$\mathbf{g}^* \gamma$ -open functions and $\mathbf{g}^* \gamma$ -closed functions in topology

Govindappa Navalagi¹ and Savita B. Megalamani²

¹Department of Mathematics, KIT Tiptur-572202, Karnataka, India ²Department of Mathematics, Government First Grade College, Davanagere-111111, Karnataka, India Corresponding Author: Savita B. Megalamani

Abstract: In this paper, we define and study $g^* \gamma$ -open functions and $g^* \gamma$ -closed functions and their various allied forms via $g^* \gamma$ -open sets due to Navalagi et. al. (2018). Also, we define and study the concepts of $g^* \gamma$ -normal spaces.

Mathematics Subject Classification(2010): 54A05, 54C08, 54D10.

Key words: γ -closed sets, $g^* \gamma$ -closed sets, $g^* \gamma$ -open sets, $g^* \gamma$ -closed functions, $g^* \gamma$ -open functions, almost $g^* \gamma$ -irresolute functions, $g^* \gamma$ -normal space.

Date of Submission: 26-06-2018

Date of acceptance: 10-07-2018

I. Introduction

In 1996, D. Andrijevic[2] defined and studied the concepts of b-open sets in topological spaces. b-open sets are also called as sp-open sets. Later in 1997, A. A. El-Atik[6], has introduced and studied the concept of γ -open sets in topology. It is known that b-open sets or sp-open sets are same as γ -open sets. In 2007, E. Ekici[8] has defined and studied the concept of γ -normal spaces in topology and concepts of $g \gamma$ -closed sets and γ g-closed sets. In [15], author have defined and studied the concepts of $g^* \gamma$ -closed sets, $g^* \gamma$ -continuous functions, $g^* \gamma$ -irresolute functions and $g^* \gamma$ -R₀ spaces, $g^* \gamma - R_1$ spaces in topology. The purpose of this paper is to define and study the concepts of g^{*} γ -open functions, g^{*} γ -closed functions, almost g^{*} γ -irresolute functions,

 $(g^* \gamma p)$ – open functions, $(g^* \gamma p)$ – closed functions, $(g^* \gamma s)$ – open functions and $g^* \gamma$ normal spaces.

II. Preliminaries

In this paper (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces on which no separation axioms are assumed. Unless otherwise mentioned. For a subset of X, Cl(A) and Int(A) represent the closure of A and the interior of A respectively. The following definitions and results are useful in the sequel:

Definition 2.1: Let X be a topological space. A subset A is called :

(i)semiopen[10] if $A \subset Cl(Int(A))$,

(ii)preopen[12] if $A \subset Int(Cl(A))$,

(iii)b-open[2] or sp-open[1] or γ -open[6] if $A \subset Cl(Int(A)) \cup Int(Cl(A))$.

The complement of semiopen (resp. peropen, b-open or sp-open or γ -open) set is called semiclosed[5] (resp. preclosed[12], b-closed[2] or sp-closed[1] or γ -closed[6]).

The family of all semiopen (resp. preopen, b-open or sp-open or γ -open) sets of a space X is denoted by SO(X)(resp. PO(X), BO(X), SPO(X) or $\gamma O(X)$). And the family of all semiclosed(resp. preclosed, b-closed sp-closed or γ -closed) sets of a space X is denoted by SF(X)(resp. PF(X), BF(X) or SPF(X) or γ F(X)).

Definition 2.2: Let A be a subset of a space X, then semi-interior [5](resp. pre-interior[13], semipreinterior[1], γ -interior[6]) of A is the union of all semiopen(resp. preopen, semipreopem, γ -open) sets contained in A and is denoted by sInt(A) (resp. pInt(A), spInt(A), γ Int(A)).

Definition 2.3: Let A be a subset of a space X, then the intersection of all semi-closed(resp. preclosed, semipre-closed, γ -closed) sets containing A is called semiclosure[5] (resp. preclosure[7], semipreclosure[1], γ -closure[9]) of A and is denoted by sCl(A) (resp. pCl(A), spCl(A), γ Cl(A)).

Definition 2.4: A subset A of a space X is said to be $g \gamma$ -closed[8] if $\gamma Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$. The complement of $g \gamma$ -closed set is said to be $g \gamma$ -open.

Definition 2.5: A subset A of a space X is said to be γg -closed[11] if $\gamma Cl(A) \subset U$ whenever $A \subset U$ and $U \in \gamma O(X)$.

