar anti-weak commutative if $\mathrm{xyz}=-\alpha \mathrm{xzy}$.

3.2 Theorem:

Let A be an algebra (not necessarily associative) over a field F.If A is scalar weak commutative,then A is either weak commutative or anti- weak commutative.

Proof:

Suppose $\mathrm{xyz}=\mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$,there is nothing to prove
Suppose not we shall prove that $x y z=-x z y$ for all $x, y, z \in A$.
We shall first prove that, if $x, y, z \in A$ such that $x y z \neq x z y$, then $x y^{2}=x z^{2}=0$.
Let $x, y, z \in A$ such that $x y z \neq x z y$.
Since A is scalar weak commutative, there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{F}$ such that

$$
\begin{equation*}
\mathrm{xyz}=\alpha \mathrm{xzy} \tag{1}
\end{equation*}
$$

Also there exists $\gamma=\gamma(\mathrm{x}, \mathrm{y}+\mathrm{z}, \mathrm{z}) \in \mathrm{F}$ such that

$$
\begin{equation*}
\mathrm{x}(\mathrm{y}+\mathrm{z}) \mathrm{z}=\gamma \mathrm{xz}(\mathrm{y}+\mathrm{z}) \tag{2}
\end{equation*}
$$

(1) $\quad-(2)$ gives
$\mathrm{xyz}-\mathrm{xyz}-\mathrm{x}^{2}=\alpha \mathrm{xzy}-\gamma \mathrm{xzy}-\gamma \mathrm{x}^{2}$.
$\gamma \mathrm{xz}^{2}-\mathrm{x}^{2}=(\alpha-\gamma) \mathrm{xzy}$.

$$
\begin{equation*}
\mathrm{x} \mathrm{z}^{2}-\gamma \mathrm{x} \mathrm{z}^{2}=(\gamma-\alpha) \mathrm{xzy} \tag{3}
\end{equation*}
$$

Now, $x z y \neq 0$ for if $x z y=0$,then from(1), we get $x y z=0$ and so $x y z=x z y$;
contradicting our assumption that $\mathrm{xyz} \neq \mathrm{xzy}$.
Also $\gamma \neq 1$,for if $\gamma=1$, then from (3) we get

$$
\alpha=\gamma=1
$$

Then from (1) we get

$$
x y z=x z y, \text { again contradicting assumption that } x y z \neq x z y .
$$

Now from (3) we get

$$
\mathrm{X}^{2}=\frac{\gamma-\alpha}{1-\gamma} \quad \mathrm{xzy}
$$

$$
\begin{equation*}
\text { i.e., } \quad \mathrm{x} \mathrm{z}^{2}=\beta \mathrm{xzy} \text { for some } \beta \in \mathrm{F} \text {. } \tag{4}
\end{equation*}
$$

Similarly $\mathrm{x}^{2}=\delta \mathrm{xzy}$ for some $\delta \in \mathrm{F}$
Now corresponding to each choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ in F,there is an $\eta \in F$ such that

$$
\begin{gather*}
\mathrm{x}\left(\alpha_{1} \mathrm{y}+\alpha_{2} \mathrm{z}\right)\left(\alpha_{3} \mathrm{y}+\alpha_{4} \mathrm{z}\right)=\eta \mathrm{x}\left(\alpha_{3} \mathrm{y}+\alpha_{4} \mathrm{z}\right)\left(\alpha_{1} \mathrm{y}+\alpha_{2} \mathrm{z}\right) \\
\mathrm{x}\left(\alpha_{1} \alpha_{3} \mathrm{y}^{2}+\alpha_{1} \alpha_{4} \mathrm{yz}+\alpha_{2} \alpha_{3} \mathrm{zy}+\alpha_{2} \alpha_{4} \mathrm{z}^{2}\right) \\
=\eta \mathrm{x}\left(\alpha_{3} \alpha_{1} \mathrm{y}^{2}+\alpha_{3} \alpha_{2} \mathrm{yz}+\alpha_{4} \alpha_{1} \mathrm{zy}+\alpha_{4} \alpha_{2} \mathrm{z}^{2}\right) \\
\alpha_{1} \alpha_{3} \mathrm{x} \mathrm{y}^{2}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{xzy}+\alpha_{2} \alpha_{4} \mathrm{xz}^{2} \\
\quad=\eta\left(\alpha_{3} \alpha_{1} \mathrm{xy}^{2}+\alpha_{3} \alpha 1 \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{xzy}+\alpha_{4} \alpha_{2} \mathrm{xz}^{2}\right) \tag{6}
\end{gather*}
$$

Using (4) and (5) we get,

$$
\begin{aligned}
\alpha_{1} \alpha_{3} \delta \mathrm{xzy} & +\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{xzy}+\alpha_{2} \alpha_{4} \beta \mathrm{xzy} \\
& =\eta\left(\alpha_{3} \alpha_{1} \delta \mathrm{xzy}+\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{xzy}+\alpha_{4} \alpha_{2} \beta \mathrm{xzy}\right)
\end{aligned}
$$

