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Abstract:The investigation seeks to determine the buckling modes and the static buckling load of a finite 

imperfect column lying on a cubic nonlinear elastic foundation but with one end simply-supported while the 

other end is clamped. Perturbation and asymptotic procedures are employed to obtain the asymptotic results. 

The formulation contains a small non-dimensional parameter upon which asymptotic expansions are initiated. 

The results which are strictly asymptotic are valid in the limit as the small non-dimensional parameter becomes 

increasingly small relative to unity. 
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I. Introduction 
Investigations of stability of finite columns lying on nonlinear elastic foundations but with certain 

prescribed boundary conditions have been a common pre-occupation of civil and structural engineers as well as 

Applied Mathematicians for a long time now. Such early studies include investigations by Amazigo et al. [1], 

Amazigo and Frazer [2], Artem and Aydin [3], Ette [4]andJabareen and Izhak [5].Ziolkoloski and Imieowski [6] 

investigated the buckling and post-buckling of Prismatic aluminium columns submitted to a series of 

compressive loads, while Huang and Li [7] studied analytic approach for exactly determining critical loads of 

buckling of non-uniform columns. In the same token, Gross et al. [8] studied buckling of bars, while Gabr et al. 

[9] investigated the effect of boundary conditions on buckling of friction piles. Equally of note is the 

investigation by Huang and Luo [10], who investigated a simple method to determine the critical buckling loads 

for axially inhomogeneous beams with elastic restraint. A similar investigation was undertaken by Magnucki 

and Mackiewicz [11], who studied elastic buckling of axially compressed cylinder panel with three edges 

simply supported and one edge free, while Kruzelecki and Ortwein [12] studied optimal design of clamped 

columns for stability under combined compression and torsion. Our interest here is the investigation by Lee et 

al. [13], who investigated numerical methods for determining strongest cantilever beam with constant volume 

whileKripka and Martin [14] studied cold-formed steel channel columns optimization with simulated annealing 

method. Of equal importance is the investigation by Jatav and Datta [15] while Wang et al. [16] studied refined 

modelling and free vibration of in-extensional beams on elastic foundations. 

In engineering, nonlinear elastic foundations, which may be classified as ‘softening’ or ‘hardening’ 

provide a simplified model for some complex or complicated nonlinear systems. Such structures include but not 

limited to columns, shells and plates, among others. If such structures are limited to have finite lengths, then, the 

usual boundary conditions associated with them at the edges or boundary pointsare, in most cases, simply-

supported or clamped boundary conditions. However, the curiosity of investigating the case of two distinct 

boundary conditions at the ends of a column, in our judgement, deserves some attention. This is the issue we are 

addressing in this investigation, where simply-supported and clamped boundary conditions are imposed on the 

opposite ends of the finite column. 

In this investigation, we shall apply perturbation and asymptotic techniques as expounded by Bender 

and Orszag [17]. Such an approach was adopted by Ette and Osuji [18] and Ette and Udo-Akpan [19]. 

 

II. Formulation of the Problem 
The dimensional differential equation of motion satisfied by the deflection 𝑊(𝑋) of a finite column lying on a 

nonlinear (cubic) elastic foundation trapped by a static load 𝑃, but with simply-supported boundary condition at 

𝑋 = 0, and clamped boundary condition at 𝑋 = 𝜋, is 

𝐸𝐼𝑊,𝑋𝑋𝑋𝑋 + 2𝑃𝑊,𝑋𝑋 +  𝑘1𝑊 −𝛼𝑘3𝑊
3 =  −2𝑃𝑊 ,𝑋𝑋 ,    0 < 𝑋 < π  (2.1) 

𝑊  0 =  𝑊,𝑋𝑋   0 = 0,      (2.2) 
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𝑊(𝜋) =  𝑊,𝑋(𝜋) = 0,      (2.3) 

 

where𝑋 is the spatial variable and a comma denotes total derivative. The product 𝐸𝐼 is the bending stiffness, 

where 𝐸 and 𝐼 are the Young’s modulus and moment of inertia respectively. The nonlinear (cubic) elastic 

foundation exerts a force per unit length of 𝑘1𝑊 − 𝛼𝑘3𝑊
3 on the column, where 𝑘1, 𝑘3 > 0 are constants and 𝛼 

is the imperfection sensitivity parameter which is such that for 𝛼 < 0, the structure is said to be ‘hardening’ 

whereas for 𝛼 > 0, the structure is said to be ‘softening’. In this formulation, we have excluded all 

nonlinearities higher than cubic and also neglected all nonlinear derivatives of the deflection 𝑊. Similarly, we 

have assumed that the imperfection 𝑊  is twice-differentiable and stress-free.  

