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Abstract: In this paper, we studied the dynamics of typhoid fever model; we tested for the existence and 
uniqueness of solution for the model using the Lipchitz condition to ascertain the efficacy of the model and 
proceeded to determine both the disease free equilibrium (DFE) and the endemic equilibrium (EE) for the 
system of the equations. The local stability of the disease free equilibrium was obtained. The next generation 
matrix approach is used to determine the basic reproductive number Ro. We proved that the disease free 
equilibrium is globally asymptotically stable when Ro <1 and the disease will always die out. 
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I. Introduction Typhoid fever is one of the most deadly disease in Africa especially where there is a poor sanitation, 
poor standard of personal hygiene and prevalence of contaminated water. Typhoid fever is endemic in many 
developing countries and remain a substancial public health concern despite recent progress in water sanitation 
coverage [1]. Many advances have been made towards the fight against typhoid fever such as treatment with 
drugs, vaccination and environmental sanitation. In recent years, data indicating that typhoid fever is a major 
cause of mortality among the urban and peri-urban population. In several community-base studies from South 
Asia, the incident rate seems to be high among young children, with rates exeeding 500-1000 cases per 100,000 
populations [2]. Various studies including mathematical model of spread of typhoid fever, dynamic model for 
analyzing and predicting process of typhoid fever among others have been conducted by many researchers 
Globally. It is estimated that typhoid fever causes over 16 million cases of illness each year, resulting in over 
600,000 deaths [3]. Several mathematical models have been developed on this disease [4, 5, 6, 7, 8, 9, 10, 
11,12]. For example, in reference [9], the author proposed a mathematical model of the type P S, I, T. They 
divided the total human population into four subclasses, i.e., Susceptible, Protected, Infected and Treated. The 
existence of the steady states of the model were determined and the basic reproduction number was computed 
using the next generation matrix approach. Stability analysis of the model was carried out to determine the 
conditions that favors the spread of the disease. Complementing the work of [9], we constructed a mathematical 
model of the type PSITR. We added a recovered compartment in which all treated individuals  recovered but 
after some time the recovered individuals  lose immunity and return back to susceptible class. 
 

II. Description and Formulation Of the Model 
 The compartments used in this model consists of five classes: )(tP  is the compartment used for those 
that have been vaccinated against the disease and loses protection over a period of time. S(t) is used to represent 
the number of individuals that are prone to the disease at time t  or those susceptible to the disease. )(tI denotes 
the number of individuals who have been infected with the disease and are capable of spreading the disease to 
those in the susceptible categories. )(tT  denote the number of individuals who have been infected with the 
disease and are treated. )(tR  is the compartment used for those individuals who have been infected and then 
recovered from the disease. Those in this category are not able to be infected again or transfer to others. 
Susceptible individuals are recruited into the population at per capital rate  )1(  . Susceptible individual 
aquired typhoid fever at a constant rate . The disease is transmitted by direct transmssion or by ingestion of 
contaminated food or liquid by susceptible individuals. Hence we propose the above model with the following 
equations: The model PSITR. 
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  Pdt
dP  =

      
 (1) 

   kRSSIPdt
dS  1=

    
 (2) 

  ISIdt
dI  =       (3) 

  TIdt
dT  =        (4) 

  kRRTdt
dR  =

       
(5)  

Table 1: Description of parameters for the Model 
Parameter  Description     Recruitment rate     Adjustment parameter     Natural death rate  
   Disease induced death rate     Loss of protection  
   Rate of  treatment  
   Contact rate of infection  
k   Relapse rate     Progression rate from T to R  

 
2.1  Existence and Uniqueness of Solution  The validity and authenticity of any mathematical model depends on whether the given system of 
equations has a solution, and if the solution is unique. We shall use the Lipchitz condition to verify the existence 
and uniqueness of solution for the system of equations (1)-(5) 
Let the system of equation (1)-(5) be as follows  

  PF  =1        (6) 
   kRSSIPF  1=2      (7) 
  ISIF  =3       (8) 
  TIF  =4          (9) 
 kRRTF  =5        (10) 

 Theorem 2.1 (Derrick and Groosman,1976) Let D denote the region  
 ),........,(=),........,,(=1,, 20102100 noon xxxxxxxxxxatt   