Using (1) we get,

$$
\begin{gather*}
\alpha_{1} \alpha_{3} \delta \alpha^{-1} \mathrm{xyz}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{xyz}+\alpha_{2} \alpha_{4} \beta \alpha^{-1} \mathrm{xyz} \\
=\eta\left(\alpha_{3} \alpha_{1} \delta \mathrm{xzy}+\alpha_{3} \alpha_{2} \alpha \mathrm{xzy}+\alpha_{4} \alpha_{\left.1 \mathrm{x} \mathrm{zy}+\alpha_{4} \alpha_{2} \beta \mathrm{xzy}\right)} \begin{array}{c}
\left.\alpha_{1} \alpha_{3} \delta \alpha^{-1}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}+\alpha_{2} \alpha_{4} \beta \alpha^{-1}\right) \mathrm{xyz}^{2} \\
=\eta\left(\alpha_{3} \alpha_{1} \delta+\alpha_{3} \alpha_{2} \alpha+\alpha_{4} \alpha_{1}+\alpha_{4} \alpha_{2}\right) \mathrm{xzy}
\end{array}\right.
\end{gather*}
$$

If in (7), we choose $\alpha_{2}=0, \alpha_{3}=\alpha_{1}=1, \alpha_{4}=-\delta$, the right hand side of (7) is zero Whereas the left hand side of (7) is

$$
\left(\delta \alpha^{-1}-\delta\right) \mathrm{xyz}=0
$$

$$
\text { i.e., } \delta\left(\alpha^{-1}-1\right) \mathrm{xyz}=0
$$

Since $\mathrm{xyz} \neq 0$ and $\alpha \neq 1$, we get $\delta=0$.
Hence from (5) we get $\mathrm{xy}^{2}=0$.
Also, if in (7), we choose $\alpha_{3}=0, \alpha_{4}=\alpha_{2}=1$ and $\alpha_{1}=-\beta$,the right hand side of (7) is zero whereas the left hand side of (7) is

$$
\begin{gathered}
\left(-\beta+\beta \alpha^{-1}\right) \mathrm{xyz}=0 \\
\text { i.e., } \beta\left(\alpha^{-1}-1\right) \mathrm{xyz}=0 .
\end{gathered}
$$

Since $\mathrm{xyz} \neq 0$ and $\alpha \neq 1$, we get $\beta=0$.
Hence from (4), we get $x z^{2}=0$.
Then (6) becomes
$\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{xzy}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{xzy}\right)$.
$\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \alpha^{-1} \mathrm{xyz}\right)$.
$\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}\right) \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2}+\alpha_{4} \alpha_{1} \alpha^{-1}\right) \mathrm{xyz}$.
This is true for any choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathrm{~F}$.
Choose $\alpha_{1}=\alpha_{3}=\alpha_{4}=1$ and $\alpha_{2}=-\alpha^{-1}$.
We get $\left(1-\left(\alpha^{-1}\right)^{2}\right) \mathrm{xyz}=0$.
Since $x y z \neq 0, \quad 1-\left(\alpha^{-1}\right)^{2}=0$.
Hence $\quad\left(\alpha^{-1}\right)^{2}=1$.
i.e., $\alpha= \pm 1$.

Since $\alpha \neq 1$, we get $\alpha=-1$.
i.e., $x y z=-x z y$ for $x, y, z \in A$.

Thus A is either weak commutative or anti-weak commutative.

3.3 Lemma:

Let A be an algebra(not necessarily associative)over a commutative ring R.Suppose
A is scalar weak commutative.Then for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \alpha \in \mathrm{R}, \alpha \mathrm{xyz}=0$ if and only if α xzy $=0$. Also $x y z=0$ if and only if $x z y=0$.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$ and $\alpha \in \mathrm{R}$ such that $\alpha \mathrm{xyz}=0$.
Since A is scalar weak commutative, there exists $\beta=\beta(\alpha \mathrm{x}, \mathrm{z}, \mathrm{y}) \in \mathrm{R}$ such that $\alpha \mathrm{xzy}=\beta \alpha \mathrm{xyz}=0$.
Similarly if α xzy $=0$, then there exists $\gamma=\gamma(\alpha \mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\alpha \mathrm{xyz}=\gamma \alpha \mathrm{xzy}=0 .
$$

Thus $\alpha \mathrm{xyz}=0$ iff $\alpha \mathrm{xzy}=0$.
Assume $\mathrm{xyz}=0$. Since A is scalar commutative,there exists $\delta=\delta(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ such that xzy $=\delta \mathrm{xyz}=0$.
Similarly if xzy $=0$,there exists $\eta=\eta(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ such that $\mathrm{xyz}=\eta$ xzy $=0$.
Thus $x y z=0$ if and only if $x z y=0$.

3.4 Lemma:

Let A be an algebra over a commutative ring R.Suppose A is scalar weak commutative.
Let $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u} \in \mathrm{A}, \alpha, \beta \in \mathrm{R}$ such that $\mathrm{zu}=\mathrm{uz}, \mathrm{xzy}=\alpha \mathrm{xyz}$ and $\mathrm{x}(\mathrm{y}+\mathrm{u}) \mathrm{z}=\beta \mathrm{xz}(\mathrm{y}+\mathrm{u})$.
Then $\mathrm{x}(\mathrm{zu}-\alpha \mathrm{zu}-\beta \mathrm{zu}+\alpha \beta \mathrm{zu})=0$.