We now introduce the following non-dimensional quantities 

𝑥 =  
𝑘1

𝐸𝐼
 

1

4
𝑋,𝑤 =  

𝑘3

𝑘1
 

1

2
𝑊,𝜖𝑤 =  

𝑘3

𝑘1
 

1

2
𝑊 , 0 < 𝜖 ≪ 1, 𝜆 =

𝑃

2(𝐸𝐼𝑘1)
1
2

 , 0 < 𝜆 < 1 

On introducing these non-dimensional quantities into (2.1) – (2.3) and simplifying, we get  

𝑤,𝑥𝑥𝑥𝑥 + 2𝜆𝑤 ,𝑥𝑥 +  𝑤 − 𝛼𝑤3 =  −2𝜆𝜖𝑤 ,𝑥𝑥 ,    0 < 𝑥 < π   (2.4) 

𝑤  0 =  𝑤,𝑥𝑥   0 = 0,       (2.5) 

𝑤(𝜋) =  𝑤,𝑥(𝜋) = 0,        (2.6) 

 

1. PERTURBATION AND ASYMPTOTIC SCHEME FOR THE SOLUTION OF THE PROBLEM 

We now solve the problem (2.4) – (2.6) by first assuming the asymptotic series  

𝑤 𝑥 =  𝑤(𝑖)𝜖𝑖∞
𝑖=0 (3.1) 

On substituting (3.1) into (2.4) – (2.6) and equating the coefficients of orders of 𝜖, we get 

𝑂 𝜖 :       𝐿𝑤(1) ≡ 𝑤  ,𝑥𝑥𝑥𝑥
 1 + 2𝜆𝑤  ,𝑥𝑥

 1 +  𝑤 1 =  −2𝜆𝑤 ,𝑥𝑥   (3.2)  

𝑂 𝜖2 :       𝐿𝑤(2) = 0          (3.3)                                                                    

𝑂 𝜖3 :       𝐿𝑤(3) = 𝛼 𝑤(1) 
3
         (3.4) 

etc. 

We let 

𝑤 = 𝑎 𝑚 sin𝑚𝑥 ,    0 < 𝑥 < 𝜋        (3.5) 

A convenient form of the deflection 𝑤 𝑖 (𝑥) is  

𝑤 𝑖  𝑥 =  4𝑤𝑛
(𝑖)

sin3 𝑛𝑥∞
𝑛=1 =   3 sin𝑛𝑥 − sin 3𝑛𝑥 𝑤𝑛

(𝑖)∞
𝑛=1    (3.6) 

On substituting (3.5) into (3.2) and simplifying, we get, for 𝑛 = 𝑚 

𝑤 1  𝑥 =  3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(1)

      (3.7a) 

where 

𝑤𝑚
(1)

=
2𝑚2𝜆𝑎 𝑚

3(𝑚4−2𝑚2𝜆+1)
         (3.7b) 

Next, (3.6) is further substituted into (3.3) and simplified to get 

𝑤 2  𝑥 = 0         (3.8) 

We now substitute (3.7a,b) into (3.4) and simplify to get 

𝐿𝑤(3) = 𝛼 𝑤𝑚
(1)
 

3
 
27

4
  3 sin𝑚𝑥 − sin 3𝑚𝑥 −

27

4
 2 sin 3𝑚𝑥 − sin𝑚𝑥 − sin 5𝑚𝑥  

+
9

4
 2 sin𝑚𝑥 + sin 5𝑚𝑥 − sin 7𝑚𝑥 −  1

4
 3 sin 3𝑚𝑥 − sin 9𝑚𝑥     (3.9) 

We remark that to get (3.9), we have assumed 

𝑤 3  𝑥 =   3 sin𝑛𝑥 − sin 3𝑛𝑥 ∞
𝑛=1 𝑤𝑛

(3)
      (3.10) 