The complement of γg -closed set is said to be γg -open.

The definitions of be $g \gamma$ -closed set and γg -closed set respectively, defined by E. Ekici[8] and El-Maghrabi[11] are the same.

Definition 2.6: A space X is said to be γ -normal[8], if for any pair of disjoint closed sets A and B, there exist disjoint γ -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.7: A subset A of a space X is called $g^* \gamma$ -closed[15] set if Cl(A) \subset U whenever A \subset U and U is γ -open set in X.

Definition 2.8: A subset A of a space X is called $g^* \gamma$ -open[15] set if $F \subset Int(A)$ whenever $F \subset A$ and F is γ -closed set in X.

The family of all $g^* \gamma$ -open sets in topological space X is denoted by $g^* \gamma O(X)$ and that of, the family of all $g^* \gamma$ -closed sets in topological space X is denoted by $g^* \gamma F(X)$. And the family of all $g^* \gamma$ -open sets containing a point x of X will be denoted by $g^* \gamma O(X,x)$.

Definition 2.9: Let A be a subset of a space X, then the intersection of all $g^* \gamma$ -closed sets containing A is called the $g^* \gamma$ -closure[15] of A and is denoted by $g^* \gamma$ Cl(A).

Definition 2.10: Let A be a subset of a space X, then the union of all $g^* \gamma$ -open sets contained in A is called the $g^* \gamma$ -interior[15] of A and is denoted by $g^* \gamma$ Int(A)

Definition 2.11: A set $U \subset X$ is said to be $g^* \gamma$ -neighbourhood [16](in brief, $g^* \gamma$ -nbd) of a point $x \in X$ if and only if there exists $A \in g^* \gamma O(x)$ such that $A \subset U$.

Definition 2.12: A function $f: X \rightarrow Y$ is called presemiopen[4](resp. presemiclosed[9]), if the image of each semiopen(resp.semiclosed) set of X is semiopen(resp. semiclosed) set in Y.

Definition 2.13: A function $f: X \rightarrow Y$ is called presemipreopen[14] (resp.presemipreclosed [14]), if the image of each semipreopen(resp. semipreclosed) set of X issemipreopen(resp. semipreclosed) set in Y.

Definition 2.14: A function $f: X \rightarrow Y$ is called M-preopen[13](resp. M-preclosed[13]), if the image of each preopen(resp. preclosed) set of X is preopen(resp. preclosed) set in Y.

Definition 2.15: A function $f: X \rightarrow Y$ is called semiopen[3](resp. preopen[13], semipreopen[14]), if the image of each open set of X is semiopen(resp. preopen, semopreopen) set in Y.

Definition 2.16: A function $f: X \rightarrow Y$ is called semiclosed[17](resp. preclosed[7],

semipreclosed[13,14]), if the image of each open set of X is semiclosed(resp. preclosed, semopreclosed) set in Y.

Definition 2.17: A function $f: X \to Y$ is said to be strongly $g^* \gamma$ -closed[15], if the image of each g γ -closed set of X is closed set in Y.

Definition 2.18: A function $f: X \to Y$ is said to be always $g^* \gamma$ -open[15] (resp. always $g^* \gamma$ -closed[15]), if the image of each $g^* \gamma$ -open(resp. $g^* \gamma$ -closed) set of X is $g^* \gamma$ -open(resp. $g^* \gamma$ -closed) set in Y

III. $g^* \gamma$ -open functions and $g^* \gamma$ -closed functions

We recall the following:

Definition 3.1: A function $f: X \to Y$ is said to be $g^* \gamma$ -open[1] if the image of open set of X is $g^* \gamma$ -open in Y.

We define the following:

Definition 3.2: A function $f: X \to Y$ is said to be $g^* \gamma$ -closed if the image of closed set of X is $g^* \gamma$ -closed set in Y.

Definition 3.3: A function $f: X \to Y$ is said to be almost $g^* \gamma$ -irresolute if for each x in X and each $g^* \gamma$ -neighbourhood V of f(x), $g^* \gamma \operatorname{Cl}(f^1(V))$ is a $g^* \gamma$ -neighbourhood of x.

