Some allied regular spaces via gsp-open sets in topology

¹Govindappa Navalagi And ^{*2}R G Charantimath

¹Department of Mathematics KIT Tiptur 572202, Karnataka India ^{*2}Department of Mathematics KIT Tiptur 572202 ,Karnataka India Cortresponding author: R G Charantimath

Abstract: In this paper we define and study some allied regular spaces using gsp-open sets and gsp-closed sets, namely (sp,gsp)-regular spaces, gsp-regular spaces,(gsp,gs) -regular spaces, weakly g*regular spaces, (gsp,sp)-regular spaces,(p,gsp)-regular spaces and strongly gsp-regular spaces. also, we defined some basic characterization of above mentioned regular spaces.

Mathematics Subject Classification (2010) : 54A05,54B05,54C08,54D10

Key words: semipreopen sets, gsp-closed sets g^* -closed sets preopen sets, gsp-closed sets, gsp-irresoluteness, and strongly g^{*}-continuums functions

Date of Submission: 26-06-2018

Date of acceptance: 10-07-2018

I. Introduction

In 1982 A S Mashhour et al[10] have defined and studied the concept of pre-open sets and Sprecontinuous functions of topology. In 1983 S.N.Deeb et al [7] have defined and studied the concept of pre-closed sets ,precloseropearater,p-regular spaces and pre-closed functions in topology. In 1986, D. Andrijivic [1] introduced and studied the notion of semipre open sets, semipreclosed sets ,semipreinterior operator and semipre-closed operator in topological spaces. Later, many topologists have been studied these above mentioned sets in the literature. For the first time, N.Levine [9] has introduced the notion g-closed sets and gopen sets in topology. S P Arya et.al[2] have defined and studied the nontion of gs-closed sets and gs-open sets in 1990. In 1995, J.Dontchev[6] has defined and studied of concept of gsp-closed sets, gsp-open sets, gspcontinuous function and gsp-irresoluteness in topology. In 2000 M.K.R.S. Veera kumar[11] has defined and studied of properties of g*-closed sets in topological spaces. In this paper, using pre-closed sets, semipre-open sets ,gsp-closed sets ,gs-open sets , g*-closed sets. We define and study the concepts of (sp,gsp)-regular spaces,gsp-regular spaces,(gsp,gs) -regular spaces, weakly g*regular spaces, (gsp,sp)-regularspaces,(p,gsp)regular spaces and strongly gsp-regular spaces

II. Preliminaries

Throughout this paper (X , τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no

separation axioms are assumed unless explicitly stated . If A be a subset of X, the Closure of A and Interior of

A denoted by Cl(A) and Int(A) respectivly.

We give the following define are useful in the sequel :

DEFINITION 2.1: A subset A of space (X, i) is said to becalled

(i) semi-open set [8] if $A \subset Cl$ (Int (A))

(ii) pre-open set [10] if A \subset IntCl(A)

(iii) semi-pre open set [1] if $A \subset Cl$ (Int (Cl(A)))

The complement of a semiopen (resp. preopen, semipreopen) set of a space X is called semiclosed [3] (resp.

preclosed [7], semipreclosed [1]) set in X.

The family of all semi open (resp. preopen , semi-pre open) sets of X will be denoted by SO(X) (resp. PO(X) ,

SPO(X)).

Definition 2.2[4]: The intersection of all semi-closed sets of X containing subset A is called the semi-closure of A and is denoted by sCl(A).

Definition 2.3[1]: The intersection of all semipre-closed sets of X containing subset A is called the semipreclosure of A and is denoted by spCl(A).

Definition 2.4[5]: The union of all semi-open sets of X contained in A is called the semi-interior of A and is denoted by sInt (A).

Definition 2.5[1]: The union of all semipre-open sets of X contained in A is called the semipre-interior of A and is denoted by spInt(A).

