On Decomposition of βg^* Closed Sets in Topological Spaces

C.Dhanapakyam, K.Indirani

Department of Mathematics Rathnavel subramaniam College of Arts & Science Coimbatore-, India Nirmala College for women Red fields, Coimbatore-, India Corresponding Author: C.Dhanapakyam

Abstract: The aim of this paper is to introduced and study the classes of βg^* -locally closed set and different notions of generalization of continuous functions namely βg^* lc-continuity, βg^* lc*-continuity and βg^* lc**-continuity and their corresponding irresoluteness were studied.

Keywords: βg^* -separated, βg^* -dense, βg^* -submaximal, βg^* lc-continuity, βg^* lc*-continuity βg^* lc**-continuity.

Date of Submission: 02-07-2018 Date of acceptance: 18-07-2018

I. Introduction:

The first step of locally closedness was done by Bourbaki [2]. He defined a set A to be locally closed if it is the intersection of an open and a closed set. In literature many general topologists introduced the studies of locally closed sets. Extensive research on locally closedness and generalizing locally closedness were done in recent years. Stone [7] used the term LC for a locally closed set. Ganster and Reilly used locally closed sets in [4] to define LC-continuity and LC-irresoluteness. Balachandran et al [1] introduced the concept of generalized locally closed sets. The aim of this paper is to introduce and study the classes of βg^* locally closed set and different notions of generalization of continuous functions namely βg^* lc-continuity, βg^* lc*-continuity and βg^* lc*-continuity and their corresponding irresoluteness were studied.

II. Preliminary Notes

Throughout this paper (X,τ) , (Y,σ) are topological spaces with no separation axioms assumed unless otherwise stated. Let A $\subseteq X$. The closure of A and the interior of A will be denoted by Cl(A) and Int(A) respectively.

Definition 2.1. A Subset S of a space (X,τ) is called

(i) locally closed (briefly lc)[6] if S=U \cap F, where U is open and F is closed in (X, τ).

(ii) r-locally closed (briefly rlc) if $S=U\cap F$, where U is r-open and F is r-closed in (X,τ) .

(iii) generalized locally closed (briefly glc) [1] if $S=U\cap F$, where U is g-open and F is g-closed in (X,τ) .

Definition 2.2. [4] A subset A of a topological space (X,τ) is called βg^* -closed if gcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is β -open subset of X.

Definition 2.3. For a subset A of a space X, βg^* -cl(A) = $\bigcap \{F: A \subseteq F, F \text{ is } \beta g^* \text{closed in } X\}$ is called the βg^* -closure of A.

Remark 2.4. For a topological space (X,τ) , the following statements hold:

(1) Every closed set is βg^* -closed but not conversely [4].

(2) Every g-closed set is βg^* -closed but not conversely [4].

(3) Every g*-closed set is βg^* -closed but not conversely [4].

(4) A subset A of X is βg^* -colsed if and only if βg^* -cl(A)=A.

(5) A subset A of X is βg^* -open if and only if βg^* -int(A)=A.

Corollary 2.5. If A is a βg^* -closed set and F is a closed set, then A \cap F is a βg^* -closed set.

Definition 2.6[5]: A function $f:(X,\tau) \to (Y,\sigma)$ is called βg^* continuous if $f^{-1}(V)$ is βg^* closed subset of (X,τ) for every closed subset V of (Y,σ) .

Definition 2.7. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

i) LC-continuous [6] if $f^{-1}(V) \in LC(X,\tau)$ for every $V \in \sigma$.

ii) GLC-continuous [1] if $f^{-1}(V) \in GLC(X,\tau)$ for every $V \in \sigma$.

Definition 2.8. A subset S of a space (X,τ) is called

(i) submaximal [3] if every dense subset is open.

(ii) g-submaximal [1] if every dense subset is g-open.

III. βg^* Locally Closed Set

Definition 3.1: A subset A of (X,τ) is said to be βg^* locally closed set (briefly βg^* lc) if A=L \cap M where L is βg^* open and M is βg^{*} -closed in (X, τ).

Definition 3.2: A subset A of (X,τ) is said to be $\beta g^* lc^*$ set if there exists a βg^* -open set L and a closed set M of (X,τ) such that A=L \cap M.

