Rc- Closed Sets and its Topology

^{*}Adiya K. Hussein

Corresponding Author: Adiya K. Hussein

Abstract. The aim of this paper is to introduce a new collection of sets called rc- closed sets and its topology which is stronger than the collection of w-closed sets due to Arhangel'skii. 2000 Mathematics Subject Classification: 54C10, 54D10.

Date of Submission: 16-08-2017	Date of acceptance: 21-08-2017

I. Introduction and Preliminaries

The notion of w- closedness was introduced by Arhangel'skii in [1]. A subset A of a space X is called w- closed if $Cl(B) \subset A$ for every countable subset B of A. In [2, 3] it is shown that the family of all w- open subsets of a space form a topology for it. The notion of countable tightness was introduced in [2]. A space in which the closure operator is determined by countable sets is called countably tight. A topological space X has countable tightness if every w- closed subset is closed in X [2]. It is proved that every sequential space and every hereditarily separated space has countable tightness. Especially every countable space (respectively every perfectly regular countable compact has countable tightness [3]). Ekici and Jafari [4] introduced and study a class of sets stronger than the class of w- closed sets, called w_* -closed sets. In this paper we introduce and study a new class of closed sets named by cr- closed sets.

Throughout this paper X and Y are topological spaces with no separation axioms assumed, unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by cl(A) and int(A) respectively.

A subset A of a space X is said to be regular- open [5] if A = int(cl(A)), the complement of regular open set is called regular closed. Since the intersection of two regular open sets is regular open, the family of all regular open forms a base for a smaller topology τ_s on X, called the semi-regularization of τ . The union of all regular open sets of X contained in a set A is called the regular interior of A (briefly r int(A)) and the intersection of all regular closed sets of X containing a set A is called the regular closure of A (briefly rcl(A)). A subset A of a space X is called ω - closed if $cl(B) \subset A$ for every countable subset $B \subset A$ and the complement of ω - closed sets is called ω - open.

II. RC-Closed Sets and its Topology

Definition2.1. A subset A of a space X is called rc - closed if $rcl(B) \subset A$ for every countable subset $B \subset A$ and its complement is called rc - open. The family of all rc - open subsets of a space X is denoted by τ_{rc} . **Remark2.2.** For a subset A of a space X, the following implications hold and none of these implications is reversible as shown in the following examples.

$$\begin{array}{ccc} rc & -open & \Rightarrow & \omega & -open \\ & \uparrow & & \uparrow \\ r & -open & \Rightarrow & open \end{array}$$

Example2.3. Consider the standard topological space (R, τ_{st}) , then the set (1, 4) is ω – open but not

rc – open .

Example2.4. Consider the co-countable topological space (R, τ_{cc}) , then (1, 4) is ω – open but not open.

Example2.5. Consider the standard topological space (R, τ_{st}) , then the set N^{c} where N is the set of natural numbers is rc- open but not r-open.

Theorem2.6. Let (X, τ) be a regular space and $A \subset X$. Then,

 $rc - open \implies \omega - open \text{ in } (X, \tau) \iff \omega - open \text{ in } (X, \tau_s)$

Proof. This follows from Remark 2.2 and the fact that any regular space is semi- regular.

Theorem 2.7. For a space (X, τ) and $A \subset X$. The following are equivalent:

(1) A is rc - open.

(2) $A \subset r$ int (B^{c}) for any countable subset B of X such that $A \subset B^{c}$.

Proof. (1) \Rightarrow (2): Let A be *rc* – *open* set and B be a countable subset of X such that

 $A \subset B^{c}$. Now A^{c} is rc - closed and $B \subset A^{c}$ and B is countable, so rcl $(B) \subset A^{c}$.

Hence $A \subset (rcl (B))^{c} = r \operatorname{int}(B)^{c}$.

(2) \Rightarrow (1): Let $A \subset r$ int (B^{c}) for any countable subset B where $A \subset B^{c}$. Then

 $B \subset A^{c}$ and $A \subset r$ int $(B^{c}) = (rcl (B))^{c}$. So $rcl (B) \subset A^{c}$. Thus A^{c} is

rc - closed and hence A is rc - open.

Corollary 2.8. Let A be a subset of a space of X. Then the following are equivalent:

(1) A is rc - open.

(2) $A \subset r$ int (C) for any $C \in \tau_{cc}$ of X such that $A \subset C$.

Theorem 2.9. Let (X, τ) be a topological space. Then τ_{rc} is a topology for X.