Proof:

$$
\text { Given } \begin{align*}
\mathrm{x}(\mathrm{y}+\mathrm{u}) \mathrm{z}=\beta \mathrm{xz}(\mathrm{y}+\mathrm{u}) & \rightarrow(1) \\
\mathrm{xzy}=\alpha \mathrm{xyz} & \rightarrow(2) \\
\text { and } \mathrm{zu}=\mathrm{uz} & \rightarrow(3) \tag{3}
\end{align*}
$$

From (1) we get

$$
\begin{gather*}
\mathrm{xyz}+\mathrm{xuz}=\beta \mathrm{xzy}+\beta \mathrm{xzu} . \\
\mathrm{xyz}+\mathrm{xuz}=\beta \alpha \mathrm{xzy}+\beta \mathrm{xzu} . \\
\mathrm{x}\{\mathrm{yz}+\mathrm{uz}-\alpha \beta y z-\beta \mathrm{zu}\}=0 . \\
\mathrm{x}\{\mathrm{yz}+\mathrm{uz}-\alpha \beta y z-\beta \mathrm{uz}\}=0 . \tag{3}\\
\mathrm{x}(\mathrm{y}+\mathrm{u}-\alpha \beta y-\beta \mathrm{u}) \mathrm{z}=0 .
\end{gather*}
$$

By Lemma 3.3 we get

$$
\mathrm{xz}(\mathrm{y}+\mathrm{u}-\alpha \beta y-\beta \mathrm{u})=0 .
$$

i.e., $x z y+x z u-\alpha \beta x y z-\beta x z u=0$.
i.e., $\alpha \mathrm{xyz}+\mathrm{xzu}-\alpha \beta x y z-\beta \mathrm{xzu}=0 . \quad$ using (2) \rightarrow (4)

Now from (1) we get

$$
\mathrm{xyz}+\mathrm{xuz}=\beta \mathrm{xzy}+\beta \mathrm{xzu} .
$$

$\mathrm{xyz}-\beta \mathrm{xzy}=\beta \mathrm{xzu}-\mathrm{xuz}$.
Multiplying by α we get,
$\alpha \mathrm{xyz}-\alpha \beta \mathrm{xzy}=\alpha \beta \mathrm{xzu}-\alpha \mathrm{xuz} . \quad \rightarrow(5)$
From (4) and (5) we vget
$\mathrm{xzu}-\beta \mathrm{xzu}+\alpha \beta \mathrm{xzu}-\alpha \mathrm{xuz}=0$.
i.e., $\mathrm{x}\{\mathrm{zu}-\beta \mathrm{zu}+\alpha \beta \mathrm{zu}-\alpha \mathrm{uz}\}=0 \quad$ (using (3))
$\mathrm{x}\{\mathrm{zu}-\alpha \mathrm{zu}-\beta \mathrm{zu}+\alpha \beta \mathrm{uz}\}=0$.

3.5 Corollary:

Taking $u=z$, we get
$x\left\{z^{2}-\alpha z^{2}-\beta z^{2}+\alpha \beta z^{2}\right\}=0$.
i.e., $\mathrm{x}(\mathrm{z}(\mathrm{z}-\alpha \mathrm{z})-\beta \mathrm{z}(\mathrm{z}-\alpha \mathrm{z}))=0$.
i.e., $\mathrm{x}(\mathrm{z}-\alpha \mathrm{z})(\mathrm{z}-\beta \mathrm{z})=0$.

3.6 Theorem:

Let A be an algebra over a commutative ring R.Suppose A has no zero divisors.If A is scalar weak commutative,then A is weak commutative.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$. Since A is scalar weak commutative, there exist scalars $\alpha=\alpha(\mathrm{x}, \mathrm{z}, \mathrm{y}) \in \mathrm{R}$
and $\beta=\beta(\mathrm{x}, \mathrm{y}+\mathrm{z}, \mathrm{z}) \in R$ such that

$$
\begin{equation*}
\mathrm{xzy}=\alpha \mathrm{xy} \quad \rightarrow(1) \tag{2}
\end{equation*}
$$

and $\mathrm{x}(\mathrm{y}+\mathrm{z}) \mathrm{z}=\beta \mathrm{xz}(\mathrm{y}+\mathrm{z})$
Then by the above corollary, we get

$$
\mathrm{x}(\mathrm{z}-\alpha \mathrm{z})(\mathrm{z}-\beta \mathrm{z})=0 .
$$

Since A has no zero divisors

$$
\mathrm{z}=\alpha \mathrm{z} \text { or } \mathrm{z}=\beta \mathrm{z}
$$

If $\mathrm{z}=\alpha \mathrm{z}$,then from (1) we get

$$
x z y=x y z
$$

If $\mathrm{z}=\beta \mathrm{z}$, then from (2) we get
$x(y+z) z=x z(y+z)$
$x y z+x z^{2}=x z y+x z^{2}$
i.e., $x y z=x z y$.

Thus A is weak commutative.