Definition 3.3: A subset B of (X,τ) is said to be $\beta g^* lc^{**}$ set if there exists an open set L and a βg^* -closed set M such that $A=L\cap M$.

The class of all $\beta g^* lc$ (resp. $\beta g^* lc^* \& \beta g^* lc^{**}$) sets in X is denoted by $\beta g^* LC(X)$.(resp. $\beta g^* LC^*(X)$) $\& \beta g^* LC^{**}(X)$

From the above definitions we have the following results.

Proposition :3.4

i) Every locally closed set is $\beta g^* lc$.

ii) Every glc-set is βg^* lc.

iii) Every g^*lc -set is βg^*lc .

iv) Every rlc -set is βg^* lc.

v) Every gr lc-set is $\beta g^{\hat{}}$ lc.

vi) Every $\beta g^* lc^*$ -set is $\beta g^* lc^{**}$

viii) Every $\beta g^* lc^{**}$ -set is $\beta g^* lc^{**}$.

However the converses of the above are not true as seen by the following examples

Example 3.5. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. $\beta g^* = \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \phi, X\}$. Then $A = \{a\}$ is βg^* lc-set but not locally closed.

Example 3.6. Let $X = \{a, b, c\}$ with $\tau = \{\varphi, \{a\}, X\}$. Then $A = \{a\}$ is βg^* lc-set but not glc-set.

Example 3.7. In example 3.5, Let A={b} is βg^* lc-set but not βg^* lc^{*}-set.

Example 3.8 Let X={a,b,c} with τ ={ ϕ ,{a},X}. Then A={a} is βg^* lc-set but not g^* lc-set.

Example 3.9. In example 3.8, Let $A = \{a\}$ is $\beta g^* lc$ set but not grlc-set.

Example 3.10 In example 3.8, Let A={b} is βg^* lc-set but not rlc-set.

Example 3.11 In example 3.8. Let $A = \{b\}$ is $\beta g^* | c$ -set but not $\beta g^* | c^*$ -set.

Example 3.12. In example 3.8. Let $A = \{b\}$ is $\beta g^* | c$ -set but not $\beta g^* | c^{**}$ -set. **Remark 3.13.**The concepts of $\beta g^* | c^*$ set and $\beta g^* | c^{**}$ sets are independent of each other as seen from the following example.

Example 3.14. In example 3.6, Let A={b,c} is $\beta g^* lc^*$ -set but not $\beta g^* lc^{**}$ -set and Let A={a} is $\beta g^* lc^{**}$ -set but not $\beta g^* lc^*$ -set.

Remark 3.15. Union of two βg^* lc-sets are βg^* lc-sets.

IV. βg^* -DENSE SETS AND βg^* -SUBMAXIMAL SPACES

Definition 4.1. A subset A of (X,τ) is called βg^* -dense if βg^* -cl(A)=X.

Example 4.2. Let X={a,b,c,d}with τ ={ ϕ ,{b},{a,c},{a,b,c},X}. Then the set A={a,b,c} is βg^* -dense in (X, τ).

Recall that a subset A of a space (X,τ) is called dense if cl(A)=X.

Proposition 4.3. Every βg^* -dense set is dense.

Let A be a βg^* -dense set in (X, τ). Then βg^* -cl(A)=X. Since βg^* -cl(A) \subseteq gcl(A) \subseteq cl(A). we have cl(A)=X and so A is dense.

The converse of the above proposition need not be true as seen from the following example.

Example 4.4. Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}$. Then the set $A = \{b, c\}$ is a dense in (X, τ) but it is not βg^* -dense in (X, τ).

Definition 4.5. A topological space (X,τ) is called βg^* -submaximal if every dense subset in it is βg^* -open in (X,τ) .

Proposition 4.6. Every submaximal space is βg^* -submaximal.

Proof. Let (X,τ) be a submaximal space and A be a dense subset of (X,τ) . Then A is open. But every open set is βg^* -open and so A is βg^* -open. Therefore (X, τ) is βg^* -submaximal.

The converse of the above proposition need not be true as seen from the following example.