We have the following characterizations:

Lemma 3.4: For a function $f: X \to Y$, the following are equivalent: (i) f is almost $g \stackrel{*}{\gamma}$ -irresolute (ii) $f^{-1}(V) \subset g \stackrel{*}{\gamma} \gamma \operatorname{Int}(g \stackrel{*}{\gamma} \gamma \operatorname{Cl}(f^{-1}(V)))$ for every $V \in g \stackrel{*}{\gamma} \gamma \operatorname{O}(Y)$

Proof: Obvious.

Theorem 3.5: A function $f: X \to Y$ is strongly $g^* \gamma$ -closed if and only if for each subset A of Y and for each $g^* \gamma$ -open set U in X containing $f^1(A)$, there exists a $g^* \gamma$ -open set V containing A such that $f^1(V) \subset U$.

Proof: Suppose that f is strongly $g^* \gamma$ -closed. Let A be asubset of Y and $U \in g^* \gamma O(X)$ containing $f^1(A)$. Put $V=Y \setminus f(X \setminus U)$, then V is a $g^* \gamma$ -open set of Y such that $A \subset V$ and $f^1(V) \subset U$.

Conversely, let K be any $g^* \gamma$ -closed set of X. Then $f^1(Y \setminus f(K)) \subset X \setminus K$ and $X \setminus K \in g^* \gamma$ O(X). There exists a $g^* \gamma$ -open set V of Y such that $Y \setminus f(K) \subset V$ and $f^1(V) \subset V$.

X \ K. Therefore, we have $Y \setminus V \subseteq f(K)$ and $K \subseteq f^{-1}(Y \setminus V)$. Hence, we obtain $f(K)=Y \setminus V$ and f(K) is g γ -closed set in Y. This shows that f is strongly g γ -closed function.

Theorem 3.6: A function $f: X \to Y$ is almost $g^* \gamma$ -irresolute if and only if $f(g^* \gamma Cl(U)) \subset g^* \gamma Cl(f(U))$ for every $U \in g^* \gamma O(X)$.

Proof: Let $U \in g^* \gamma O(X)$. Suppose $y \notin g^* \gamma Cl(f(U))$. Then there exists $V \in g^* \gamma O(Y,y)$ such that $V \cap f(U) = \phi$. Hence, $f^1(V) \cap U = \phi$. Since $U \in g^* \gamma O(X)$, we have $g^* \gamma Int(g^* \gamma Cl(f^1(V))) \cap g^* \gamma Cl(U) = \phi$. Then by lemma 3.4, $f^1(V) \cap g^* \gamma Cl(U) = \phi$ and hence $V \cap f(g^* \gamma Cl(U)) = \phi$. This implies that $y \notin f(g^* \gamma Cl(U))$. Hence $f(g^* \gamma Cl(U)) \subset g^* \gamma Cl(f(U))$. Conversely, if $V \in g^* \gamma O(Y)$, then $M = X \setminus g^* \gamma Cl(f^1(V)) \in g^* \gamma O(X)$. By hypothesis,
$$\begin{split} & f(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(M)) \subset g \stackrel{*}{\rightarrow} \mathcal{V}Cl(f(M)) \text{ and hence } X \setminus g \stackrel{*}{\rightarrow} \mathcal{V}Int(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(f^{-1}(V))) = g \stackrel{*}{\rightarrow} \mathcal{V}Cl(M) \subset \\ & f^{-1}(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(f(M))) \subset f^{-1}(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(f(X \setminus f^{-1}(V)))) \subset f^{-1}(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(Y \setminus V)) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V). \\ & \text{Therefore, } f^{-1}(V) \subset g \stackrel{*}{\rightarrow} \mathcal{V}Int(g \stackrel{*}{\rightarrow} \mathcal{V}Cl(f^{-1}(V))) \text{ By lemma } 3.4, \text{ f is almost } g \stackrel{*}{\rightarrow} \mathcal{V} \text{-irresolute.} \end{split}$$

Some decompositions on $g^* \gamma$ -open functions and $g^* \gamma$ -closed functions :

We define the following:

Definition 3.7: A function $f: X \to Y$ is said to be $g^* \gamma$ -pre-open(in brief, $(g^* \gamma_p)$ -open) if the image of each $g^* \gamma$ -open set of X is preopen set in Y.

Definition 3.8: A function $f: X \to Y$ is said to be $g^* \gamma$ -pre-closed(in brief, $(g^* \gamma_p)$ -closed) if the image of each $g^* \gamma$ -closed set of X is preclosed set in Y.