Proof. It is clear that $X \in \tau_{rc}$ and $\phi \in \tau_{rc}$. Now, let $U, V \in \tau_{rc}$. Then U^{c} and V^{c} are rc - closed. Let B be a countable subset such that $B \subset (U \cap V)^{c} = U^{c} \cup V^{c}$. Then there are two sets B_{1} and B_{2} such that $B = B_{1} \cup B_{2}$ and $B_{1} \subset U^{c}$ and $B_{2} \subset V^{c}$. Since B_{1} and B_{2} are countable and U^{c} and V^{c} are $rc - closed^{-}$, hence $rcl(B_{1}) \subset U^{c}$ and $rcl(B_{2}) \subset V^{c}$. Then $rcl(B) = rcl(B_{1} \cup B_{2}) = rcl(B_{1}) \cup rcl(B_{2}) \subset U^{c} \cup V^{c}$. Therefore $U^{c} \cup V^{c} = (U \cap V)^{c}$ is $rc - closed^{-}$. Thus $U \cap V \in \tau_{cr}$. Let $\{U_{\alpha} : \alpha \in \nabla\}$ be a family of $rc - open^{-}$ subsets of X. Then $\{(U_{\alpha})^{c} : \alpha \in \nabla\}$ is a family of $rc - closed^{-}$ for all $\alpha \in \nabla$. So $rcl(B) \subset (U_{\alpha})^{c}$ for all $\alpha \in \nabla$. Hence $rcl(B) \subset \bigcap_{\alpha \in \nabla} \{(U_{\alpha})^{c}\}$. Thus $\bigcap_{\alpha \in \nabla} \{(U_{\alpha})^{c}\}$ is an $rc - closed^{-}$ subset of X. Therefore $\bigcup_{\alpha \in \nabla} \{(U_{\alpha})^{c}\}$ is an $rc - closed^{-}$.

rc - open subset of X.

Definition 2.10. Let X be a topological space. Then

(1) rc - closure (resp. $\omega - closure$ [4]) of a subset A of X is the intersection of all rc - closed (resp. $\omega - closed$) sets of X containing A and is denoted by

rcCl (A) (resp. ωCl (A)).

(2) rc – interior (resp. ω – interior[4]) of A is the union of all rc – open (resp.

 ω - open) sets of X contained in A and is denoted by *rcInt* (A) (resp. ω Int (A)).

Remark 2.11. [4] If A is open set. Then ω *Int* (A) = *int*(A) but the converse is not true.

Theorem 2.12. For a topological space X. The following hold:

(1) If A is r - open, then (i) A is rc - open and rcInt(A) = r int(A) (ii) $\omega Int(A) = int(A)$.

(2) If A is rc - open A. Then A is $\omega - open$ and $rcInt(A) = \omega Int(A)$.

Proof. (1) (i) Since each r – open is rc – open and hence rcInt(A) = r int(A).

(ii) This follows from the fact that every r - open is open, and Remark 2.11.

(2) Since each rc – open is ω – open and hence $rcInt(A) = \omega Int(A)$.

III. Rc- Continuous Functions

In this section, we introduce a new class of functions is called rc - continuous functions and investigate some of its properties and characterizations.

- **Definition 3.1.** Let $f: X \to Y$ be a function, then f is called to be rc *continuous* if $f^{-1}(V)$ is rc *open* in X for every open subset of Y.
- **Theorem 3.2.** A function $f:(X,\tau) \to (Y,\eta)$ is rc *continuous* if and only if $f:(X,\tau_r) \to (Y,\eta)$ continuous.
- **Theorem 3.3.** A function $f : (X, \tau) \to (Y, \eta)$ is rc *continuous* if and only if $f^{-1}(V)$ is rc *closed* in X for every closed subset of Y.
- **Definition 3.4.** [4] A function $f: X \to Y$ is ω *continuous* if $f^{-1}(V)$ is ω *open* in X for every open subset of Y.
- **Definition 3.5.**[6] A function $f : X \to Y$ is r *continuous* if $f^{-1}(V)$ is r *open* in X for every open subset of Y.

Remark 3.6. For a function $f: X \rightarrow Y$ the following implications hold:

 $\begin{array}{ccc} rc - continuous & \Rightarrow & \varpi - continuous \\ & \uparrow & & \uparrow \\ r - continuous & \Rightarrow continuous \end{array}$

None of the above implications is reversible as shown in the following examples:

Example 3.7. Consider the standard topological space (R, τ_{π}) . Let $Y = \{a, b, c\} = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$.

Define $f : (R, \tau_{st}) \rightarrow (Y, \sigma)$ as follows:

f(x) = a for $x \in (1,5)$ and f(x) = c for $x \notin (1,5)$, then f is ω – continuous but not rc – continuous .

Example 3.9. For an example of a function which is ω – *continuous* but not continuous see [4].

Question: Does there exist a function $f : (X, \tau) \to (Y, \eta)$ which is rc – *continuous* but not r – *continuous*.

