On Quasi Generalized Topological Simple Groups

^{*}C. Selvi, R. Selvi

Research scholar, Department of mathematics, Sriparasakthi college for women, India. Assistant Professor, Department of mathematics, Sriparasakthi college for women, India. Corresponding Author: C. Selvi, R. Selvi

Abstract: In this paper we introduce the concept of quasi G-topological simple group. Also some basic properties, theorems and examples of a quasi G-topological simple groups are investigated. Moreover we studied the important result, If the mapping between two quasi G-topological simple groups is G-continuous at the identity element, then f is G-continuous.

Keywords: Quasi topological group, G-open set, G-continous, Quasi G-topological simple group.

Date of Submission: 16-08-2017

Date of acceptance: 05-09-2017

I. Introduction

Csaszar[6], Introduced the notion of generalized neighbourhood system and generalized topological space. Also Csaszar[6], Investigated the generalized continous mappings. In this paper we introduce the new concept of quasi G-topological simple group. Quasi G-topological simple group have both topological and algebraic structures such that the translation mappings and the inversion mapping are G-continous with respect to the generalized topology. Also some basic results studied and discussed.

II. Preliminaries

Definition: 2.1[3] Let *X* be any set and let $\mathcal{G} \subseteq P(X)$ be a subfamily of power set of *X*. Then \mathcal{G} is called a generalized topology if $\phi \in \mathcal{G}$ and for any index set $I, \bigcup_{i \in I} O_i \in \mathcal{G}, O_i \in \mathcal{G}, i \in I$.

Definition: 2.2 [3] The elements of G are called G-open sets. Similarly, generalized closed set (or) G-closed, is defined as complement of a G-open set.

Definition: 2.3 [3] Let X and Y be two G-topological space. A mapping $f: X \to Y$ is called a G-continuous on X if for any G-open set O in Y, $f^{-1}(O)$ is G-open in X.

Definition : 2.4 [3] The bijective mapping f is called a G-homeomorphism from X to Y if both f and f^{-1} are G-continuous. If there is a G-homeomorphism between X and Y, then they are said to be G-homeomorphic. It is denoted by $X \cong_G Y$.

Definition : 2.5 [3] Collection of all \mathcal{G} -interior points of $A \subset X$ is called \mathcal{G} -interior of A. It denoted by $Int_{\mathcal{G}}(A)$. By definiton it obvious that $Int_{\mathcal{G}}(A) \subset A$.

Note: 2.6 [3] (i). G-interior of A, $Int_G(A)$ is equal to union of all G-open sets contained in A.

(*ii*). *G*-closure of *A* as intersection of all *G*-closed sets containing *A*. It is denoted by $Cl_{G}(A)$.

Definition: 2.7 [3] Let (G, *) is a group and given $x \in G$, $L_x: G \to G$ defined by $L_x(y) = x * y$ and $R_x: G \to G$ defined by $R_x(y) = y * x$, denote left and right translation by x, respectively.

Definition: 2.8 [1] A quasi topological group *G*, is a group which is also a topological space if the following conditions are satisfied,

(*i*). Left translation $L_x: G \to G$, $x \in G$ and right translation $R_x: G \to G$, $x \in G$ are continous and (*ii*). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is continous.

Definition: 2.9 [20] A group *G* is called a simple group if it has no nontrivial normal subgroup of *G*.

III. Quasi Generalized Topological Simple Groups

Definition: 3.1 A quasi *G*-topological simple group *G*, is a simple group which is also a *G*-topological space if the following conditions are satisfied,

(*i*). Left translation $L_x: G \to G$, $x \in G$ and Right translation $R_x: G \to G$, $x \in G$ are *G*-continous and (*ii*). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is *G*-continous.

Example: 3.2 Any group of prime order with indiscrete or discrete *G*-topology is a quasi *G*-topological simple group.

Example: 3.3 Let $G = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ be a trivial simple group under addition and we define a generalized topology on *G* by $\mathcal{G} = \left\{ \phi, \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \right\}$. Clearly $(G, +, \mathcal{G})$ quasi *G*-topological simple group.

Example: 3.4 $G = \{1, w, w^2\}$, where $w^3 = 1$, is a simple group under multiplication. Now we define a generalized on *G* by $G = \{\phi, G, \{w\}\}$. Then the inverse mapping *i* is *G*-continous at the points $1, w^2$ and not *G*-continous at the point *w*. In right translation mapping, R_1 is *G*-continous at each point of *G*, R_w is *G*-continous at the points w, w^2 and not *G*-continous at the point 1 and R_{w^2} is *G*-continous at the point 1, *w* and not *G*-continous at the point w^2 . Similarly we can prove left translation(L_x).