Definition 3.9: A function $f: X \to Y$ is said to be $g^* \gamma$ -semi-open(in brief, $(g^* \gamma, s)$ -open) if the image of each $g^* \gamma$ -open set of X is semiopen set in Y.

Definition 3.10: A function $f: X \to Y$ is said to be $g^* \gamma$ -semi-closed(in brief, $(g^* \gamma, s)$ -closed) if the image of each $g^* \gamma$ -closed set of X is semiclosed set in Y.

Definition 3.11: A function $f: X \to Y$ is said to be $g^* \gamma$ -semipre-open(in brief, $(g^* \gamma, sp)$ -open) if the image of each $g^* \gamma$ -open set of X is semipreopen set in Y.

Definition 3.12: A function $f: X \to Y$ is said to be $g^* \gamma$ -semipre-closed (in brief, $(g^* \gamma, sp)$ -closed) if the image of each $g^* \gamma$ -closed set of X is semipreclosed set in Y.

Now we have the following decompositions

Theorem 3.13: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid:

(i) If f is $(g^* \gamma p)$ -open and g is M-preopen then $g \circ f$ is $(g^* \gamma p)$ -open function. (ii) If f is $(g^* \gamma s)$ -open and g is presemiopen then $g \circ f$ is $(g^* \gamma s)$ -open function. (iii) If f is $(g^* \gamma s)$ -open and g is presemipreopen then $g \circ f$ is $(g^* \gamma s)$ -open function.

Proof: (i) Let V be any $g^* \gamma$ -open set in X. Since f is $(g^* \gamma_p)$ -open function, g(V) is preopen set in Y. Again, g is M-preopen function and g(V) is preopen set in Y, then $g(f(V))=(g \circ f)(V)$ is preopen in Z. This shows that $g \circ f$ is $(g^* \gamma_p)$ -open function.

(ii) Obvious.

(iii) Obvious.

Theorem 3.14: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid: (i) If f is $g^* \gamma$ -open and g is $(g^* \gamma s)$ -open then $g \circ f$ is semiopen function. (ii) If f is $g^* \gamma$ -open and g is $(g^* \gamma p)$ -open then $g \circ f$ is preopen function. (iii) If f is $g^* \gamma$ -open and g is $(g^* \gamma p)$ -open then $g \circ f$ is semipreopen function. **Proof:** (i) Let V be any open set in X. Since f is $g^* \gamma$ -open function, g(V) is $g^* \gamma$ -open set in Y. Again, g is $(g^* \gamma s)$ -open function and g(V) is $g^* \gamma$ -open set in Y, then $g(f(V)) = (g \circ f)(V)$ is semiopen set in Z. Thus $g \circ f$ is semiopen function.

(ii) Obvious.

(iii) Obvious.

Theorem 3.15: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid:

(i) If f is $(g^* \gamma s)$ -closed and g is presemiclosed then $g \circ f$ is $(g^* \gamma s)$ -closed function. (ii) If f is $(g^* \gamma p)$ -closed and g is M-preclosed then $g \circ f$ is $(g^* \gamma p)$ -closed function. (iii) If f is $(g^* \gamma sp)$ -closed and g is presemipreclosed then $g \circ f$ is $(g^* \gamma sp)$ -closed function.

Proof: (i) Let V be any $g^* \gamma$ -closed set in X. Since f is $(g^* \gamma, s)$ -closed function, g(V) issemiclosed set in Y. Again, g is presemiclosed function and g(V) is semiclosed set in Y, then $g(f(V))=(g \circ f)(V)$ is semiclosed in Z. This shows that $g \circ f$ is $(g^* \gamma, s)$ -closed function.

(ii) Obvious.

(iii) Obvious.

Theorem 3.16: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid:

(i) If f is $g^* \gamma$ -closed and g is $(g^* \gamma sp)$ -closed then $g \circ f$ is semipreclosed function. (ii) If f is $g^* \gamma$ -closed and g is $(g^* \gamma p)$ -closed then $g \circ f$ is preoclosed function. (iii) If f is $g^* \gamma$ -closed and g is $(g^* \gamma s)$ -closed then $g \circ f$ is semiclosed function.

Proof: (i) Let V be any closed set in X. Since f is $g^* \gamma$ -closed function, g(V) is $g^* \gamma$ -closed set in Y. Again, g is $(g^* \gamma sp)$ -closed function and g(V) is $g^* \gamma$ -closed set in Y, then $g(f(V))=(g \circ f)(V)$ is semipreclosed set in Z. Thus $g \circ f$ is semipreclosed function.