Definition 2.6 : A sub set A of a space X is said to be :

(i) a generalized closed (briefly, g- closed) [9] set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ)

(ii) a generalized semi-closed (briefly, gs- closed) [2] set if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ)

(iii) a generalized semi-preclosed (briefly, gsp-closed) [6] set if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

(iv) a g^{*}-closed set[7] if Cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is g-open set in (X, τ)

Definition 2.7 [11] : A topological space X is said to be g-regular if for each g–closed set F of X and each point $x \notin F$ there exist disjoint open sets U and V of X such that $x \in U$ and $F \subset V$

We ,define the following

III. Properties of (gsp,sp)-regular spaces

Definition 3.1: A topological space X is said to be gsp- regular if for each gsp-closed set F of X and each point $x \in X - F$, there exist disjoint open sets U and V of X such that $x \in U$ and $F \subset V$. Since every g-closed set is gsp-closed set so every gsp-regular space is g-regular space.

Theorem 3.2 A topological space X is gsp-regular if and only if for each gsp-closed set F of X and each point $x \in X - F$, there exist open sets U and V of X such that $x \in U : F \subset V$ and $Cl(U) \cap Cl(V) = \emptyset$

Proof: Necessity: Let F be a gsp-closed set of X and $x \in X - F$. There exist open sets U_0 and V of X such that $x \in U_0$, $F \subset V$ and $U_0 \cap V = \emptyset$, hence $U_0 \cap Cl(V) = \emptyset$. Since X is gsp-regular, there exist open sets G and H of X such that $x \in G Cl(V) \subset H$ and $G \cap H = \emptyset$, hence $Cl(G) \cap H = \emptyset$. Now put $U = U_0 \cap G$, then U and V are open sets of X such that $x \in U$, $F \subset V$ and $Cl(U) \cap Cl(V) = \emptyset$.

Sufficiency: This is obvious.

Theorem 3.3: Let X be a topological space then the following statements are equivalent:

(i) X is gsp-regular space

(ii) For each point $x \in X$ and for each gsp-open neighbourhood W of x, there exists a

open set of x, such that $Cl(V) \subseteq W$

(iii) For each point of $x \in X$ and for each gsp-closed not containing x, then there exists a open set V of X such that $Cl(V) \cap F = \emptyset$.

Proof: (i) \Longrightarrow (ii): Let W be a gsp-open neighbourhood of x. Then there exists a gsp-open set G such that $x \in X \subseteq W$. Since (X-G) is gsp-closed set and $x \notin (X - G)$, by hypothesis there exist open sets U and V

such that (X-G) $\subseteq U$, $x \in V$ and $U \cap V = \emptyset$ and so $V \subset (X - U)$. Now $Cl(V) \subseteq Cl(X - U) = (X - U)$ and (X-G) $\subseteq U$ implies $(X - U) \subseteq G \subseteq W$. There fore $Cl(V) \subseteq W$

(ii) \Longrightarrow (i): Let F be any gsp-closed set of $x \notin F$. Then $x \in X - F$ and (X-F) is gsp-open and so (X-F) is an gsp-open neighbourhood of x. By hypothesis there exists a open V of x such that $x \in V$ and $Cl(V) \subseteq (X - F)$ which implies $F \subseteq (X - Cl(V))$. Then (X - Cl(V)) is open set containing F and $V \cap (X - Cl(V)) = \emptyset$. Therefore X is gsp-regular space.

(ii) \Longrightarrow (iii): Let $x \in X$ and F be an gsp-closed set such that $x \notin F$. Then (X-F) is an gsp-open neighbourhood of x and by hypothesis there exists a open set V of x such that $Cl(V) \subseteq (X - F)$ and there fore $Cl(V) \cap F = \emptyset$

(iii) \Longrightarrow (ii): Let $x \in X$ and W be an gsp-open neighbourhood of x then there exists an gsp-open set G such that $x \in G \subseteq W$. Since (X-G) is gsp-closed and $x \notin (X-G)$ by hypothesis there exists a open set V of x such that $Cl(V) \cap (X-G) = \emptyset$ There fore $Cl(V) \subseteq G \subseteq W$.

Theorem 3.4: A topological space X is an gsp-regular space if and only if given any $x \in U$ and any open set U of X there is gsp-open set V such that $x \in V \subset gspCl(V) \subseteq U$.