Example 4.7. Let $X = \{a, b, c\}$ with $\tau = \{\phi, X\}$. Then $\beta g^*O(X) = P(X)$. we have every dense subset is βg^* -open and hence (X, τ) is βg^* -submaximal. However, the set $A = \{c\}$ is dense in (X, τ) , but it is not open in (X, τ) . Therefore (X,τ) is not submaximal.

Proposition 4.8. Every g-submaximal space is βg^* -submaximal.

Proof. Let (X,τ) be a g-submaximal space and A be a dense subset of (X,τ) . Then A is g-open. But every g-open set is βg^* open and A is βg^* open. Therefore (X,τ) is βg^* -submaximal.

The converse of the above proposition need not be true as seen from the following example.

Example 4.9. Let $X = \{a,b,c,d\}$ with $\tau = \{\phi,\{d\},\{a,b,c\},X\}$. Then GO(X) = P(X) and $GO(X) = \{\phi,\{d\},\{a,b,c\},X\}$. we have every dense subset is β g^{*}-open and hence (X,τ) is β g^{*}-submaximal. However, the set $A = \{a\}$ is dense in (X,τ) , but it is not g-open in (X,τ) . Therefore (X,τ) is not g-submaximal. **Proposition 4.10.** Every r-submaximal space is β g^{*}-submaximal.

The converse of the above proposition need not be true as seen from the following example.

Example 4.11. Let $X=\{a,b,c,d\}$ with $\tau=\{\phi,\{a,d\},\{b,c\},X\}$. Then RO(X)=P(X) and $\beta g^*O(X)=\{\phi,\{b,c\},\{a,d\},X\}$. Every dense subset is r-open and hence (X,τ) is r-submaximal. However the set $A=\{a\}$ is dense in (X,τ) , but it is not βg^* -open in (X,τ) . Therefore (X,τ) in not βg^* -submaximal.

Theorem 4.12. Assume that $\beta g^* C(X)$ is closed under finite intersections. For a subset A of (X,τ) the following statements are equivalent:

(1) $A \in \beta g^* LC(X)$,

(2) $A=S\cap\beta g^*$ -cl(A) for some βg^* -open set S,

(3) βg^* -cl(A)-A is βg^* -closed,

(4) $AU(\beta g^*-cl(A))^c$ is βg^* -open,

(5) $A \subseteq \beta g^*$ -int($A \cup (\beta g^*$ -cl($A))^c$).

Proof. (1) \Rightarrow (2). Let $A \in \beta g^* LC(X)$. Then $A = S \cap G$ where S is βg^* -open and G is βg^* -closed. Since $A \subseteq G$, βg^* -cl(A) $\subseteq G$ and so $S \cap \beta g^*$ -cl(A) $\subseteq A$. Also $A \subseteq S$ and $A \subseteq \beta g^*$ -cl(A) implies $A \subseteq S \cap \beta g^*$ -cl(A) and therefore $A = S \cap \beta g^*$ -cl(A).

(2) \Rightarrow (3). A=S $\cap \beta g^*$ -cl(A) implies βg^* -cl(A)-A= βg^* -cl(A) \cap S^c which is βg^* -closed since S^c is βg^* -closed and βg^* -cl(A) is βg^* -closed.

 $(3) \Rightarrow (4)$. AU $(\beta g^* - cl(A))^c = (\beta g^* - cl(A) - A)^c$ and by assumption, $(\beta g^* - cl(A) - A)^c$ is βg^* -open and so is AU $(\beta g^* - cl(A))^c$.

(4) \Rightarrow (5). By assumption, AU(βg^* -cl(A))^c = βg^* -int(AU(βg^* -cl(A))^c) and hence A $\subseteq \beta g^*$ -int(AU(βg^* -cl(A))^c).

(5)⇒(1). By assumption and since A⊆ βg^* -cl(A), A= βg^* -int(A∪(βg^* -cl(A))^c)∩ βg^* -cl(A). Therefore, A∈ βg^* LC(X).

Theorem 4.13 For a subset A of (X,τ) , the following statements are equivalent:

(1) $A \in \beta g^* LC^*(X)$,

(2) $A=S\cap cl(A)$ for some βg^* -open set S,

(3) cl(A)–A is βg^* -closed,

(4) $AU(cl(A))^{c}$ is βg^{*} -open.