And suppose that ),( xtf  satisfies the Lipchitz condition 
 
 2121 ),(),( xxkxtfxtf   

whenever the pairs ),( 1xt  and ),( 2xt  belong to D  where k  is a positive constant. Then, there is a constant 
0  such that there exists a unique continuous vector solution of )(tx  of the system in the interval 

 ott  . It is important to note that the condition is satisfied by the requirement that ,1,2,=,, jix
f

j
i

  
be continuous and bounded in D. Considering the model equation (1) to (5), we are interested in the region .0 R  We look for the bounded solution in the region and whose partial derivatives satisfy 0.f  
where   and   are positive constants 
Theorem 2.2    Let D denote the region R0 , then equation (6) to (10) have a unique solution. We show 
that  
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 1,2,3,4,5=,, jix
f

j
i

  
are continuous and bounded in D. For 1F  

 
 <)(=1 P
f  

For 2F  


 <=2 P
f , 

 <)(=2 IS
f , 

 <=2 kR
f ,  

 <=2 SI
f  , 

 <0=2
T
f , 

These partial derivative exist, continuous and are bounded, similarly for 3F  through to 5F . Hence, by theorem 
1, the model (6) to (10) has a unique solution  

 
2.2 Equilibrum States of the Model The disease free equilibrium of model system (1) to (5) is obtained by setting  

 0===== dt
dR

dt
dT

dt
dI

dt
dS

dt
dP  

and in the absence of disease  
 0=0,=0,= TRI  

Setting the RHS of (1-5) to zero we have  
   0=P         (11) 
   0=1 kRSSIP        (12) 
   0=ISI         (13) 
   0=TI          (14) 
 0=kRRT          (15) 
 

Hence model (1)-(5) has a disease free equilibrium  
 








 ,0,0,0)(

)(,=),,,,( 



RTISP    (16) 

 
 For the endemic equilibrium, it means disease exist, solving the system of the equation (1) - (5). Hence the 
endemic equilibrium states are  

 


=*P         (17) 

 
 

 =*S        (18) 
     321

3222*
)(= 




 kI  (19) 
     321

3222*
)(= 




 kT  (20) 

  321

3222*
)(= 




R   (21) 
Where  
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 2
1 =   kk  

 
 2

2 =   kk  
 

 4332
3 =   kk  

 
III. Estimation Of Basic Reproduction Number 

 The basic reproduction number denoted by oR  is the average number of secondary infections caused 
by an infectious individual during his or her entire period of infectiousness (Diekmann et. al, 1990). The basic 
reproduction number is an important non-dimensional quantity in epidemiology as it sets the threshold in the 
study of a disease both for predicting its outbreak and for evaluating its control strategies. Thus, whether a 
disease becomes persistent or dies out in a community depends on the value of the reproduction number, oR  . 
Furthermore, stability of equilibrium can be analyzed using oR  . If oR < 1 it means that every infectious 
individual will cause less than one secondary infection and hence the disease will die out and when oR > 1 
every infectious individual will cause more than one secondary infection and hence the disease will invade the 
population. It is Obtained by taking the largest (dominant) eigenvalue (spectral radius) 

 

                           
1

0
)()(=





















j
oi

j
oi

x
xV

x
xFR  

Where iF  be the rate of appearance of new criminal in compartments, iV  is the transfer of individuals out of 
the compartment by another means, ox  is the disease free equilibrium. We compute the basic reproduction 
number using the next generation matrix approch. The basic reproduction number for the model in system (1)-
(5) is given as 
 

                                  


=0R       (22) 

 
IV. Local Stability Of the Disease-Free Equilibrium 

Theorem 3 The disease free equilibrium is locally asymptotically stable if 
 1     0 R  

 Proof The variational (Jacobian matrix) to the system (1)-(5)  

 

























)(000
0)(00
00)(0

0)(
0000)(

=

k

SI
kSI

J








 

Where  
 0,)(

)(= 
 IS 
  

At disease free  
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









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










 




)(000
0)(00
00)()(

)(00
0)(

)(
0000)(

=

k

k
J





 




 

The characteristics equation of the matrix above is obtained by  
 0=det IJ   
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


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
 




 k  

 
 

0=))(())()(
)(()()( 








 

 
 k  

Therefore  
  

0)(=1   , 0=2  , 0)(=3   , 0)(=4  k  
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)()(

)( 
 


  (23)

 
 
Dividing both side of (23) by )(    

  
 

 1))((
)( 

 
            (24) 

 Substituting (22) into (23)  
    Ro<1 

Hence the proof. 
 V. Discussion and Conclusion 

In this paper, we discussed a mathematical model for the control of typhoid fever. We proved the 
existence and uniqueness of solution in order to ascertain the existence of the model. We can control the disease 
burden by controlling the effective contact rate of the infected population. The model strongly indicated that the 
spread of a disease largely depend on the contact rates with infected individuals within a population. The next 
generation approach is used to determine the basic reproductive number Ro. We proved that the disease free 
equilibrium is globally asymptotically stable when Ro <1 and the disease will always die out. 
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