Proof: Let U be an open set, $x \in U$. So X–U is closed set such that $x \notin U$. Since X is a gsp-regular space then there exist gsp-open sets V₁ and V₂ such that V₁∩V₂=Ø, X–U⊂V₂, $x \in V_1$. Since V₁∩V₂=Ø, we have gspCl(V₁) ⊂gspCl(X–V₂)= X–V₂. Since X–U⊂V₂, we have X– V₂ ⊂ U. Hence we have $x \in V_1 ⊂$ gspCl(V₁) ⊂(X–V₂))⊆U.

Conversely, let F be a closed set in X and $x \in X - F$. So X-F is an open set such that $x \in X - F$. Hence there exists a gsp-open set U such that $x \in U \subset gspCl(U) \subset (X - F)$. Let V = X - gspCl(V). So V is a gsp-open set which contains F and $U \cap V = \emptyset$. Hence X is an gsp-regular space.

Theorem 3.5: Let X and Y be topological space and Y is a regular. If $f:X \rightarrow Y$ is closed gsp-irresolute and one to one then X is an gsp-regular space.

Proof: Let F be closed set in X, $x \notin F$. Since f is closed mapping, then f(F) is closed set in Y, $f(x)=y \notin f(F)$. But Y is gsp-regular space then there are two open sets U and V in Y such that $f(F) \subseteq V$, $y \in U$, $U \cap V = \emptyset$. Since f is gsp-irrersolute mapping and one to one so $f^{-1}(U)$, $f^{-1}(V)$ are two open sets X and $x \in f^{-1}(U)$, $F \in f^{-1}(V)$, $f^{-1}(U) \in f^{-1}(V) = \emptyset$. Hence X is gsp-regular space.

We define the following.

Definition:3.6: A topological space X is said to be (gsp, gs)-regular if for each gsp-closed set of X and each point $x \in X - F$ there exist disjoint gs-open sets U and V of X such that $x \in U$ and $F \subset V$

Theorem 3.7: A topological space X is (gsp,gs)-regular if and only if for each gsp-closed set F of X and each point $x \in X$ —F, there exist disjoint gs-open sets U and V of X such that $x \in U, F \subseteq V$ and $sCl(U) \cap sCl(V) = \emptyset$. Proof is similar to Theorem 3.6 above.

Theorem 3.8: Let X be a topological space then the following statements are equivalent:

(i) X is (gsp,gs)-regular space

(ii) For each point $x \in X$ and for each gsp-open neighbourhood W of x, there exists a

open set of x , such that $sCl(V) \subseteq W$

(iii) For each point of $x \in X$ and for each gsp-closed not containing x, then there exists a gs-open set x such that $sCl(V) \cap F = \emptyset$.

Proof is similar to Theorem 3.3 above.

Theorem 3.9: A topological space X is an (gsp,gs)-regular space if and only if given gsp-open set U with $x \in U$, there exists gs-open set V such that $x \in V \subseteq SCl(V) \subseteq U$.

Proof: Let U be a gsp-open set, $x \in U$. So X-U is a gsp-closed set such that $x \notin X$ -U. Since X is a (gsp,gs)-regular space then there exist gs-open sets V₁ and V₂ such that V₁∩V₂=Ø, X-U⊂V₂, $x \in V_1$. Since V₁∩V₂=Ø, we have $sCl(V_1) ⊂ sCl(X-V_2) = X-V_2$. Since $X-U⊂V_2$, we have $X-V_2 ⊂ U$. Hence we have $x \in V_1 ⊂ sCl(V_1) ⊂ (X-V_2) ⊆ U$.

Conversely, let F be a gsp- closed set in X and $x \in X - F$. So X-F is an gs- open set such that $x \in X - F$. Hence there exists a gs-open set U such that $x \in U \subset sCl(V) \subset (X - F)$. Let V = X - gspCl(V). So V is a gs-open set which contains F and $U \cap V = \emptyset$. Hence X is an (gsp, gs)-regular space.