Proof. (1) \Rightarrow (2). Let $A \in \beta g^* LC^*(X)$. There exist an βg^* -open set S and a colsed set G such that $A=S \cap G$. Since $A \subseteq S$ and $A \subseteq cl(A)$, $A \subseteq S \cap cl(A)$. Also since $cl(A) \subseteq G$, $S \cap cl(A) \subseteq S \cap G=A$. Therefore $A=S \cap cl(A)$.

(2)⇒(1). Since S is βg^* -open and cl(A) is a closed set, A=S∩cl(A)∈ $\beta g^*LC^*(X)$.

(2) \Rightarrow (3). Since cl(A)-A=cl(A)\cap S^c, cl(A)-A is βg^* -closed

(3)⇒(2). Let S=(cl(A)−A)^c. Then by assumption S is βg^* -open in (X, τ) and A=S∩cl(A).

(3)⇒(4). Let G=cl(A)−A. Then $G^c=AU(cl(A))^c$ and $AU(cl(A))^c$ is βg^* -open.

(4) \Rightarrow (3). Let S=AU(cl(A))^c. Then S^c is βg^* -closed and S^c=cl(A)–A and so cl(A)–A is βg^* -closed.

Theorem 4.14. A space (X,τ) is βg^* -submaximal if and only if $P(X) = \beta g^* LC^*(X)$.

Proof. Necessity. Let $A \in P(X)$ and let $V = A \cup (cl(A))^c$. This implies that $cl(V) = cl(A) \cup (cl(A))^c = X$. Hence cl(V) = X. Therefore V is a dense subset of X. Since (X, τ) is βg^* -submaximal, V is βg^* -open. Thus $A \cup (cl(A))^c$ is βg^* -open and by theorem 6.2.13 we have $A \in \beta g^* LC^*(X)$.

Sufficiency. Let A be a dense subset of (X,τ) . This implies $A \cup (cl(A))^c = A \cup A^c = A \cup A = A$. Now $A \in \beta g^* LC^*(X)$ implies that $A = A \cup (cl(A))^c$ is βg^* -open by Theorem 6.2.13. Hence (X,τ) is βg^* -submaximal.

Theorem 4.15. Let A be a subset of (X,τ) . Then $A \in \beta g^* LC^{**}(X)$ if and only if $A=S \cap \beta g^*$ -cl(A) for some open set S.

Proof. Let $A \in \beta g^* LC^{**}(X)$. Then $A = S \cap G$ where S is open and G is βg^* -closed. Since $A \subseteq G$, βg^* -cl(A) $\subseteq G$. We obtain $A = A \cap \beta g^*$ -cl(A) $= S \cap G \cap \beta g^*$ -cl(A) $= S \cap \beta g^*$ -cl(A).

Converse part is trivial.

Theorem 4.16. Let A be a subset of (X,τ) . If $A \in \beta g^* LC^{**}(X)$, then $\beta g^* - cl(A) - A$ is $\beta g^* - closed$ and $A \cup (\beta g^* - cl(A))^c$ is $\beta g^* - open$.

Proof. Let $A \in \beta g^* LC^{**}(X)$. Then by theorem 4.15, $A=S \cap \beta g^*$ -cl(A) for some open set S and βg^* -cl(A)- $A=\beta g^*$ -cl(A) $\cap S^c$ is βg^* -closed in (X,τ) . If $G=\beta g^*$ -cl(A)-A, then $G^c=A \cup (\beta g^*$ -cl(A))^c and G^c is βg^* -open and so is $A \cup (\beta g^*$ -cl(A))^c.

Proposition 4.17 Assume that $\beta g^* O(X)$ forms a topology. For subsets A and B in (X,τ) , the following are true: (1) If A, B $\in \beta g^* LC(X)$, then A \cap B $\in \beta g^* LC(X)$.

(2) If A, $B \in \beta g^* LC^*(X)$, then $A \cap B \in \beta g^* LC^*(X)$.

(3) If A, $B \in \beta g^* LC^{**}(X)$, then $A \cap B \in \beta g^* LC^{**}(X)$.

(4) If $A \in \beta g^* LC(X)$ and B is βg^* -open (resp. βg^* -closed), then $A \cap B \in \beta g^* LC(X)$.

(5) If $A \in \beta g^* LC^*(X)$ and B is βg^* -open (resp. closed), then $A \cap B \in \beta g^* LC^*(X)$.