Theorem: 3.5 Let (G, *, G) be a quasi *G*-topological simple group and β_e be the collection of all *G*-open neighbourhood at identity *e* of *G*. Then

(*i*). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V^{-1} \subseteq U$.

(*ii*). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V * x \subseteq U$ and $x * V \subseteq U$, for each $x \in U$. **Proof:** (*i*). Since (G, *, G) is a quasi *G*-topological simple group. Therefore, for every $U \in \beta_e$, there exists $V \in \beta_e$ such that $i(V) = V^{-1} \subseteq U$, because the inverse mapping $i: G \to G$ is *G*-continuous. (*ii*) Since (G, *, G) is a quasi *G*-topological simple group. Therefore, for every $U \in \beta_e$, there exists $V \in \beta_e$ such that $i(V) = V^{-1} \subseteq U$, because the inverse mapping $i: G \to G$ is *G*-continuous.

(*ii*). Since (G, *, G) is a quasi *G*-topological simple group. Thus for each *G*-open set *U* containing *x*, there exists $V \in \beta_e$ such that $R_x(V) = V * x \subseteq U$. Similarly, $L_x(V) = x * V \subseteq U$.

Theorem: 3.6 Let *G* be a quasi *G*-topological simple group and *g* be any element of *G*. Then the right translation(R_g) and left translation(L_g) of *G* by *g* is a *G*-homeomorphism of the space *G* onto itself. **Proof:** First we prove that R_g is a bijection. Assume that $y \in G$, then the element yg^{-1} maps to *y*. Therefore R_g is surjective.

Assume that $R_g(x) = R_g(y)$.

$$\Rightarrow xg = yg$$

⇒ x = y. Hence R_g is 1-1. Since *G* is a quasi *G*-topological simple group, R_g is *G*-continous. Consider R_g^{-1} which maps xg to x, this is equivalent to the map from x to xg^{-1} . Therefore $R_g^{-1}(x) = R_{g^{-1}}(x)$. Since $R_{g^{-1}}(x)$ is *G*-continous, $R_g^{-1}(x)$ is *G*-continous. Similarly we will prove that the left translation (L_g). Hence the theorem.

Theorem: 3.7 Let G be a quasi G-topological simple group and U be any G-open set in G. Then (i). a * U and U * a is G-open in G for all $a \in G$.

(*ii*). For any subset A of G, the sets U * A and A * U are G-open in G.

Proof: Let $x \in U * a$. We want to show that x is a G-interior point of U * a. Let x = u * a for some $u \in U = U * a * a^{-1}$. Then $u = x * a^{-1}$. We know that $R_{a^{-1}}: G \to G$ is G-continous. Then for every G-open set containing $R_{a^{-1}}(x) = x * a^{-1} = u$, there exists a G-open set M_x containing x such that $R_{a^{-1}}(M_x) \subseteq U$. $\Rightarrow M_x * a^{-1} \subseteq U$.

$$\Rightarrow M_x \subseteq U * a.$$

 $\Rightarrow x$ is a *G*-interior point of U * a. Therefore U * a is *G*-open in *G*. Similarly we can prove that a * U is *G*-open *G*.

(*ii*). By above result, U * a is *G*-open, for all $a \in G$. Then $U * A = \bigcup_{a \in A} U * a$ also *G*-open in *G*. Similarly we can prove that A * U is *G*-open in *G*.

Theorem: 3.8 Suppose that a subgroup H of a quasi G-topological simple group G contains a non-empty G-open subset of G. Then H is G-open in G.

Proof: Let U be a non-empty G-open subset of G with $U \subset H$. For every $g \in H$, the set $L_g(U) = U * g$ is G-open in G, then $H = \bigcup_{g \in H} U * g$ is G-open in G.

Theorem: 3.9 Every quasi G-topological simple group G has G-open neighbourhood at the identity element e consisting of symmetric G-neighbourhoods.

Proof: For an arbitrary *G*-open neighbourhood U of the identity *e*, if $V = U \cap U^{-1}$, then $V = V^{-1}$, the set V is an *G*-open neighbourhood of *e*, which implies that V is a symmetric *G*-neighbourhood and $V \subset U$.

Theorem: 3.10 Let $f: G \to H$ be a homomorphism of quasi *G*-topological simple groups. If f is *G*-continous at the neutral element e_G of G, then f is *G*-continous.