In view of the definitions of g^* -closed sets, g-closed sets, αg -closed sets, gs-closed sets, sets, gs-closed sets, gs-c

Definition 3.11: A space X is said to be g^* -regular space if for each g^* -closed set F and for each $x \in X - F$ there exist two disjoint open sets U and V such that $x \in U$ and $F \subset V$

Definition 3.12: A space X is said to be weakly g^* -regular space if for each closed set F and for each $x \in X - F$ there exist two disjoint g^* -open sets U and V such that $x \in U$ and $F \subset V$

Theorem 3.13: A topological space X is g^* -regular if and only if for each g^* -closed set F of X and each point $x \in X - F$, there exist open sets U and V of X such that $x \in U$ and $F \subset V$ and $Cl(U) \cap Cl(V) = \emptyset$

Proof: Necessity: Let F be a g^{*}-closed set of X and $x \in X - F$, there exists open sets U₀ and V of X such that $x \in U_0 F \subset V$ and U₀∩V=Ø, hence U₀∩Cl(V)=Ø. Since X is g^{*}-regular, there exists open sets G and H of X such that $x \in G, Cl(V) \subset H$ and G∩H=Ø, hence Cl(G)∩H=Ø.Now put U= U₀∩G, then U and V are open sets of X such that $x \in U, F \subset V$ and Cl(U) ∩Cl(V)=Ø.

Sufficiency: This is obvious.

The routine proof of the following theorem is omitted.

Theorem 3.14: Let X be a topological space, then the following statements are equivalent:

(i) X is g^{*}-regular space

(ii) For each point $x \in X$ and for each closed neighbourhoods W of x, there exists a g^{*}-open set V of X such that $g^*Cl(V) \subseteq W$

(iii) For each point $x \in X$ and for each g^* -closed not containing x, then there exists g^* -open set V of X such that $g^*Cl(V) \cap F=\emptyset$.

Theorem 3.15: A topological space X is an g^* -regular space if and only if given any $x \in X$ and open set U of X there is g^* -open set V such that $x \in V \subset g^*Cl(V) \subseteq U$.

Proof: Let U be any open set, $x \in U$. So X-U is closed set such that $x \notin U$. Since X is a g^{*}-regular space then there exist g^{*}-open sets V₁ and V₂ such that $V_1 \cap V_2 = \emptyset$, X-U $\subset V_2$, $x \in V_1$. Since $V_1 \cap V_2 = \emptyset$, we have X-V₂ $\subset U$. Hence we have $x \in V_1 \subset g^*Cl(V_1) \subset (X-V_2) \subseteq U$.

Conversely, let F be a closed set in X and $x \in X - F$ so X-F is an open set such that $x \in X - F$. Hence there exists a g-open set U such that $x \in U \subset g^*Cl(V) \subseteq X - F$. Let $V = X - g^*Cl(V)$. So V is a g^* -open set which contains F and $U \cap V = \emptyset$. Hence X is an g^* -regular space.

Now ,we define the following.

Definition 3.16: A function $f:X \rightarrow Y$ is called always g^* -closed if the image of each g^* -closed sets of X is g^* -closed in Y

Definition 3.17: A function $f: X \rightarrow Y$ is called g^* -closed if the image of each closed set of X is g^* -closed in Y We prove the following

Theorem 3.18: Let X and Y be topological space and Y is regular space. If $f:X \rightarrow Y$ is closed, g^* -continuous and bijective, then X is weakly g^* -regular space.

Proof: Let F be a closed set in X, $x \notin F$. Since f is closed function, then f(F) is closed set in Y, $f(x)=y \notin f(F)$.

But Y is regular space then there are two open sets U and V in Y such that $f(F) \subseteq V$. $y \in U$, $U \cap V = \emptyset$. Since f⁻¹(U), f⁻¹(V) are two g^{*}-open sets in X and $x \in f^{-1}(U)$, $F \subseteq f^{-1}(V)$, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Hence X is weakly g^{*}-regular space.

We, define the following.

Definition 3.19: A function $f:X \rightarrow Y$ is strongly g^* -continuous if the inverse image of each g^* -closed set of Y is closed in X, equivalently, if the inverse image of each g^* -open set of Y is open in X.

Theorem 3.20: Let X and Y be topological space and Y is g^* -regular space. If $f:X \rightarrow Y$ is always g^* -closed, strongly g^* -continuous and bijective, then X is g^* -regular. Proof is similar to **3**.18.

Definition 3.21: A topological space X is said to be (gsp, sp)-regular if for each gsp-closed set F of X and each point $x \in X - F$, there exist disjoint semipre-open sets U and V of X such that $x \in U$ and $F \subset V$.