3.7 Definition:

Let R be any ring and $x, y, z \in R$.We define $x y z-x z y$ as the weak commutator of x, y, z
.i.e., $x y z-x z y=x[y, z]$ is called the weak commutator of x, y, z.

3.8 Theorem:

Let A be an algebra over a commutative ring R.Let A be scalar weak commutative.If A has an identity,then the square of every weak commutator is zero.

$$
\text { i.e., }(x y z-x z y)^{2}=0 \text { for all } x, y, z \in A .
$$

Proof:
Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$. Since A is scalar weak commutative, there exist scalars $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}, \mathrm{y}+1, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{equation*}
\mathrm{xzy}=\alpha \mathrm{xyz} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}(\mathrm{y}+1) \mathrm{z}=\beta \mathrm{xz}(\mathrm{y}+1) \tag{2}
\end{equation*}
$$

From (2) we get

$$
\mathrm{xyz}+\mathrm{xz}-\beta \mathrm{xzy}-\beta \mathrm{xz}=0
$$

$$
\mathrm{xyz}+\mathrm{xz}-\beta \alpha \mathrm{xyz}-\beta \mathrm{xz}=0 \quad(\text { using }(1))
$$

$$
\mathrm{xyz}+\mathrm{xz}-\alpha \beta \mathrm{xyz}-\beta \mathrm{xz}=0
$$

$$
\text { i.e., } \mathrm{x}(\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta) \mathrm{z}=0
$$

Using Lemma 3.3 we get

$$
\begin{align*}
& \mathrm{xz}(\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta) \mathrm{z}=0 \\
& \mathrm{x} \mathrm{z} y+\mathrm{xz}-\alpha \beta \mathrm{xzy}-\beta \mathrm{xz}=0 \\
& \alpha \mathrm{x} \mathrm{yz}+\mathrm{xz}-\alpha \beta \mathrm{xzy}-\beta \mathrm{xz}=0 \tag{3}
\end{align*}
$$

Also from (2) we get

$$
\mathrm{xyz}+\mathrm{xz}=\beta \mathrm{xzy}+\beta \mathrm{xz}
$$

Multiplying by α we get

$$
\begin{equation*}
\alpha \mathrm{xyz}+\alpha \mathrm{xz}=\alpha \beta \mathrm{xzy}+\alpha \beta \mathrm{xz} \tag{4}
\end{equation*}
$$

i.e., $\alpha \mathrm{xyz}-\alpha \beta \mathrm{xzy}=\alpha \beta \mathrm{xz}-\alpha \mathrm{xz}$.

From (3) and (4) we get

$$
\mathrm{xz}-\beta \mathrm{xz}+\alpha \beta \mathrm{xz}-\alpha \mathrm{xz}=0
$$

i.e., $\quad x z-\alpha x z-\beta x z+\alpha \beta x z=0$.
i.e., $\mathrm{x}(\mathrm{z}-\alpha \mathrm{z})=\mathrm{x}(\beta \mathrm{z}-\alpha \beta \mathrm{z})$

Multiplying by $y+1$ on the right we get

$$
\begin{aligned}
\mathrm{x}\{\mathrm{z}(\mathrm{y}+1)-\alpha \mathrm{z}(\mathrm{y}+1)\} & =\mathrm{x}\{\beta \mathrm{z}(\mathrm{y}+1)-\alpha \beta \mathrm{z}(\mathrm{y}+1)\} \\
& =\beta \mathrm{xz}(\mathrm{y}+1)-\alpha \beta \mathrm{xz}(\mathrm{y}+1) \\
& =\mathrm{x}(\mathrm{y}+1) \mathrm{z}-\alpha \mathrm{x}(\mathrm{y}+1) \mathrm{z} \\
& =\mathrm{x}\{(\mathrm{y}+1) \mathrm{z}-\alpha(\mathrm{y}+1) \mathrm{z}\}
\end{aligned} \quad(\text { using (2)) })
$$

i.e., $\mathrm{x}\{\mathrm{z}(\mathrm{y}+1)-\alpha \mathrm{z}(\mathrm{y}+1)\}=\mathrm{x}\{(\mathrm{y}+1) \mathrm{z}-\alpha(\mathrm{y}+1) \mathrm{z}\}$
i.e., $\mathrm{x}\{\mathrm{z}(\mathrm{y}+1)-(\mathrm{y}+1) \mathrm{z}\}=\mathrm{x}\{\alpha \mathrm{z}(\mathrm{y}+1)-\alpha(\mathrm{y}+1) \mathrm{z}\}$
i.e., $\mathrm{x}\{\mathrm{zy}+\mathrm{z}-\mathrm{yz}-\mathrm{z}\}=\alpha \mathrm{x}\{\mathrm{zy}+\mathrm{z}-\mathrm{yz}-\mathrm{z}\}$
$\mathrm{x}\{\mathrm{zy}-\mathrm{yz}\}=\alpha \mathrm{x}\{\mathrm{zy}-\mathrm{yz}\}$
i.e., $\mathrm{x}\{\mathrm{zy}-\alpha \mathrm{zy}\}=\mathrm{x}\{\mathrm{yz}-\alpha \mathrm{yz}\}$
i.e., $x y z-\alpha x y z=x z y-\alpha x z y$

$$
=\alpha \mathrm{xyz}-\alpha \alpha \mathrm{xyz}
$$

i.e., $\mathrm{xyz}-2 \alpha \mathrm{xyz}+\alpha^{2} \mathrm{xyz}=0$
i.e., $\mathrm{x}\left(\mathrm{y}-2 \alpha \mathrm{y}+\alpha^{2} \mathrm{y}\right) \mathrm{z}=0$