Proof: Let $x \in G$ be arbitrary and suppose that W is an *G*-open neighbourhood of y = f(x) in *H*. Since the left translation L_y in *H* is a *G*-continous mapping, there exists an *G*-open neighbourhood *V* of the neutral element e_H in *H* such that $L_y(V) = yV \subseteq W$. Since *f* is *G*-continous at e_G of *G*, then $f(U) \subset V$, for some *G*-open neighbourhood *U* of e_G in *G*. Since $L_x: G \to G$ is *G*-continous, then xU is an *G*-open neighbourhood of *x* in *G*. Now we have f(xU) = f(x)f(U)

$$= y f(U)$$

⊆ yV
⊆ W. Hence f is G-continous at the point $x \in G$.

Theorem: 3.11 Suppose that G, H and K are quasi G-topological simple groups and that $\phi: G \to H$ and $\psi: G \to K$ are homomorphism Such that $\psi(G) = K$ and $Ker \psi \subset Ker \phi$. Then there exists homomorphism $f: K \to H$ such that $\phi = f \circ \psi$. In addition, for each G-neighbourhood U of the identity element e_H in H, there exists a G-neighbouhood V of the identity element e_k in K such that $\psi^{-1}(V) \subset \phi^{-1}(U)$, then f is G-continous. **Proof:** Algebraic part of the theorem is well known. Suppose U is a G-neighbourhood of e_H in H. By assumption, there exists a G-neighbouhood V of the identity element e_k in K such that $, W = \psi^{-1}(V) \subset \phi^{-1}(U)$.

 $\Rightarrow \phi(W) = \varphi(\psi^{-1}(V)) \subset \phi(\phi^{-1}(U))$

⇒ $\phi(W) = f(V) \subset U$. Hence *f* is *G*-continous at the identity element of *K*. Therefore by above theorem, *f* is *G*-continous.

Corollary: 3.12 Let $\phi: G \to H$ and $\psi: G \to K$ be *G*-continous homomorphism of a quasi *G*-topological simple groups *G*, *H* and *K* Such that $\psi(G) = K$ and $Ker \psi \subset Ker \phi$. If the homomorphism ψ is *G*-open, then there exists a *G*-continous homomorphism, $f: K \to H$ such that $\phi = f \circ \psi$.

Proof: The existence of a homomorphism $f: K \to H$ such that $\phi = f \circ \psi$. Take an arbitrary *G*-open set *V* in *H*. Then $f^{-1}(V) = \psi(\phi^{-1}(V))$. Since ϕ is *G*-continous and ψ is an *G*-open map, $f^{-1}(V)$ is *G*-open in *K*. Therefore *f* is *G*-continous.

Theorem: 3.13 Let *G* be a quasi *G*-topological simple group and *H* is a normal subgroup of *G*. Then \overline{H} also a normal subgroup of *G*.

Proof: Now we have to prove that $g\overline{H}g^{-1} \in \overline{H} \forall g \in G$. Since H is a normal subgroup of G, $gHg^{-1} \in H \forall g \in G$. Now $\overline{gHg^{-1}} \subset \overline{H} \forall g \in G$. $\Rightarrow g\overline{H}g^{-1} \subset \overline{H} \forall g \in G$. $\Rightarrow g\overline{H}g^{-1} \in \overline{H}, \forall g \in G$.

Corrollary: 3.14 Let *G* be a quasi *G*-topological simple group and Z(G) be the centre of *G*. Then $\overline{Z(G)}$ is a normal subgroup of *G*.

Proof: proof follows from the above theorem.

Corollary: 3.15 Let *G* and *H* be a quasi *G*-topological simple groups. If $f: G \to H$ is a homomorphism mapping ,then \overline{kerf} is a normal subgroup of *G*.

Theorem: 3.16 Let *G* and *H* be quasi *G*-topological simple groups with neutral elements e_G and e_H , respectively, and let *p* be a *G*-continous homomorphism of *G* onto *H* such that, for some non-empty subset *U* of *G*, the set p(U) is *G*-open in *H* and the restriction of *p* to *U* is an *G*-open mapping of *U* onto p(U). Then the homomorphism *p* is *G*-open.

