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I. Introduction 

A generator is a one-to-one function , whose domain is ,  the set of all real numbers, and whose 

range is a subset of . Identity function and exponential function can be given as examples of generators. The 

range of generator , called Non-Newtonian real line, is denoted by  N .  

 A  positive number is a number x  with 0 x , similarly a  negative number  is a number x  

with 0 x .  zero and  one numbers are denoted by  0 0  and   1 1 , respectively.  

integers is obtained sequentially by adding 1  to 0  and by subtracting 1  from 0 .   integers are as follows: 

          ..., 2 , 1 , 0 , 1 , 2 ,...        . 

Each integer n according to   arithmetic is denoted by  n n . 

Non-Newtonian arithmetic operations on  N  are represented as follows ([1],[2],[3],[4],[5]). 

 

    

    

    

    

        

1 1

1 1

1 1

1 1

1 1 1 1

/ /

.

addition x y x y

substraction x y x y

multiplication x y x y

division x y x y

order x y x y x y x y

   

   

   

   

    

 

 

 

 

   

   

   

   

 

 
      

 

 

The open  -intervals on  N  are represented by 

 

    
              1 1 1 1 1

, :

: , .

N
a b x N a x b

x N a x b a b         

   

    

 

It is said that an open   interval has   lenght b a ([2],[3]).  Likewise closed and semi-open intervals can 

be represented. 

 All proven properties here are the generalization of basic topological properties known in real analysis. 

The reades can refer to the textbook [nat.] for these properties. 
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II. Main Results 

Definition 1. A point c  is called an interior point of the subset  E N  if there exists an open  - interval, 

contained entirely in the set E , which contains this point: 

             1 1 1 1 1, , ,
N N

c a b E c a b a b E              . 

According to this definition, c is an interior point of the subset  E N  if and only if  1 c 
 is an 

interior point of the subset  1 E   . 

Definition 2. A subset  E N  is said to be  -open if all of its points are interior points. 

According to this definition, an  -open set G  is the set that the reverse image  1 G 
 is an open in .  

Thus, we can say that G  is an  -open set in  N  if and only if there exists an open  - interval  ,
N

a b  

in  N such that   ,
N

c a b G   for all c G . Indeed, for any c G  we have 

                     1 1 1 1, , , , .
N

c a b G c a b a b a b G                  
 

Examples. 1) Every open  - interval  ,
N

a b  is an -open set in  N . Indeed, if   ,
N

c a b , then we 

have 
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2) The set  N  of all non-Newtonian real numbers and the void set   are open. 

Theorem 1. The composition of an arbitrary family of   -open sets in  N  is an  -open. 

Proof. Let i iG G , where all of the sets iG  are open  in  N . If c G , the 
0i

c G for some 0i . Since 

0i
G is an open set in  N  , there exists an open   -interval  ,

N
a b such that  

0
, iN

c a b G G   . 

This completes the proof. 

Theorem 2. The intersection of a finite number of   -open sets in   N  is an   -open set. 

Proof. Let iG  be   -open set  in  N for all 1,2,...,i n  and 
1

n

i
i

G G


  . If it is given any element 

c G , then there exists an  -interval  ,i i N
a b  such that  

                 1 1 1 1 1 1, , ,i i i i i i i iN
c a b a b G c a b G                  

for all 1,2,...,i n .  

Now we set the numbers  and  by 

    1 1

1max ,..., na a     and     1 1

1min ,..., nb b    . 

Then we have   

               1 1 1

1 1

, , ,
n n

i iNi i

c G c G G              

 

 
       

 
. 

This shows that G   is an   -open set. 
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Theorem 3. If the set G  is an open in  N , then its complement  cG N G   is closed. 

Proof. Let c G  be an arbitrary point. Then there exists an open   -interval  ,
N

a b  in  N such that 

 ,
N

c a b G  . According to this, any point of G can not be a limit point of 
cG , hence 

cG contains all of 

of its limit points and 
cG  is closed. 

Theorem 4. If the set F  is closed in  N , then its complement 
cF  is open. 

Proof. Let 
cc F be an arbitrary point.  Then c  is not a limit point of F and thus there exists an open   -

interval  ,
N

a b  in  N  such that such that  ,
N

c a b  and   ,
N

a b F  . Hence

 , c

N
c a b F  . Finally, each point of 

cF  is its interior points and this completes the proof. 

Examples. 1) If G  is an  -open set in  N and  ,
N

a b  is a closed  -interval containing G  in  N ,  

then the set  ,
N

a b G  is an  -closed set in  ,
N

a b . 

Solution. Let us accept  ,
N

G a b . Then we can write 

          1 1 1 1 1, ,G a b G a b                   

and obtain that 

            1 1 1 1 1 1, ,
c

a b G a b G                   

is an closed set in . Hence the set  ,
N

a b G  is an  -closed set in  ,
N

a b . 

2) Similar to the previous one, we say that If F  is an  -open set in  N  and  ,
N

a b  is a open -interval 

containing G  in  N ,  then the set  ,
N

a b F  is an  -open set in  ,
N

a b . 

 On the other hand, if F is a  -closed subset in  N  ve  ,
N

F a b , then the set  ,
N

a b F  

is always not  -open. For example, let    0 , 1
N

F       and      , 0 , 2
N N

a b      . Then we 

have the set 
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what is neither open nor closed.  

Definition 3. Let E  be a non-void bounded subset in  N  and let inf , supN Na E b E  . The closed

 -interval  ,
N

S a b  is called the smallest closed interval containing E . Here is obviously

  1inf infN E E    and   1sup supN E E   .  

Theorem 5.If  ,
N

S a b  is the smallest closed -interval containing the bounded closed subset F in  N

, then the set S F is  -open in  N . 

Proof. Since  

                 1 1 1 1 1 1, , ,
c

N
S F a b F a b F a b F                     
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and the set        1 1 1,
c

a b F    
 is an open set in .  

 

 

III. Conclusion 
 The authors make up the substructure for identification and examination the Lebesgue measure on non-

newtonian real line in this work, as in references [1] and [3]. After this step, one can define and examine the 

Lebesgue measure on non-newtonian real line. 
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