(6) If $A \in \beta g^* LC^{**}(X)$ and B is βg^* -closed (resp. open), then $A \cap B \in \beta g^* LC^{**}(X)$.

(7) If $A \in \beta g^* LC^*(X)$ and B is βg^* -closed (resp. open), then $A \cap B \in \beta g^* LC(X)$. (8) If $A \in \beta g^* LC^{**}(X)$ and B is βg^* -open, then $A \cap B \in \beta g^* LC(X)$. (9) If $A \in \beta g^* LC^{**}(X)$ and $B \in \beta g^* LC^*(X)$, then $A \cap B \in \beta g^* LC(X)$.

Proof. By Remark 2.4, (1) to (8) hold.

(9). Let A=S \cap G where S is open and G is βg^* -closed and B=P \cap Q where P is βg^* -open and Q is closed. Then $A \cap B = (S \cap P) \cap (G \cap Q)$ where $S \cap P$ is βg^* -open and $G \cap Q$ is βg^* -closed, .Therefore $A \cap B \in \beta g^* LC(X)$.

Definition 4.18. Let A and B be subsets of (X,τ) . Then A and B are said to be βg^* -separated if $A \cap \beta g^*$ -cl(B)= φ and βg^* -cl(A) $\cap B = \phi$.

Example 4.19 Let X={a,b,c} with $\tau = \{\phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}, X\}$. Let A={a} and B={b}. Then βg^* -cl(A)={a} and βg^* -cl(B)={b} and so the sets A and B are βg^* -separated.

Proposition 4.20. Assume that $\beta g^*O(X)$ forms a topology. For a topological space (X,τ) , the following are true: (1) Let A, B $\in \beta g^* LC(X)$. If A and B are βg^* -separated then AUB $\in \beta g^* LC(X)$.

(2) Let A, $B \in \beta g^* LC^*(X)$. If A and B are separated (i.e., $A \cap cl(B) = \phi$ and $cl(A) \cap B = \phi$), then $A \cup B \in \beta g^* LC^*(X)$. (3) Let A, $B \in \beta g^* LC^{**}(X)$. If A and B are βg^* -separated then $A \cup B \in \beta g^* LC^{**}(X)$.

Proof. (1) Since A, $B \in \beta g^* LC(X)$. by theorem 4.13, there exists βg^* -open sets U and V of (X,τ) such that $A=U\cap$ βg^* -cl(A) and B=V $\cap \beta g^*$ -cl(B). Now G=U $\cap (X - \beta g^*$ -cl(B)) and H=V $\cap (X - \beta g^*$ -cl(A)) are βg^* -open subsets of (X,τ) . Since A $\cap \beta g^*$ -cl(B)= φ , A $\subseteq (\beta g^*$ -cl(B))^c. Now A=U $\cap \beta g^*$ -cl(A) becomes A $\cap (\beta g^*$ -cl(B))^c=G $\cap \beta g^*$ cl(A). Then A=G $\cap \beta g^*$ -cl(A). Similarly B=H $\cap \beta g^*$ -cl(B). Moreover G $\cap \beta g^*$ -cl(B)= φ and H $\cap \beta g^*$ -cl(A)= φ . Since G and H are βg^* -open sets of (X, τ), GUH is βg^* -open. Therefore AUB=(GUH) $\cap \beta g^*$ -cl(AUB) and hence $A \cup B \in \beta g^* LC(X).$

(2) and (3) are similar to (1), using Theorems 4.13 and 4.14.

Lemma 4.21 If A is βg^* -closed in (X, τ) and B is βg^* -closed in (Y, σ), then A×B is βg^* -closed in (X×Y, $\tau \times \sigma$).

Theorem 4.22. Let (X,τ) and (Y,σ) be any two topological spaces. Then

i) If $A \in \beta g^* LC(X,\tau)$ and $B \in \beta g^* LC(Y,\sigma)$, then $A \times B \in \beta g^* LC(X \times Y, \tau \times \sigma)$.

ii) If $A \in \beta g^* LC^*(X, \tau)$ and $B \in \beta g^* LC^*(Y, \sigma)$, then $A \times B \in \beta g^* LC^*(X \times Y, \tau \times \sigma)$.

iii) If $A \in \beta g^* LC^{**}(X, \tau)$ and $B \in \beta g^* LC^{**}(Y, \sigma)$, then $A \times B \in \beta g^* LC^{**}(X \times Y, \tau \times \sigma)$.