Thus, for 𝑛 = 𝑚 in (3.9), we simplify to get the buckling mode as 

   3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(3)

       (3.11a) 

where 

𝑤𝑚
(3)

=
51𝛼 𝑤𝑚

(1)
 

3

4(𝑚4−2𝑚2𝜆+1)
        (3.11b) 

For 𝑛 = 3𝑚 in (3.9), we get the buckling mode as 

 3 sin 3𝑚𝑥 − sin 9𝑚𝑥 𝑤3𝑚
(3)

       (3.12a) 

where 

𝑤3𝑚
(3)

=
7𝛼 𝑤𝑚

(1)
 

3

(81𝑚4−18𝑚2𝜆+1)
       (3.12b) 

The term − sin 3𝑛𝑥 gives a buckling mode when 𝑛 = 𝑚 and this is given as  

 3 sin 3𝑚𝑥 − sin 9𝑚𝑥 𝑤3𝑚1

(3)
       (3.13a) 

where 
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𝑤3𝑚1

(3)
=

−7𝛼 𝑤𝑚
(1)

 
3

(𝑚4−2𝑚2𝜆+1)
       (3.13b) 

For 𝑛 = 5𝑚 in (3.9), we get the buckling mode as 

 3 sin 5𝑚𝑥 − sin 15𝑚𝑥 𝑤5𝑚
(3)

       (3.14a) 

where 

𝑤5𝑚
(3)

=
3𝛼 𝑤𝑚

(1)
 

3

(625𝑚4−50𝑚2𝜆+1)
        (3.12b) 

For 𝑛 = 7𝑚 in (3.9), we get the buckling mode as 

 3 sin 7𝑚𝑥 − sin 21𝑚𝑥 𝑤7𝑚
(3)

       (3.15a) 

where 

𝑤7𝑚
(3)

=
−3𝛼 𝑤𝑚

(1)
 

3

4(2401𝑚4−98𝑚2𝜆+1)
        (3.15b) 

For 𝑛 = 9𝑚 in (3.9), we get the buckling mode as 

 3 sin 9𝑚𝑥 − sin 27𝑚𝑥 𝑤9𝑚
(3)

       (3.16a) 

where 

𝑤9𝑚
(3)

=
−𝛼 𝑤𝑚

(1)
 

3

12(6561𝑚4−162𝑚2𝜆+1)
      (3.16b) 

From the term − sin 3𝑛𝑥in (3.6), when 𝑛 = 3𝑚, we get buckling modeas 

 3 sin 9𝑚𝑥 − sin 27𝑚𝑥 𝑤9𝑚1

(3)
      (3.17a) 

where 

𝑤9𝑚1

(3)
=

𝛼 𝑤𝑚
(1)

 
3

12(81𝑚4−18𝑚2𝜆+1)
        (3.17b) 

As a summary, we can write the deflection so far as 

𝑤 𝑥 = 𝜖 3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(1)

+ 𝜖3  3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(3)   

+ 3 sin 3𝑚𝑥 − sin 9𝑚𝑥  𝑤𝑚
 3 + 𝑤𝑚1

 3  +  3 sin 5𝑚𝑥 − sin 15𝑚𝑥 𝑤5𝑚
 3 

 

+ 3 sin 7𝑚𝑥 − sin 21𝑚𝑥 𝑤7𝑚
 3 +  3 sin 9𝑚𝑥 − sin 27𝑚𝑥   𝑤9𝑚

 3 + 𝑤9𝑚1

 3   + ⋯ (3.18) 

So far, we have obtained the deflection as in (3.18). We shall now evaluate the static buckling load𝜆𝑆  which is 

defined as the largest load parameter for the deflection to remain bounded. As in Amazigo and Ette [20], this is 

obtained from maximization 
𝑑𝜆

𝑑𝑤
= 0         (3.19) 

However, we shall obtained 𝜆𝑆  in two separate levels of approximation, first by taking the deflection (3.18) in its 

simplest mode form, i.e. taking 𝑤(𝑥) as   

𝑤 𝑥 = 𝜖 3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(1)

+ 𝜖3 3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(3)

+ ⋯  (3.20) 

Next, we shall take (3.18) in its entirety. 