Proof: It suffices to show that $x \in G$, where W is an G-open neighbourhood of x in G, then P(W) is a G-open neighbourhood of p(x) in H. Fix a point y in U, and let L be the left translation of G by yx^{-1} . Then L is a G-homeomorphism of G onto itself such that,

$$L_{yx^{-1}}(x) = yx^{-1}x$$
$$= y.$$

So $V = U \cap L(W)$ is an *G*-open neighbourhood of *y* in *U*. Then p(V) is *G*-open subset of *H*. consider the left translation *h* of *H* by the inverse to $p(yx^{-1})$.

Now clearly, $(h \circ p \circ l)(x) = h(p(l(x)))$

$$= h(p(y)) = p(xy^{-1})p(y) = p(xy^{-1}y) = p(x).$$

Hence h(p(l(W))) = p(W). Clearly *h* is a *G*-homeomorphism of *H* onto itself. Since p(V) is *G*-open in *H*, h(p(V)) is also *G*-open in *H*. Therefore p(W) contains the *G*-open neighbourhood h(p(V)) of p(x) in *H*. Hence p(W) is a *G*-open neighbourhood of p(x) in *H*.

Definition: 3.17 Let *H* be a subgroup of quasi *G*-topological simple group *G*. Then *H* is called neutral in *G* if every *G*-neighbourhood *U* of the identity e_G in *G*, there exists a *G*-neighbourhood *V* of e_G such that $VH \subset HU$.

Theorem: 3.18 Let *H* be a subgroup of quasi *G*-topological simple group *G*. Suppose that, for every *G*-open neighbourhood *U* of the identity e_G in *G*, there exists an *G*-open neighbourhood *V* of e_G in *G* such that $xVx^{-1} \subset U$ whenever $x \in G$. Then *H* is neutral in *G*.

Proof: Given a *G*-neighbourhood *U* of e_G in *G*. Take an *G*-open neighbourhood *V* of e_G satisfying,

$$xVx^{-1} \subset U, \forall x \in G$$

$$\Rightarrow xV \quad \subset Ux, \forall x \in G$$

 \Rightarrow *HV* \subset *UH*, \forall *x* \in *G*. Then H is neutral in G.

References

- [1]. A.V.Arhangel'skii, M.Tkachenko, Topological Groups and Related Structures, At- lantis press/world Scientific, Amsterdampairs, 2008.
- [2]. C.Selvi, R.Selvi, On Generalized Topological Simple Groups, Ijirset Vol.6, Issue 7, July (2017).
- [3]. Muard Hussain, Moiz Ud Din Khan, Cenap Ozel, On generalized topological groups, Filomat 27:4(2013),567-575
- [4]. Dylan spivak, Introduction to topological groups, Math(4301).
- [5]. J. R. Munkres, Topology, a first course, Prentice-Hall, Inc., Englewood cliffs, N.J., 1975.

- [6]. A.Csaszar, generalized topology, generalized continuity, Acta Math. Hungar. 96(2002) 351-357.
- [7]. A.Csaszar, γ-connected sets, Acta Math..Hungar.101 (2003) 273-279.
- [8]. A.Csaszar, A separation axioms for generalized topologies, Acta Math.Hungar.104 (2004) 63-69.
- [9]. A.Csaszar, Product of generalized topologies, Acta Math.Hungar.123 (2009) 127-132.
- [10]. W.K.Min, Weak continuity on generalized topological spaces, Acta Math.Hungar. 124 (2009)73-81.
- [11]. L.E.De Arruda Saraiva, Generalized quotient topologies, Acta Math.Hungar. 132 (2011) 168-173.
- [12]. R.Shen, Remarks on products of generalized topologies, Acta Math.Hungar.124 (2009)363-369.
- [13]. Volker Runde, A Taste of topology, Springer(2008).
- [14]. Taqdir Hussain, Introduction to Topological groups, Saundres(1966).
- [15]. David Dummit and Richard Foote, Abstract Algebra(3rd edition), Wiley(2003).
- [16]. Morris Kline, Mathematical Thought from Ancient to modern times, Oxford University Press(1972).
- [17]. Muhammad Siddique Bosan, Moiz Ud Din Khan and Ljubisa D.R. Kocinac, On s-Topological Groups, Mathematica Moravica, Vol. 18-2(2014), 35-44.
- [18]. Pierre Ramond, Group theory: A physicists survey, Cambridge(2010).
- [19]. Robert Bartle, The Elements of Integration and Lebesgue Measure, Wiley(1995).
- [20]. Joseph A. Gallian, Contemporary Abstract Algebra, Narosa(fourth edition).

*C. Selvi. "On Quasi Generalized Topological Simple Groups." IOSR Journal of Mathematics (IOSR-JM) 13.4 (2017): 43-47