Now, $(x y z-x z y)^{2}=(x y z-\alpha x y z)^{2} \quad($ using (1))

$$
\begin{align*}
= & (\mathrm{xyz}-\alpha \mathrm{xyz})(\mathrm{xyz}-\alpha \mathrm{xyz}) \tag{5}\\
& =\mathrm{xyz} \mathrm{xyz}-\alpha \mathrm{xyz} \mathrm{xyz}-\alpha \mathrm{xyz} \mathrm{xyz}+\alpha^{2} \mathrm{xyz} \mathrm{xyz} \\
& =\mathrm{xyz} \mathrm{xyz}-2 \alpha \mathrm{xyz} \mathrm{xyz}+\alpha^{2} \mathrm{xyz} \mathrm{xyz} \\
= & \mathrm{x}\left(\mathrm{y}-2 \alpha \mathrm{y}+\alpha^{2} \mathrm{y}\right) \mathrm{zxyz} \\
& =0 . \mathrm{xyz} \quad(\text { using (5)) } \\
= & 0 .
\end{align*}
$$

Thus $(x y z-x z y)^{2}=0$.
i.e., Square of every weak commutator is zero.

3.9 Definition:

Let R be a P.I.D (principal ideal domain) and A be an algebra over R.Let $\mathrm{a} \in \mathrm{A}$.
Then the order of a,denoted an O (a) is defined to be the generator of the ideal $\mathrm{I}=\{\alpha \in \mathrm{R} \mid \alpha \mathrm{a}=0\}$.
$\mathrm{O}(\mathrm{a})$ is unique upto associates and $\mathrm{O}(\mathrm{a})=1$ if and only if $\mathrm{a}=0$.

3.10 Lemma:

Let A be an algebra with unity over a principal ideal domain R.If A is scalar weak commutative, $z \in A$ such that $O(z)=0$, then $x y z=x z y$ for all $x, y, z \in A$.

Proof:

Let $\mathrm{z} \in \mathrm{A}$ with $\mathrm{O}(\mathrm{z})=0$.
For $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exists scalars $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}, \mathrm{y}+1, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{array}{ll}
\mathrm{xzy}=\alpha \mathrm{xyz} \\
\mathrm{x}(\mathrm{y}+1) \mathrm{z}=\beta \mathrm{xz}(\mathrm{y}+1) & \rightarrow(1) \\
\end{array}
$$

From (2) we get

$$
\mathrm{xyz}+\mathrm{xz}-\beta \mathrm{xzy}-\beta \mathrm{xz}=0
$$

$\mathrm{xyz}+\mathrm{xz}-\alpha \beta \mathrm{xyz}-\beta \mathrm{xz}=0$

$$
\mathrm{x}(\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta .1) \mathrm{z}=0
$$

Using Lemma 3.3 we get

$$
\mathrm{xz}(\mathrm{y}+1-\alpha \beta \mathrm{y}-\beta .1)=0
$$

$$
\mathrm{xzy}+\mathrm{xz}-\alpha \beta \mathrm{xzy}-\beta \mathrm{xz})=0
$$

$$
\alpha \mathrm{xzy}+\mathrm{xz}-\alpha \beta \mathrm{xzy}-\beta \mathrm{xz}=0 \quad(\text { using }(1)) \quad \rightarrow(3)
$$

From (2) we get

$$
\mathrm{xyz}+\mathrm{xz}=\beta \mathrm{xzy}+\beta \mathrm{xz}
$$

Multiplying by α we get
$\alpha \mathrm{xyz}+\alpha \mathrm{xz}=\alpha \beta \mathrm{xzy}+\alpha \beta \mathrm{xz}$
i.e., $\alpha \mathrm{xyz}-\alpha \beta \mathrm{xzy}=\alpha \beta \mathrm{xz}-\alpha \mathrm{xz} \quad \rightarrow$ (4)

From (3) and (4) we get

$$
\mathrm{xz}-\beta \mathrm{xz}+-\alpha \beta \mathrm{xz}-\alpha \mathrm{xz}=0
$$

$(1-\alpha)(1-\beta) \mathrm{xz}=0 \quad \forall \mathrm{x} \in \mathrm{A}$.
Then there exist scalars $\gamma \in \mathrm{R}, \delta \in \mathrm{R}$ such that $\gamma \mathrm{xz}=0 \quad \rightarrow$ (6)
and

$$
\delta(\mathrm{x}+1) \mathrm{z}=0 \quad \rightarrow(7)
$$

From (7)
$\delta \mathrm{xz}+\delta \mathrm{z}=0$
Multiply by γ

$$
\gamma \delta \mathrm{xz}+\gamma \delta \mathrm{z}=0 \quad \rightarrow(8)
$$

From (6) we get

```
    \(\gamma \delta \mathrm{xz}=0 \quad \rightarrow(9)\)
```