Case 1: 

We can write (3.20) simply as 

𝑤 = 𝑐1𝜖 + 𝑐3𝜖
3 + ⋯       (3.21) 

where 

𝑐1 =  3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(1)

      (3.22a) 

𝑐3 =  3 sin𝑚𝑥 − sin 3𝑚𝑥 𝑤𝑚
(3)

      (3.22b) 

As in Ette and Udo-Akpan [19], the maximization (3.19) is however preceded by a reversal of the series (3.21) 

to get 

𝜖 = 𝑑1𝑤 + 𝑑3𝑤
3 + ⋯       (3.23a) 

By substitution for 𝑤 from (3.21) and equating the coefficients of powers of 𝜖, we get  

𝑑1 =
1

𝑐1
𝑑3 = −

𝑐3

𝑐1
3       (3.23b) 

where𝑐𝑖 ,   𝑖 = 1,3,… are functions of the load parameter through 𝑤𝑚
(1)

 and 𝑤𝑚
(3)

.  

The maximization (3.19) is now easily accomplished through (3.23a) to get 

  𝑑1 + 3𝑑3𝑤𝑆
2 = 0       (3.24) 

where𝑤𝑆  is the value of 𝑤 at buckling. Thus, we have  

𝑤𝑆 =  
−𝑑1

3𝑑3
 

1

2
=

1

3
 
𝑐1

2

𝑐3
        (3.25) 

where we have taken the positive square root sign. 

To determine the static buckling load 𝜆𝑆  we have to evaluate (3.23a) at buckling and get  
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  𝜖 = 𝑤𝑆(𝑑1 + 𝑑3𝑤𝑆
2) + ⋯   =

2

3
 
𝑐1

3𝑐3
 

1

2
     (3.26) 

On simplifying (3.26), we get 

(𝑚4 − 2𝑚2𝜆 + 1)
3

2 =
3

2
 17𝛼

1

2𝑚2𝑎 𝑚𝜖𝜆𝑆     (3.27a) 

The case 𝑚 = 1 yields 

(1 − 𝜆𝑆)
3

2 =
3

4
 

17

2
𝛼

1

2𝑎 1𝜖𝜆𝑆        (3.27b) 

We can call (3.27b) the dominant result obtained for the case𝑚 = 1. 

Case 2: 

In this case we take the full expression in (3.18). Lacking the simplicity of manipulation that characterized case 

1, we shall here determine the deflection 𝑤, in this case, by evaluating it at a convenient point, namely, the point 

𝑥 = 𝑥𝑎 , where the deflection 𝑤 has a maximum. The condition for the maximum, 𝑤𝑎  of 𝑤 is 
𝑑𝑤

𝑑𝑥
= 0        (3.28) 

Let  

𝑥𝑎 = 𝑥0 + 𝜖2𝑥2 + 𝜖3𝑥3 + ⋯       (3.29) 

If we differentiate (3.18) by 𝑥 and evaluate it at  𝑥𝑎   by finding a Taylor series expansion of the function of 𝑥𝑎   

about 𝑥0  and thereafter, equate the resulting equation to zero, in line with (3.28), we get, for terms of order 𝜖 

cos𝑚𝑥0 − cos 3𝑚𝑥0 = 0       (3.30) 

By maintaining just the first three terms in the Taylor expansion of the two terms in (3.30) and solving the 

resultant equation, we get 

𝑚𝑥0 =  
6

5
        (3.31) 

where we have taken only the positive square root sign. The maximum 𝑤𝑎  of 𝑤 in (3.18) is afterward evaluated 

as 

𝑤𝑎 = 𝜖𝑒1 + 𝜖3𝑒3 + ⋯       (3.32a) 

where 

𝑒1 =  3 sin  
6

5
 − sin 3 

6

5
  𝑤𝑚

(1)
 

𝑒3 = 𝛼𝑤𝑚
(1)3

 3 sin  
6

5
 − sin 3 

6

5
  

 
 
 
 
 

1 +

 

 
 1

3 sin  
6

5
 − sin 3 

6

5
 
 

 
 

 
 
 