Proof. Let $A \in \beta g^* LC(X,\tau)$ and $B \in \beta g^* LC(Y,\sigma)$. Then there exists βg^* -open sets V and V of (X,τ) and (Y,σ) respectively and βg^* -closed sets W and W of (X,τ) and (Y,σ) respectively such that $A=V\cap W$ and $B=V'\cap W'$. Then $A \times B = (V \cap W) \times (V' \cap W') = (V \times V') \cap (W \times W')$ holds and hence $A \times B \in \beta g^* LC(X \times Y, \tau \times \sigma)$. The proofs of (ii) and (iii) are similar to (i).

V. βg^*LC -CONTINUOUS AND βg^*LC -IRRESOLUTE FUNCTIONS

In this section, we define βg^*LC -continuous and βg^*LC -irresolute functions and obtain a pasting lemma for $\beta g^* LC^{**}$ -continuous functions and irresolute functions.

Definition 5.1. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

i) βg^*LC -continuous if $f^{-1}(V) \in \beta g^*LC(X,\tau)$ for every $V \in \sigma$.

ii) $\beta g^* LC^*$ -continuous if $f^1(V) \in \beta g^* LC^*(X,\tau)$ for every $V \in \sigma$. iii) $\beta g^*_{\tau} LC^{**}$ -continuous if $f^1(V) \in \beta g^* LC^{**}(X,\tau)$ for every $V \in \sigma$.

iv) βg^*LC -irresolute if $f^{-1}(V) \in \beta g^*LC(X,\tau)$ for every $V \in \beta g^*LC(Y,\sigma)$.

v) $\beta g^* LC^*$ -irresolute if $f^{-1}(V) \in \beta g^* LC^*(X, \tau)$ for every $V \in \beta g^* LC^*(Y, \sigma)$.

vi) $\beta g^* LC^{**}$ -irresolute if $f^{-1}(V) \in \beta g^* LC^{**}(X,\tau)$ for every $V \in \beta g^* LC^{**}(Y,\sigma)$.

Proposition 5.2. If $f:(X,\tau) \rightarrow (Y,\sigma)$ is βg^*LC -irresolute, then it is βg^*LC -continuous.

Proof. Let V be open in Y. Then $V \in \beta g^* LC(Y, \sigma)$. By assumption, $f^1(V) \in \beta g^* LC(X, \tau)$. Hence f is $\beta g^* LC$ continuous.

Proposition 5.3. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function, then

1. If f is LC-continuous, then f is βg^* LC-continuous.

2. If f is βg^*LC^* -continuous, then f is βg^*LC -continuous. 3. If f is βg^*LC^{**} -continuous, then f is βg^*LC -continuous.

4. If f is glc-continuous, then f is βg^* LC -continuous.

Remark 5.4. The converses of the above are not true may be seen by the following examples.

Example 5.5. 1. Let $X=Y=\{a,b,c,d\}, \tau=\{\phi,\{c\},\{a,b\},\{a,b,c\},X\}$ and $\sigma=\{\phi,\{a\},\{a,d\},X\}$. Let f: $X\to Y$ be the identity map. Then f is βg^* LC-continuous but not LC-continuous. Since for the open set {a,d}, f⁻¹{a,d}= {a,d} is not locally closed in X.

2. Let $X=Y=\{a,b,c,d\}, \tau=\{\phi,\{c\},\{a,b\},\{a,b,c\},X\}$ and $\sigma=\{\phi,\{d\},\{a,d\},\{a,c,d\},X\}$. Let f: X \rightarrow Y be the identity map. Then f is βg^* LC-continuous but not βg^* LC^{*}-continuous. Since for the open set {a,c,d}, f⁻¹{a,c,d} = {a,c,d} is not $\beta g^* LC^*$ -closed in X.