From (8) and (9) we get

$$
\gamma \delta \mathrm{z}=0
$$

Since $\mathrm{O}(\mathrm{z})=0$ we get $\gamma=0$ and $\delta=0$.
Then from $1-\alpha=0$ or $1-\beta$.
If $\alpha=1$,from (1) we get $x z y=x y z$.
If $\beta=1$,from (2) we get

$$
\begin{aligned}
& x(y+1) z=x z(y+1) \\
& x y z+x z=x z y+x z \\
& x y z=x z y
\end{aligned}
$$

3.10 (a) Lemma:

Let A be an algebra with idemtity over Principal ideal domain R.If A is scalar weak commutative, $y \in R$ with $O(y)=0$, then y is in the center of A.

Proof:

Let $\mathrm{y} \in \mathrm{A}$ with $\mathrm{O}(\mathrm{y})=0$.
For any $\mathrm{x} \in \mathrm{A}$,there exist scalars $\alpha=\alpha(1, \mathrm{x}, \mathrm{y}) \in \mathrm{R}$ and $\beta=\beta(1, \mathrm{y}, \mathrm{x}+1) \in \mathrm{R}$ such that
(i.e) 1. $\mathrm{xy}=\alpha .1 . \mathrm{yx}$.
$\mathrm{xy}=\alpha \mathrm{yx}$
and 1. $\mathrm{y}(\mathrm{x}+1)=\beta .1 .(\mathrm{x}+1) \mathrm{y}$
(i.e)., $y(x+1)=\beta(x+1) y \quad \rightarrow(2)$

From (2) we get

$$
\begin{aligned}
& \mathrm{yx}+\mathrm{y}=\beta \mathrm{xy}+\beta \mathrm{y} \\
& \mathrm{yx}+\mathrm{y}=\alpha \beta \mathrm{xy}+\beta \mathrm{y} \\
& \mathrm{yx}+\mathrm{y}-\alpha \beta \mathrm{xy}-\beta \mathrm{y}=0 . \\
& 1 . \mathrm{y}(\mathrm{x}+1-\alpha \beta \mathrm{x}-\beta .1)=0 .
\end{aligned}
$$

By Lemma 3.3

$$
\begin{align*}
& \text { 1. } \quad(\mathrm{x}+1-\alpha \beta \mathrm{x}-\beta .1) \mathrm{y}=0 \\
& \mathrm{xy}+\mathrm{y}-\alpha \beta \mathrm{xy}-\beta \mathrm{y}=0 \tag{3}
\end{align*}
$$

Also from (2)

$$
\mathrm{yx}+\mathrm{y}-\beta \mathrm{xy}-\beta \mathrm{y}=0
$$

Multiply by α

$$
\alpha \mathrm{yx}+\alpha \mathrm{y}-\alpha \beta \mathrm{xy}-\alpha \beta \mathrm{y}=0
$$

$$
\mathrm{xy}+\alpha \mathrm{y}-\alpha \beta \mathrm{xy}-\alpha \beta \mathrm{y}=0 \quad(\text { using (1)) } \quad \rightarrow(4)
$$

From (3) and (4) we get

$$
\begin{aligned}
& \mathrm{y}-\beta \mathrm{y}-\alpha \mathrm{y}+\alpha \beta \mathrm{y}=0 \\
& (\mathrm{y}-\beta \mathrm{y})-\alpha(\mathrm{y}-\beta \mathrm{y})=0 \\
& (1-\alpha)(\mathrm{y}-\beta \mathrm{y})=0 \\
& (1-\alpha)(1-\beta) \mathrm{y}=0
\end{aligned}
$$

Since $\mathrm{O}(\mathrm{y})=0$, we get $\alpha=1$ or $\beta=1$.
If $\alpha=1$, from (1) we get $\mathrm{xy}=\mathrm{yx}$.
If $\beta=2$, from (2) we get

$$
y(x+1)=(x+1) y
$$

i.e., $y x+y=x y+y$

$$
y x=x y
$$

i.e., y commutes with x.

As $x \in A$ is arbitrary, y is in the center.

3.11 Lemma:

Let A be an algebra with identity over a P.I.D R.Suppose that A is scalar weak commutative.
Assume further that there exists a prime $\mathrm{p} \in \mathrm{R}$ and positive integer $\mathrm{m} \in z^{+}$such that $\mathrm{p}^{\mathrm{m}} \mathrm{A}=0$. Then A is Weak commutative.