 
 3 sin 3 

6

5
 − sin  9 

6

5
 

625𝑚4 − 50𝑚2𝜆 + 1
   

+7 3 sin 3 
6

5
 − sin 9 

6

5
   

1

81𝑚4 − 18𝑚2𝜆 + 1
−

1

𝑚4 − 2𝑚2𝜆 + 1
  

−3    
3 sin  7 

6

5
 −sin  21 

6

5
 

2401𝑚4−98𝑚2𝜆+1
         (3.32c) 

As in (3.19) the condition for buckling in this case is  
𝑑𝜆

𝑑𝑤𝑎
= 0        (3.33) 

By first reversing the series (3.32a – c) and invoking the condition (3.33), we determine the static buckling 𝜆𝑆  

by the equation 

𝜖 =
2

3
 
𝑒1

3𝑒3
 

1

2
       (3.34) 

On simplifying (3.34), we get 

(𝑚4 − 2𝑚2𝜆𝑆 + 1)
3

2 =
3

2
 17𝛼

1

2𝑚2𝑎 𝑚𝜖𝜆𝑆

 
 
 
 
 

1 +

 

 
 1

3 sin  
6

5
 − sin 3 

6

5
 
 

 
 

 
 
 

 
 3 sin  3 

6

5
 − sin 9 

6

5
 

625𝑚4 − 50𝑚2𝜆𝑆 + 1
   

+7 3 sin 3 
6

5
 − sin 9 

6

5
   

1

81𝑚4 − 18𝑚2𝜆𝑆 + 1
−

1

𝑚4 − 2𝑚2𝜆𝑆 + 1
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−3    
3 sin  7 

6

5
 −sin  21 

6

5
 

2401𝑚4−98𝑚2𝜆𝑆+1
   

1

2

     (3.36) 

In particular, if we restrict equation (3.35) to the case 𝑚 = 1, we get  

(1 − 𝜆𝑆)
3

2 =
3

4
 17𝛼

1

2𝑎 1𝜖𝜆𝑆

 
 
 
 
 

1 +

 

 
 1

3 sin  
6

5
 − sin  3 

6

5
 
 

 
 

 
 
 

 
 3 sin 3 

6

5
 − sin 9 

6

5
 

2(313 − 2𝜆𝑆)
   

+
7

2
 3 sin 3 

6

5
 − sin  9 

6

5
   

1

42−𝜆𝑆
−

1

1−𝜆𝑆
 −

3

2
   

3 sin  7 
6

5
 −sin  21 

6

5
 

1201−𝜆𝑆
   

1

2

(3.36) 

 

III. Analysis of results 

 We observe that the result (3.27a) is a particular case of (3.35) obtained if we restrict the buckling 

modes to only the basic simple mode, i.e. without modes with higher waves numbers. The same observation 

applies to the results (3.27b) and (3.36). These observations are depicted in the graphs below obtained from the 

results as indicated below each graph. Mathematica® programs are used in generating and plotting of the 

graphs. 

 

 
Fig. 1:  Graph of 𝜆𝑆  vs 𝑎 𝜖 with m=1 from Eqn(3.27b)Fig. 2:  Graph of 𝜆𝑆  vs 𝑎 𝜖 with m=1 from Eqn(3.36) 

 

 
Fig. 3:  Plotting of Eqns (3.27b) and (3.36) on the same graph. 

 

 

Enq (3.27b)

Eqn (3.36)
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IV. Conclusion 
We have been able to determine the static buckling of a finite imperfect column lying on a nonlinear 

(cubic) elastic foundation, but with the boundary conditions at both ends different. While one end of the column 

is simply-supported the other end is clamped. We have been able to obtain a asymptotic results which are valid 

as the small parameter 𝜖 becomes increasingly small relative to unity but, of course, nonzero. The results are 

given in two separate sets of approximations. The earlier results, i.e. (3.27a – b) are seen to be the restricted 

forms of later results (3.35) and (3.36) respectively. 

However, observation shows that, while the end conditions are actually simply-supported at 𝑥 = 0 and 

clamped at𝑥 = 𝜋. The use of (3.36) makes the end conditions to be simply-supported also at 𝑥 = 𝜋 and not only 

at𝑥 = 0. It would be worth the while in our judgement, if we could, develop a scheme where the respective end 

conditions are restricted to their separate ends without any of them being satisfied at the opposite end. 
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