3. Let $X=Y=\{a,b,c,d\}, \tau=\{\phi,\{c\},\{a,b\},\{a,b,c\},X\}$ and $\sigma=\{\phi,\{a\},\{a,c\},X\}$. Let f: $X\rightarrow Y$ be the identity map. Then f is βg^* LC-continuous but not βg^* LC^{**}-continuous. Since for the open set {a,c}, f⁻¹{a,c} = {a,c} is not $\beta g^* LC^{**}$ -closed in X.

4. Let $X=Y=\{a,b,c,d\}$, $\tau=\{\phi,\{a,d\},\{b,c\},X\}$ and $\sigma=\{\phi,\{a\},\{a,b\},\{a,b,d\},X\}$. Let f: $X \rightarrow Y$ be the identity map. Then f is βg^* LC -continuous but not glc-continuous. Since for the open set {a,b,d}, f⁻¹{a,b,d} = {a,b,d} is not $\beta g^* LC$ -set in X.

We recall the definition of the combination of two functions: Let $X=A\cup B$ and $f:A\rightarrow Y$ and $h:B\rightarrow Y$ be two functions. We say that f and h are compatible if $fA \cap B = hA \cap B$. If f:A \rightarrow Y and h:B \rightarrow Y are compatible, then the functions $(f \Delta h)(X) = h(X)$ for every $x \in B$ is called the combination of f and h.

Pasting lemma for $\beta g^* LC^{**}$ -continuous (resp. $\beta g^* LC^{**}$ -irresolute) functions.

Theorem 5.6. Let X=AUB, where A and B are βg^* -closed and regular open subsets of (X, τ) and f:(A, τ /B) \rightarrow (Y, σ) and h:(B, τ /B) \rightarrow (Y, σ) be compatible functions.

- a) If f and h are $\beta g^* LC^{**}$ -continuous, then $(f \Delta h): X \rightarrow Y$ is $\beta g^* LC^{**}$ -continuous. b) If f and h are $\beta g^* LC^{**}$ -irresolute, then $(f \Delta h): X \rightarrow Y$ is $\beta g^* LC^{**}$ -irresolute.
- Next we have the theorem concerning the composition of functions.

Theorem 5.7. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ and $g:(Y,\sigma) \rightarrow (Z,\eta)$ be two functions, then

- a) $g \circ f$ is $\beta g^* LC$ -irresolute if f and g are $\beta g^* LC$ -irresolute.
- b) gof is $\beta g^* LC^*$ -irresolute if f and g are $\beta g^* LC^*$ -irresolute.
- c) $g \circ f$ is $\beta g^* L C^{**}$ -irresolute if f and g are $\beta g^* L C^{**}$ -irresolute.
- d) gof is βg^*LC -continuous if f is βg^*LC -irresolute and g is βg^*LC -continuous.
- e) $g \circ f$ is $\beta g^* LC^*$ -continuous if f is $\beta g^* LC^*$ -continuous and g is continuous.
- f) gof is βg^*LC -continuous if f is βg^*LC -continuous and g is continuous.
- g) gof is βg^*LC^* -continuous if f is βg^*LC^* -irresolute and g is βg^*LC^* -continuous.
- h) gof is $\beta g^* LC^{**}$ -continuous if f is $\beta g^* LC^{**}$ -irresolute and g is $\beta g^* LC^{**}$ -continuous.

References

- [1]. Balachandra, K., Sundaram, P. and Maki, H Generalized locally closed sets and GLC-continuous functions, Indian J. Pure Appl Math., 27(3)(1996), 235-244.
- Bourbaki, N. General topology, part I, Addisom-wesley, Reading, Mass., 1966. [2].
- [3]. Dontchev, J. On submaximal spaces, Tamkang J. Math., 26(1995), 253-260.
- [4]. C.Dhanapakyam ,K.Indirani,On β g*closed sets in topological spaces (2016). No.154.
- C.Dhanapakyam, K.Indirani, On β g*continuity in topological spaces(communicated). [5].
- Ganster, M. and Reilly, I. L. Locally closed sets and LC-continuous functions, Internat J. Math. Math. Sci., 12(3)(1989), 417-424. [6].
- [7]. Stone, A. H. Absolutely FG spaces, Proc. Amer. Math. Soc., 80(1980), 515-520.

C.Dhanapakyam." On Decomposition of βg^* Closed Sets in Topological Spaces. IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018) PP: 47-51.