Proof:

Let $\mathrm{O}(\mathrm{xy})=\mathrm{p}^{\mathrm{k}}$ for some $\mathrm{k} \in Z^{+}$.
We prove by induction on k that $u x y=u y x$ for all $u \in A$.
If $\mathrm{k}=0$,then $\mathrm{O}(\mathrm{xy})=\mathrm{p}^{0}=1$ and so $\mathrm{xy}=0$.
So uxy $=0$.Also by Lemma $3.3 \mathrm{uyx}=0$.
Hence $u x y=u y x$ for all $u \in A . S o$, assume that $k>0$ and that the statement is true for $l>k$.
We first prove that for any $u \in A$, uxy -uyx $\neq 0$ implies ω (uy) $x-\omega x$ (uy) $=0$ for all $\omega \in A$.
So, let uxy - uyx $\neq 0$.
Since A is scalar weak commutative, there exist scalars $\alpha=\alpha(\mathrm{u}, \mathrm{x}, \mathrm{y}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{u}, \mathrm{x}+1, \mathrm{y}) \in \mathrm{R}$ such that

$$
\begin{align*}
& \mathrm{uxy}=\alpha \mathrm{uyx} \tag{1}\\
& \mathrm{u}(\mathrm{x}+1) \mathrm{y}=\beta \text { uy }(\mathrm{x}+1)
\end{align*}
$$

and
From (2) we get

$$
\begin{equation*}
u x y+u y=\beta u y x+\beta u y . \tag{3}
\end{equation*}
$$

α uyx + uy $=\beta$ uyx $+\beta$ uy \quad (using (1))
$(\alpha-)$ uyx $=(\beta-1)$ uy
If $(\alpha-\beta)$ uyx $=0$ then $(\beta-1)$ uy $=0$ and so β uy $=$ uy.So from (2) we get $u(x+1) y=u y(x+1)$
i.e., $u x y+u y=u y x+u y$.
i.e., $u x y-u y x=0$, contradicting our assumption that $u x y-u y x \neq 0$.

So
($-\beta$) uyx $\neq 0$.In particular $\alpha-\beta \neq 0$.
Let $\alpha-\beta=\mathrm{p}^{\mathrm{t}} \delta$ for some $\mathrm{t} \in \mathrm{Z}^{+}$and $\delta \in \mathrm{R}$ with $(\delta, \mathrm{p})=1$.If $\mathrm{t} \geq \mathrm{k}$, then since $\mathrm{O}(\mathrm{xy})=\mathrm{p}^{\mathrm{k}}$, we would
get $(\alpha-\beta)$ uxy $=0$, a contradiction. Hence $\mathrm{t}<\mathrm{k}$.
Now, since p^{k} uxy $=0$,by Lemma 3.3, we have

$$
\mathrm{p}^{\mathrm{k}} \mathrm{uyx}=0 .
$$

So from (3), $\mathrm{p}^{k-t}(\beta-1) \mathrm{uy}=\mathrm{p}^{k-t}(\alpha-\beta)$ uyx

$$
\begin{aligned}
& =\mathrm{p}^{\mathrm{kt}} \mathrm{p}^{\mathrm{t}} \delta \text { uyx. } \\
& =\mathrm{p}^{\mathrm{k}} \delta \text { uyx }=0 .
\end{aligned}
$$

Let $\mathrm{O}(\mathrm{uy})=\mathrm{p}^{\mathrm{i}}$ for some $\mathrm{i} \in \mathrm{Z}^{+}$.
If $i<k$ then by induction hypothesis $u x y=u y x$, contradiction to our assumption that $u x y-u y x \neq 0$.
So i $\geq \mathrm{k}$.
Hence

$$
\mathrm{P}^{\mathrm{k}}\left|\mathrm{P}^{\mathrm{i}}\right| \mathrm{p}^{\mathrm{k}-\mathrm{t}}(\beta-1)
$$

Thus $\mathrm{p}^{\mathrm{t}} \mid \beta-1$ and let $\beta-1=\mathrm{p}^{\mathrm{t}} \gamma$ for some $\gamma \in \mathrm{R}$.
From (3) we get

$$
(\alpha-\beta) \text { uyx }=(\beta-1) \text { uy. }
$$

$$
\mathrm{p}^{\mathrm{t}} \delta \text { uyx }=\mathrm{p}^{\mathrm{t}} \gamma \text { uy } \quad(\text { using (4) and (5) })
$$

i.e., $\mathrm{p}^{\mathrm{t}}(($ uy $)(\delta \mathrm{x}-\gamma .1))=0$. Hence by induction hypothesis
ω (uy) $(\delta \mathrm{x}-\gamma .1) \quad=\omega(\delta \mathrm{x}-\gamma .1)$ (uy) $\quad \forall \omega \in \mathrm{A}$
ω (uy) $\delta \mathrm{x}-\omega$ (uy) $\gamma .1=\omega \delta \mathrm{x}$ (uy) $-\omega \gamma .1$ (uy)
i.e., ω (uy) $\delta \mathrm{x}-\gamma . \omega$ (uy) $=\omega \delta \mathrm{x}$ (uy) $-\gamma \omega$ (uy)
$\delta\{($ uy $) \mathrm{x}-\omega \mathrm{x}$ (uy) $\}=0 \quad \rightarrow(6)$.
Since $(\delta, \mathrm{p})=1$, there exist,$\gamma \in \mathrm{R}$ such that $\mu \mathrm{p}^{\mathrm{m}}+\gamma \delta=1$.

```
\(\therefore \mu \mathrm{p}^{\mathrm{m}}\{\omega\) (uy) \(\mathrm{x}-\omega \mathrm{x}\) (uy) \(\}+\gamma \delta\{\omega\) (uy) \(\mathrm{x}-\omega \mathrm{x}\) (uy) \(\}\)
    \(=\{\) (uy) \(\mathrm{x}-\omega \mathrm{x}\) (uy) \(\}\)
    \(0+0 \quad=\omega(\) uy \() \mathrm{x}-\omega \mathrm{x}\) (uy) \(\quad\left(\because \mathrm{p}^{\mathrm{m}} \mathrm{A}=0\right)\)
```