Lemma 3.22: A subset A of a space X is said to be gs-open if $F^{\subseteq sInt(A)}$ whenever $F \subseteq A$ and F is closed in X.

Theorem 3.23: The following properties are equivalent for a space in X;

(i) X is (gsp,sp) regular

- (ii) for each gsp-closed set F and each point $x \in X$ —F there exist $U \in SPO(X)$ and a gsp-open set V such that $x \in U$, $F \subset V$ and $U \cap V = \emptyset$
- (iii) for each subset of X and each gsp-closed set F such that $A\cap F=\emptyset$, there exist

U \in SPO(X) and a gsp-open set V such that A \cap U $\neq \emptyset$. F \subset V and U \cap V $= \emptyset$

(iv) for each gsp-closed set F of X. $F = \bigcap \{ spCl(V); F \subseteq V \text{ and } V \text{ is gsp-open} \}$

Proof: (i) \implies (ii): This proof is obvious since every semipre -open set is gsp-open set.

(ii) \Longrightarrow (iii):Let A be a subset of X and F a gsp-closed set X such that A \cap F=Ø For a point x \in A, x \in X-F and hence there exist U \in SPO(X) and a gsp-open set V such that x \in U, F \subset V and A \cap F=Ø

(iii) \Longrightarrow (i): Let F be any gsp-closed set of X and $x \in X - F$. Then $\{x\} \cap F = \emptyset$ and there exist U=SPO(X) and a gspopen set W such that $x \in U$, $F \subset W$ and $U \cap W = \emptyset$. Put V=spInt(W), then by lemma 5.2.22. We have $F \subset V$, V=SPO(X) and $U \cap V = \emptyset$ There fore X is (gsp,sp)-regular.

(i) \Longrightarrow (iv):For any gsp-closed set F of X. We obtain $F \subseteq \bigcap \{ spCl(V) : F \subseteq V \text{ and } V \text{ is gsp-open} \}$

 \square {spCl(V): $F \square V$ and $V \in$ SPO(X)}=F. Therefore $F \square$ {spCl(V): $F \square V$ and V is gsp-open}

(iv) ⇒(i): Let F be any gsp-closed set of X and x∈X−F.By (iv), there exists a gsp-open set W of X and such that F⊂W and x ∈ X−spCl(W). Since F is gsp-closed, F⊂spInt(W) by lemma 5.2.22. Put V=SPO(X). Since x ∈ X−spCl(W), x∈ X−spCl(V).Put U= X−spCl(V), then x∈U, U∈SPO(X) and U∩V=Ø.This show that X is (gsp,sp)-regular.

Theorem 3.24: Let X be a topological space then the following statements are equivalents; (i) X is (gsp,sp) -regular space

(ii) For each point $x \in X$ and for each gsp neighbourhood W of x, there exist sp-

open sets V of x such that $spCl(V) \subseteq W$

(iii) For each point x∈X and for each gsp -closed not containing x, there exists a

sp-open set V of x such that $spCl(V) \cap F=\emptyset$

Proof is similar to Theorem 3.3 above.

We, define the following

Definition 3.25: A space X is said be (p,gsp) regular if for each preclosed set F and for each $x \in X - F$ there exist two disjoint gsp-open sets U and V of X such that $x \in U$ and $F \subset V$.

Theorem 3.26: A topological space X is (p,gsp)-regular if and only if for each pre-closed set F of X and each point $x \in X - F$, there exist gsp-open sets U and V of X. Such that $x \in U$, $F \subset V$ and $gspCl(U) \cap gspCl(V) = \emptyset$.

Proof: Necessity: Let F be a pre-closed set of X and $x \in X - F$, there exist gsp-open sets U_0 , $F \subset V$ and $U_0 \cap V = \emptyset$, hence $U_0 \cap gspCl(V) = \emptyset$. Since X is (p,gsp)-regular, there exist gsp-open sets G and H of X such that $x \in G$, $gspCl(A) \subset H$ and $G \cap H = \emptyset$, hence $gspCl(G) \cap H = \emptyset$. Now put $U = U_0 \cap G$, then U and V are gsp-open sets of X such that $x \in U$, $F \subset V$ and $gspCl(U) \cap gspCl(V) = \emptyset$.

Sufficiency: This is obvious.