(ii) Obvious.

(iii) Obvious.

Now, we define the following:

Definition 3.17: A function $f: X \to Y$ is said to be pre-g^{*} γ -open(in brief, (p, g^{*} γ) –open) if the image of each preopen set of X is g^{*} γ -open set in Y.

Definition 3.18: A function $f: X \to Y$ is said to be pre-g^{*} γ -closed(in brief, (p, g^{*} γ)-closed) if the image of each preclosed set of X is g^{*} γ -closed set in Y.

Definition 3.19: A function $f: X \to Y$ is said to be semi-g^{*} γ -open(in brief, (s, g^{*} γ)-open) if the image of each semiopen set of X is g^{*} γ -open set in Y.

Definition 3.20: A function $f: X \to Y$ is said to be semi-g^{*} γ -closed(in brief, (s, g^{*} γ) -closed) if the image of each semiclosed set of X is g^{*} γ -closed set in Y.

Definition 3.21: A function $f: X \to Y$ is said to be semipre $-g^* \gamma$ -open(in brief, $(sp, g^* \gamma) - open)$ if the image of each semipreopen set of X is $g^* \gamma$ -open set in Y.

Definition 3.22: A function $f: X \to Y$ is said to be semipre $-g^* \gamma$ -closed (in brief, $(sp, g^* \gamma) - closed$) if the image of each semipreclosed set of X is $g^* \gamma$ -closed set in Y.

We have the following characterizations:

Lemma 3.23: A function $f: X \to Y$ is $(sp, g^* \gamma)$ -closed if and only if $spCl(f(A)) \subset f(g^* \gamma Cl(A))$ for every subset A of X.

Proof: Assume f is $(sp, g^* \gamma)$ -closed and A be any arbitrary subset of X. Then spCl(A) is an semipreclosed set and hence f(spCl(A)) is $g^* \gamma$ -closed set in Y and so $spCl(f(A)) \subset f(g^* \gamma Cl(A))$.

Conversely, if A is semipreclosed in X and by hypothesis, $spCl(f(A)) \subset f(g^* \gamma Cl(A)) = f(A)$. $f(A)=g^* \gamma Cl(f(A))$ which implies that f is $(sp, g^* \gamma)$ -closed function.

Theorem 3.24: If a function $f: X \to Y$ is $(sp, g^* \gamma)$ -closed then for each subset B of Y and semipreopen set V of X containing $f^1(B)$, there exists an $g^* \gamma$ -open set U in Y containing B, such that $f(U) \subset V$.

The routine proof of this theorem is omitted.

Lemma 3.25: A function $f: X \to Y$ is $(s, g^* \gamma)$ -closed if and only if $sCl(f(A)) \subset f(g^* \gamma Cl(A))$ for every subset A of X.

Proof is similar to the proof of lemma 3.23.

Theorem 3.26: If a function $f: X \to Y$ is $(s, g^* \gamma)$ -closed then for each subset B of Y and semiopen set V of X containing $f^1(B)$, there exists an $g^* \gamma$ -open set U in Y containing B, such that $f(U) \subset V$.

Proof of this theorem is easy and hence omitted.

Lemma 3.27: A function $f: X \to Y$ is $(p, g^* \gamma)$ -closed if and only if $pCl(f(A)) \subset f(g^* \gamma Cl(A))$ for every subset A of X.

Proof is similar to the proof of lemma 3.23.

Theorem 3.28: If a function $f: X \to Y$ is $(p, g^* \gamma)$ -closed then for each subset B of Y and preopen set V of X containing $f^{-1}(B)$, there exists an $g^* \gamma$ -open set U in Y containing B, such that $f(U) \subset V$.

Proof of this theorem is omitted.

Now we have the following decompositions:

Theorem 3.29: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid:

(i) If f is presemipreopen and g is $(sp, g * \gamma)$ -open then $g \circ f$ is $(sp, g * \gamma)$ -open function. (ii) If f is presemiopen and g is $(s, g * \gamma)$ -open then $g \circ f$ is $(s, g * \gamma)$ -open function. (iii) If f is M-preopen and g is $(p, g * \gamma)$ -open then $g \circ f$ is $(p, g * \gamma)$ -open function.