i.e., $\quad \omega$ (uy) $\mathrm{x}=\omega \mathrm{x}$ (uy)
i.e., uyx \neq uxy implies ω (uy) $\mathrm{x}=\omega \mathrm{x}$ (uy) for all $\omega \in \mathrm{A} \quad \rightarrow$ (7)

Now, we proceed to show that $u x y=u y x$ for all $u \in A$.
Suppose not there exist $u \in A$ such that uyx $\neq u x y$
Then we also have $(u+1) y x \neq(u+1) x y$
From (7) and (8) we get

$$
\begin{array}{ll}
\omega \text { (uy }) \mathrm{x}=\omega \mathrm{x}(\mathrm{uy}) \text { for all } \omega \in \mathrm{A} & \rightarrow(10) \\
\omega(\mathrm{u}+1) \mathrm{yx} \neq(\mathrm{u}+1) \mathrm{xy} \text { for all } \omega \in \mathrm{A} & \rightarrow(11) \tag{9}
\end{array}
$$

From (11) we get

$$
\omega \text { (uy) } \mathrm{x}+\omega \mathrm{yx}=\omega \mathrm{x}(\text { uy })+\omega \mathrm{xy} \text { for all } \omega \in \mathrm{A} .
$$

i.e., $\omega \mathrm{yx}=\omega \mathrm{xy}$ for all $\omega \in \mathrm{A}$ (using (10)) a contradiction.
This contradiction prove that $u x y=u y x$ for all $u \in A$.
Thus A is vweak commutative.

3.12 Lemma:

Let A be an algebra with identity over a principal ideal domain R.If A is scalar weak commutative, then A is weak commutative.

Proof:

Suppose A is not weak commutative, there exists $z \in A$ such that $x y z \neq x z y$ for all $x, y \in A$.
Also $\mathrm{xy}(\mathrm{z}+1) \neq \mathrm{x}(\mathrm{z}+1) \mathrm{y}$.
Hence by Lemma 3.9, $\mathrm{O}(\mathrm{z}) \neq 0$ and $\mathrm{O}(\mathrm{z}+1) \neq 0$.
Hence $\mathrm{O}(1) \neq 0$. Let $\mathrm{O}(1)=\mathrm{d} \neq 0$. Then d is not a unit and hence $\mathrm{d}=p_{1}^{i_{1}} p_{2}^{i_{2}} p_{3}^{i_{3}} \ldots \ldots \ldots \ldots p_{k}^{i_{k}}$ for
Some primes $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \ldots \ldots \ldots \ldots \ldots \mathrm{P}_{\mathrm{k}} \in \mathrm{A}$ some positive integers $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots \ldots \ldots \ldots \ldots . \mathrm{i}_{\mathrm{k}}$.
Let $\mathrm{A}_{\mathrm{j}}=\left\{\mathrm{a} \in \mathrm{A} \mid p_{j}^{i_{j a}}=0\right\}$. Then each A_{j} is a non zero subalgebra of A and $\mathrm{A}=\mathrm{A}_{1} \oplus \mathrm{~A}_{2}$ \qquad $\oplus \mathrm{A}_{\mathrm{k}}$.
Being subalgebras of A,each A_{i} is scalar weak commutative. Being homomorphic image of A,all the $A i^{\prime}$ s have identity elements.By Lemma 3.10 each A_{i} is weak commutative and hence A is weak commutative, a contradiction. Then contradiction proves that A is weak commutative.

References

[1]. R.Coughlin and M.Rich, On Scalar dependent algebras, Canada J.Math, 24(1972), 696-702.
[2]. R.Coughlin and K.Kleinfield and M.Rich, Scalars dependent algebras, Proc.Amer.Math.Soc, 39 (1973), 69 - 73.
[3]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Quasi - weak m-power Commutative Near-rings and Quasi - weak (m,n) power commutativenear - rings, IOSR Jour.of.Math, vol 12(4), (2016), 87-90.
[4]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Quasi-weak Commutative Boolean-like near-rings, Malaya Journal of Mathematik, 3(3), (2015), 318-326.
[5]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Weak m power Commutative Near-ring and Weak (m,n) power commutative near- rings.
[6]. K.Koh,J.Luh and M.S.Putcha, On the associativity and commutativity of algebras over Commutative rings, Porcific.Journal of Math, 63, No. 2 ,(1976), 423-430.
[7]. Pliz, Glinter, Near - rings, North Holland, Aneter dam, (1983).
[8]. M.Rich, A Commutativity theorem for algebras, Amer, Math, Monthly, 82 (1975), 377 - 379.