Theorem 3.27: Let X be a topological space then the following statements are equivalents;

(i) X is (p,gsp) -regular space

(ii) For each point $x \in X$ and for each pre-neighbourhood W of x, there exist gsp-open

sets V of x such that $gspCl(V) \subseteq W$

(iii)For each point $x \in X$ and for each pre-closed not containing x, there exists a gsp-

open set V of x such that $gspCl(V) \cap F=\emptyset$.

Proof is similar to Theorem 3.3 above.

4. Properties of strongly gsp regular spaces

Definition 4.1: A topological space X is said to be strongly gsp-regular if for each closed set F of X and each point $x \in X - F$ there exist disjoint gsp-open sets U and V of X such that $x \in U$ and $F \subset V$.

Theorem 4.2: Let X be a topological space then the following statements are equivalents;

(i) X is strongly -regular space

(ii) For each point $x \in X$ and for each gspopen-neighbourhood W of x, there exist gsp-

open sets V of x such that $gspCl(V) \subseteq W$

(iii) For each point $x \in X$ and for each closed not containing x, there exists a gsp-open

set V of x such that $gspCl(V) \cap F=\emptyset$.

Proof: (i) \Longrightarrow (ii): Let W be a gsp-open neighbourhood W of x. Then there exists a gsp-open set G such that $x \in X \subseteq W$. Since (X-G) is closed set and $x \notin (X-G)$, by hypothesis there exist gsp-open sets U and V such that $(X-G)\subseteq U$, $x \in V$ and $U \cap V = \emptyset$ and so $V \subset (X-G)$. Now $gspCl(V) \subseteq gspCl(X-U)=(X-U)$ and $(X-G)\subseteq U$ implies $(X-U)\subseteq G\subseteq W$. Therefore $gspCl(V)\subseteq W$.

(ii) \Longrightarrow (i): Let F be any closed set if $x \notin F$. Then $x \in (X-F)$ and (X-F) is gsp-open and so (X-F) is an gsp-open neighbourhood of x. By hypothesis there exists a gsp-open set V of x such that $x \in V$ and $gspCl(V) \subseteq (X-F)$ which implies $F \subseteq X-gspCl(V)$. Then X-gspCl(V) is gsp-open set containing F and $V \cap (X-gspCl(V)) = \emptyset$. Therefore X is strongly gsp-regular space.

(ii) \Longrightarrow (iii): Let $x \in X$ and F be an closed set such that $x \notin F_{-}$. Then (X-F) is a gsp-open neighbourhood of x and by hypothesis there exists a gsp-open set V of x such that $gspCl(V) \subseteq (X-F)$ and therefore $gspCl(V) \cap F=\emptyset$.

(iii) \Rightarrow (ii):Let x \in X and W be a gsp-open neighbourhood of x. Then there exists an gsp-open sets of G such that x \in G \subseteq W. Since (X-G) is open set and x \notin (X-G) by hypothesis there exists a gsp-open set V of x such that gspCl(V) \cap (X-G)= Ø. Therefore gspCl(V) \subseteq G \subseteq W.

We define the following

Definition 4.3: A function $f:X \rightarrow Y$ is strongly g^* -continuous if the inverse image each g^* -closed set of Y is closed in X, equivalently if the inverse image of each g^* -open set of Y is open in X.

Theorem 4.4: Let X and Y be topological space X is (sp,gsp)-regular space. If $f:X \rightarrow Y$ is semipre-closed, gsp-irresolute and bijective, then X is strongly gsp-regular space.

Proof: Let F be a closed set in X, $x \notin F$. Since f is semipre-closed function, then f(F) is semipre-closed set in Y, f(x)=y \notin f(F). But Y is (gs,gsp)-regular space, then there are two gsp-open sets U and V in Y such that $f(F) \subseteq V$. $y \in U$, $U \cap V = \emptyset$. Since $f^{-1}(U)$, $f^{-1}(V)$ are two gsp-open sets in X and $x \in f^{-1}(U)$, $f^{-1}(U) \cap f^{-1}(U) \cap f^{-1}(V)$.

 $^{1}(V) = \emptyset$. Hence X is strongly gsp-regular space.