Proof: (i) Let V be any semipreopen set in X. Since f is presemipreopen function, g(V) is semipreopen set in Y. Again, g is $(sp, g * \gamma)$ -open function and g(V) is semipreopen set in Y, then $g(f(V))=(g \circ f)(V)$ is $g * \gamma$ -open set in Z. Thus $g \circ f$ is $(sp, g * \gamma)$ -open function.

(ii) Obvious.

(iii) Obvious.

Theorem 3.30: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The following statements are valid:

(i) If f is presemiclosed and g is $(s, g^* \gamma)$ -closed then $g \circ f$ is $(s, g^* \gamma)$ -closed function. (ii) If f is M-preclosed and g is $(p, g^* \gamma)$ -closed then $g \circ f$ is $(p, g^* \gamma)$ -closed function. (iii) If f is presemipreclosed and g is $(sp, g^* \gamma)$ -closed then $g \circ f$ is $(sp, g^* \gamma)$ -closed function.

Proof: (i) Let V be any semiclosed set in X. Since f is presemiclosed function, g(V) is semiclosed set in Y. Again, g is $(s, g * \gamma)$ -closed function and g(V) is semiclosed set in Y, then $g(f(V))=(g \circ f)(V)$ is $g * \gamma$ -closed set in Z. Thus $g \circ f$ is $(s, g * \gamma)$ -closed function.

(ii) Obvious.

(iii) Obvious.

Now we define the following:

Definition 3.31: A space X is said to be $g^* \gamma$ -normal, if for any pair of disjoint closed sets A and B of X, there exist disjoint $g^* \gamma$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Remark 3.32: Every γ -normal space is $g^* \gamma$ -normal space.

Characterizations of $g^* \gamma$ -normal space:

Theorem 3.33: For a space X, the following are equivalent:

(i) X is $g^{\gamma} \gamma$ -normal.

(ii) For every pair of open sets U and V whose union is X, there exists a $g^* \gamma$ -closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(iii) For every closed set H and every open set K containing H, there exists a $g^* \gamma$ - open set U such that $H \subset U \subset g^* \gamma Cl(U) \subset K$.

Proof: (i) \Rightarrow (ii) Let U and V be a pair of open sets in a $g^* \gamma$ -normal space X such that $X=U \cup V$. Then $X \setminus U$, $X \setminus V$ are disjoint closed sets. Since X is $g^* \gamma$ -normal, there exists disjoint g γ -open sets U_1 and V_1 such that $X \setminus U \subset U_1$ and $X \setminus V \subset V_1$. Let $A=X \setminus U_1$, $B=X \setminus V_1$. Then A and B are $g^* \gamma$ -closed sets such that $A \subset U$, $B \subset V$ and $A \cup B=X$.

(ii) \Longrightarrow (iii): Let H be a closed set and K be an open set containing H. Then $X \setminus H$ and K are open sets whose union is X. Then by (ii), there exists $g \gamma$ -closed sets M_1 and M_2 such that $M_1 \subset X \setminus H$ and $M_2 \subset K$ and $M_1 \cup M_2 = X$. Then $H \subset X \setminus M_1$, $X \setminus K \subset X \setminus M_2$ and

 $(X \setminus M_1) \cap (X \setminus M_2) = \phi$. Let $U = X \setminus M_1$ and $V = X \setminus M_2$. Then U and V are disjoint $g^* \gamma$ -open sets such that $H \subset U \subset X \setminus V \subset K$. As $X \setminus V$ is $g^* \gamma$ -closed set, we have $g^* \gamma \operatorname{Cl}(U) \subset X \setminus V$ and $H \subset U \subset g^* \gamma \operatorname{Cl}(U) \subset K$.

(iii) \Rightarrow (i) Let H_1 and H_2 be any two disjoint closed sets of X. Put $K=X \setminus H_2$, then $H_2 \cap K = \phi$, $H_1 \subset K$ where K is an open set. Then by (iii), there exists a $g \neq \gamma$ -open set U of X such that $H_1 \subset U \subset g \neq \gamma \operatorname{Cl}(U) \subset K$. It follows that $H_2 \subset X \setminus g \neq \gamma \operatorname{Cl}(U) =$ V(say), then V is $g \neq \gamma$ -open and $U \cap V = \phi$. Hence H_1 and H_2 are sepsrated by $g \neq \gamma$ -open sets U and V. Therefore X is $g \neq \gamma$ -normal space.