Definition 3.10. A function $f : X \to Y$ is called *weakly* rc – *continuous* (resp. *weakly* ω – *continuous* [4]) at $x \in X$ if for each open subset V in Y containing f(x), there is an rc – *open* (resp. ω – *open*) subset U in X containing x such that $f(U) \subset cl(V)$. f is called *weakly* rc – *continuous* (resp. *weakly* ω – *continuous*)f is *weakly* rc – *continuous* (resp. *weakly* ω – *continuous*) at every $x \in X$. **Remark 3.11.** The following implications hold for a function $f : X \to Y$:

> weakly rc – continuous \Rightarrow weakly ω – continuous \uparrow \uparrow rc – continuous \Rightarrow ω – continuous

None of these implications is reversible as shown in the following examples:

Example 3.12. [4] Let $f : (R, \tau_{st}) \to (Y, \sigma)$ where $Y = \{a, b, c, d\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ be defined by:

 $f(x) = a \text{ for } x \in (-\infty, 0] \cup [1, \infty) \text{ and } f(x) = b \text{ for } x \notin (-\infty, 0) \cup [1, \infty) \text{, then } f \text{ is }$

weakly ω – *continuous* but not ω – *continuous*

Question 3.13. Does there exist a function $f:(X,\tau) \to (Y,\eta)$ which is *weakly* rc – *continuous* and it is not rc – *continuous*.

Question 3.14. Does there exist a function $f : (X, \tau) \to (Y, \eta)$ which is *weakly* ω – *continuous* and it is not *weakly* rc – *continuous*.

Theorem 3.15. For a function $f : X \rightarrow Y$ the following are equivalent:

(1) f is weakly rc – continuous .

- (2) rcCl $(f^{-1}(int(cl(V)))) \subset f^{-1}(cl(V)))$ for any subset V of Y.
- (3) $rcCl (f^{-1}(int(V))) \subset f^{-1}(V)$ for any regular closed set V of Y.
- (4) $rcCl (f^{-1}(V)) \subset f^{-1}(cl(V))$ for any open set V of Y.
- (5) $f^{-1}(V) \subset rcInt (f^{-1}(cl(V)))$ for any open set V of Y.

Proof. (1) \Rightarrow (2): Let V be a subset of Y and $x \in (f^{-1}(cl(V)))^c$. Then $f(x) \in (cl(V))^c$. Then there is an open set U containing f(x) and $U \cap V = \phi$. Then $cl(U) \cap int(cl(V)) = \phi$. Since f is weakly rc - continuous, then there is a rc - open set W containing x such that $f(W) \subset cl(U)$. So $W \cap f^{-1}$ int $(cl(V)) = \phi$. Hence $x \in (rcCl(f^{-1}(int(cl(V))))))^c$ and $rcCl(f^{-1}(int(cl(V)))) \subset f^{-1}(cl(V))$. (2) \Rightarrow (3) Let V be regular closed set in Y. Hence, by (3) we have $rcCl(f^{-1}(int(V))) = rcCl(f^{-1}(int(cl(V)))) \subset f^{-1}(cl(int(V)))) = f^{-1}(V)$. (3) \Rightarrow (4): Let V be an open subset of Y. Then cl(V) is regular closed in Y, hence $rcCl(f^{-1}(V)) \subset crCl(f^{-1}(int(cl(V)))) \subset f^{-1}(cl(V))$. (4) \Rightarrow (5): Let V be any open set of Y. Since $(cl(V))^c$ is open in Y, then $(rc int(f^{-1}(cl(V))))^c = rcCl(f^{-1}(cl(V)))^c \subset f^{-1}(cl(cl(V)))^c)$. Thus, $f^{-1}(V) \subset rc$ int $(f^{-1}(cl(V)))$. (5) \Rightarrow (1): Let $x \in X$ and V be any open subset of Y containing f(x). Then $x \in f^{-1}(V) \subset cr$ int $(f^{-1}(cl(V)))$. Put U = rc int $(f^{-1}(cl(V)))$. Hence $f(U) \subset cl(V)$ and f is

weakly rc – continuous at x in X.

References

- [1] Arhangel'skiĭı, A. V., and Ponomarev, V. I., On dyadic bicompacta, Soviet original.
- [2] Arhangel'ski'ı, A. V., Bicompacta that satisfy the Suslin condition hereditarily. Tightness and free sequences, Dokl. Akad. Nauk SSSR, 199 (1971), 1227-1230.
- [3] Weiss, W., Countable compact spaces and Martin's Axioms, Canadian Journal of Mathematics, 30 (1978), 243-249.
- $[4] Erdal Ekici and Saeid Jafari, On w_{*}- closed sets and there topology, Acta Universitatis Apulensis, 22(2010), 175-184.$
- [5] Velicko, N. V., H-closed topological spaces, Amer. Math. Soc, Transl., 78 (1968), 102-118.
- [6] Arya, S. P. and Gupta, R., On strongly continuous functions, Kyungpook Math. J., 14 (1974), 131-143.

Adiya K. Hussein. "Rc- Closed Sets and its Topology." IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 4, 2017, pp. 70-73.