Define the following

Definition 4.5: A space X is said to be (gs,gsp)-regular if for each gs-closed set F and for each $x \in (X-F)$ there exist two disjoint gsp-open sets U and V such that $x \in X$ and $F \subset V$.

Clearly, every (gs,gsp)-regular space is strongly gsp-regular space.

Definition 4.6: A space X is said to be (g^*,gs) -regular if for each g^* -closed set F and for each $x \in (X-F)$ there exist disjoint gs-open sets U and V such that $x \in U$ and $F \subset V$

Definition 4.7: A space X is said to be (g^*,gsp) -regular space if for each g^* -closed set F and for each $x \in (X-F)$ there exist disjoint gsp-open sets U and V such that $x \in U$ and $F \subseteq V$.

Since every gs-open set is gsp-open set and hence it is clearly that ,every (g^*,gs) -regular space is (g^*,gsp) -regular space.

The routine proof of the following theorem is omitted.

Theorem 4.8: The following properties are equivalent for a space X;

(i) X is (g^{*},gs)-regular space

(ii) For each g^* -closed set F and each point $x \in (X-F)$ there exist $U \in SO(X)$ and g_{s-} open set V such that $x \in U$, $F \subset V$ and $U \cap V = \emptyset$

(iii) For each subset A of X and each g^* -closed set F such that A \cap F=Ø, there exist

V \in SO(X) and a gs-open set V such that A \cap V $\neq \emptyset$ F \subset V and U \cap V $= \emptyset$.

(iv) For each g^* -closed set F of X, $F = \bigcap \{sCl(V); F \subseteq V \text{ and } V \text{ is gs-open} \}.$

Next, we characterized the (g^*,gsp) -regular space in the following

Theorem 4.9: The following properties are equivalent for a space X;

(i) X is (g^*, gsp) -regular space

(ii) For each g^* -closed set F and each point $x \in (X-F)$ there exist $U \in SPO(X)$ and gsp- open set V such that $x \in U, F \subset V$ and $U \cap V = \emptyset$

(iii)For each subset A of X and each g^* -closed set F such that $A \cap F = \emptyset$, there exist

U \in SPO(X) and a gsp-open set V such that A \cap U $\neq \emptyset$, F \subset V and U \cap V $= \emptyset$.

(iv) For each g^* -closed set F of X, $F = \bigcap \{spCl(V); F \subseteq V \text{ and } V \text{ is gsp-open} \}$

Proof is similar to Theorem 3.23 above.

References

- [1]. D.Andrijevic, Semipreopen sets, Math.Vensik 38(1),(1986), 24-32.
- [2]. S.P.Arya and T.Nour, Characterizations of s-normal Spaces, Indian, J.Pure Appl.Math.21(1990) 717-719.
- [3]. Biswas, On characterization of semi-continuous functions, Atti. Accad.Naz.Lincei Rend.Cl.Sci.Fis.Mat.Natur 48(8)(1970),399-402
- [4]. S.G.Crossely. and S.K.Hildebrand, On semi-Closure. Texas. J.Sci,22.(1971),99-112
- [5]. P Das. Note on Some Application of Semi Open Sets. Progress of Math, BHU, 7, (1973), 33-44
- [6]. J.Dontchev, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math, 6(1995), 35-48.
- [7]. S.N.El-Deeb, I.A. Hasanein, A.S.Mashhour and T. Noiri, On p-regular spaces, Bull Math. Soc. Sci. Math. R.S.Roumanie (N.S), 27(75), (1983), 311-315.
- [8]. N.Levine, Semi-open sets and semi-continuous in Topological spaces, Amer. Math, Monthly 70(1963), 36-41
- [9]. N.Levine, Generalized closed sets in Topology, Rend.Cric. Math.Palermo,19(2)1970,89-96. [10] A.S.Mashhoour, M.E. Abd El-Monsef and S.N. El-Deeb, On Pre continuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), pp.47-53.
- [10]. B.M.Munshi.Separation axioms. Acta.Ciencia India 12 (1986). 140-144

[11]. M.K.R.S. Veera Kumar "Between closed sets and g-closed sets" Mem, Fac, Sci. Kochi. Uni(Math) 21(2000), 1-19.

R G Charantimath "Some allied regular spaces via gsp-open sets in topology." IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018): 09-15.