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Abstract: Special differential equations and polynomials are very popular in the field of mathematics and serve 

as important tools in the solution of some engineering problems. Examples of these equations are Legendre, 

Hermite, Laguerre, Bessel, Gegenbaur differential etc. In this paper, we established a new special differential 

equation and its polynomial which we named as Mohammed’s equation and polynomial. The Rodrigue formula, 

generating function and recurrence relations of the polynomial are given. We also presented the orthogonality 

properties of the polynomials and our results are entering the literature for the first time. 
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I. Introduction 
The equation (Mohammed’s equation) is a second order ordinary differential equation given by 

  1 0xy x y ny              (1.1) 

where n is a positive integer and the equation converges in the interval  , 0 . 

The solution of (1.1) is given by the linear combination 

      1 2n ny x c M x c A x         (1.2) 

Where  nM x is the Mohammed’s polynomial of order n and  nA x  is Mohammed’s function of order n 

 

II. Solution of The Equation 
The differential equation has a regular singular point at x = 0, so we apply Frobenius method. 

On letting   
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  , differentiating twice, plugging these results into (1.2) and simplifying, we 

obtain 

   
2 1

0 0

0r c r c

r r

r n

r c a x n r c a x
 

  

 

        (1) 

Equating the coefficient of x
c – 1 

 in the first summation, we get 
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Replacing r by (r + 1) in (1) and equating the common coefficient, the recurrence relation becomes 
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If c = 0, (2) becomes 
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Putting r = 0, 1, 2, 3,…,r in (3), we obtain 
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Also, Putting r = 0, 1, 2, 3,…,r in (2), we get 
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  (2.2) 

Where 
1 1 1

1 ...
2 3

rH
r

      is an harmonic function. 

Hence, the general solution becomes      1 2y x Ay x By x   

 

2.1 Mohammed’s Polynomial  nM x  

If we let 0 !a n   in (2.1), it yields  
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The series exists only when 0 orn r n r   . Hence Mohammed’s polynomial becomes 
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A few of the polynomials are as follow; 

 

 

 

 

 

 

0

1

2

2

3 2

3

4 3 2

4

1

1

4 2

9 18 6

16 72 96 24

M x

M x x

M x x x

M x x x x

M x x x x x



 

  

   

    

 

 

All these polynomials satisfy the differential equation (1.1) and can be verified. If we also let a0 = n! in (2.2), we 

get 
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This is known as Mohammed’s function of order n. 

 

2.3 Generating Function For   nM x  

The generating function for  nM x  is given as 
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Proof: 
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On letting n r s  , we get 
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Hence the proof 

 

2.4 Rodrigue Formula For  nM x  

The Rodrigue formula for  nM x  is given as 

    x n n x

nM x e D x e           (5.1) 

Proof:  We know from Leibnitz theorem that,  
0

n
n n n r r

r

r

D uv C D uD v



  and that 

 

!
,

!

m n n mn
D x x n m

n m

 


  

     
 

 
 

   

0 0

0

! !

! ! !

! !

! ! !

n n
n n x n n r n r x r x

r

r r

n
x r x

n

r

x n n x

n

n n
D x e C D x D e x e

n r r r

n n
e x e M x

n r r r

M x e D x e

 

 

 





  


 


 

 

  

This completes the proof. The Rodrigue formula can be used to establish the polynomials Mn(x). 

 

2.5 Recurrence Relations For  nM x  

On differentiating both sides of the generating function with respect to t, equating the coefficients of t
n
 and 

simplifying, we obtain 

       2

1 12 1n n nM x x n M x n M x           

 (6.1) 

Differentiating also with respect to x and equating the coefficients of t
n
 yields 

      1 1n n nM x nM x nM x 
         

 (6.2) 

These are the recurrence relations for  nM x
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III. Orthogonality Properties 

The orthogonality properties for  nM x  is given as 
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 (7.1) 

Where mn is the kronelka delta 

Proof: Since Mn(x) and Mm(x) satisfy (1.1), we must have that 

       1 0n n nxM x x M x nM x         (i) 

        1 0m m mxM x x M x mM x        (ii) 

Multiplying (i) by Mm(x) and (ii) by Mn(x) and simplifying yields 
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Using integrating factor methods, the solution yields 
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Now, If m = n;  

Squaring both sides of the generating function, we have  
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Equating the coefficients of t
2n 

from both sides, we get 
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This completes the proof 
 

IV. Further Research 
In our next research work, we (or any interested researcher in the field) intend to present the following 

1. Application of Mohammed’s polynomial 

2. Integral representation of the polynomial 

3. Series of the type    
0

n n

n

f x c M x




  

4. Confluent hypergeometric representation of (1.1) and lots more 
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