Theorem 3.34: If $f: X \to Y$ is a always $g^* \gamma$ -open continuous almost $g^* \gamma$ -irresolute function from a $g^* \gamma$ -normal space X into a space Y, then Y is $g^* \gamma$ -normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f⁻¹(A) is closed and f⁻¹(B) is an open set of X such that f⁻¹(A) \subset f⁻¹(B). As X is g^{*} γ -normal, there exists a g^{*} γ -open set U in X such that f⁻¹(A) \subset U \subset g^{*} γ Cl(U) \subset f⁻¹(B) by theorem 3.33. Then, f(f⁻¹(A)) \subset f(U) \subset f(g^{*} γ Cl(U)) \subset f(f⁻¹(B)). Since f is always g^{*} γ -open almost g^{*} γ -irresolute surjection, we obtain A \subset f(U) \subset g^{*} γ Cl(f(U)) \subset B. Then again by theorem 3.33, the space Y is g^{*} γ -normal.

Theorem 3.35: If $f: X \to Y$ is an always $g^* \gamma$ -closed continuous function from a $g^* \gamma$ -normal space X onto a space Y, then Y is $g^* \gamma$ -normal.

Proof: Let F_1 and F_2 be disjoint closed sets. Then $f_1^{-1}(F_1)$ and $f_1^{-1}(F_2)$ are closed sets. Since X is $g \ast \gamma$ -normal, then there exist disjoint $g \ast \gamma$ -open sets U and V such that $f^{-1}(F_1) \subset U$ and $f^{-1}(F_2) \subset V$. By theorem 3.5, there exist $g \ast \gamma$ -open sets A and B such that $F_1 \subset A$, $F_2 \subset B$, $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Also, A and B are disjoint. Hence, Y is $g \ast \gamma$ -normal space.

References

- [1]. D. Andrijevic, "semipreopen sets", Math. Vesnic, 38(1),(1986), 24-32.
- [2]. D. Andrijevic, "On b-open sets", Mat. Vesnik, vol.48, no. 1-2, pp. 59-64, 1996.
- [3]. N. Biswas, "On some mappings in topological spaces", Bull. Calcutta. Math.Soc. 61(1969), 127-135.
- [4]. F. Cammarota and T. Noiri, "Almost irresolute functions", Indian J. of pure Appl. Math., 20(1989), 472-482.
- [5]. S. G. Crossley and S. K. Hildebrand, "On semiclosure" Texas, J. Sci., 22(1971), 99-112.
- [6]. A. A. El-Atik, "A study on some types of mappings on topological spaces", Master's Thesis, Tanta University, Egypt, 1997.
- [7]. S. N. El-Deep, I. A. Hasanein, A. S. Mashhour and T. Noiri, "On p-regular spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27(75),(1983), 311-315.
- [8]. Ε. Ekici, "On γ normal spaces", Bull. Math. Soc. Sci. Math. Roumanie(N.S), vol. 50 (98), no. 3, pp. 259-272, 2007.
- [9]. G. L. Garg and D. Shivarag, "Presemiclosed mappings", periodica Math. Hung., 19(1988), 97-106.
- [10]. N. Levine, "Semiopen sets and semi continuity in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.
- [11]. A. I. El-Maghrabi, "More on γ -generalized closed sets in topology", J. of Taibah University for science, vol. 7(2013), pp. 114-119.
- [12]. A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, "on pre continuous and Weak pre continuous mappings", Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [13]. A. S. Mashhour, M. E. Abd. El-Monsef and I. A. Hasanein, "On pre topological spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie, 28(76)(1984), 39-45.
- [14]. G. B. Navalagi, "semipre-continuous functions and properties of generalized semipre-closed sets in topological spaces", IJMMS 29: 2(2002), pp. 85-98.
- [15]. GovindappaNavalagi and Savita. B. Megalamani, "g γ -closed sets in topological spaces, IJMR (accepted) (2018).
- [16]. GovindappaNavalagi and Savita. B. Megalamani, "Properties of $g \gamma$ -continuous Functions in topology" (submitted) (2018).
- [17]. T. Noiri, "A generalization of closed mappings", Atti. Accad.Naz.Lincei Rend. Cl. Sci. Fis. Mat. Natur(8)54(1973), 412-415.

Savita B. Megalamani. "g -open functions and g -closed functions in topology." IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018): 01-08.