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Abstract: This paper studies about the dynamics of three population species interactions in biological ecology. 

Here, an interaction among two mutualistic preys and one predator populations has been considered. The 

population interaction areas are classified into two: free area and refuge area. In free area only the second prey 

and predator population species exist and interact while in a refuge area only the first prey population species 

exists. In the refuge area the predator population species cannot enter and attack the prey species. However, in 

the refuge area the two preys can interact and help each other. Additionally, in this model proportional 

harvesting function and functional responses are considered among these population interactions.  Based on the 

unique and positive equilibrium points, local and global stability can be determined analytically and 

numerically. Simulation results supporting the analytical part are considered. 
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I. Introduction 
The Lotka -Volterra mathematical model describes mostly the Prey-predator system of population 

interaction in biological ecology [1-2]. In the population model, the well-known study of competing population 

interaction model is Lotka -Volterra two species competitive model. Based on the Lotka –Volterra mathematical 

model of population interaction different models of population interactions of two species have been considered 

and analyzed [3].    

However, different scholars were considered and analyzed the mathematical model of three population 

species interactions in biological ecology theoretically and experimentally. The mathematical model of three 

population species interaction such as two predator and one prey population in which two predators competing 

for food on a single prey and another model which considered two prey and one predator population in which a 

single predator feeding on two competing prey species considered and analyzed. According to these studies, 

different criteria’s were obtained for the system to be persists at the coexistence of equilibrium point (4). 

To keep the persistence of the population species or the coexistence of species in ecology, there are 

different possible techniques such as stop harvesting, constructing reserved zones or refuges etc. which should 

be taken so that to save the species grow in the areas without disturbances. The roles of such kind of measures 

were studied by different scholars. However, the importance of reserved zones or refuges in prey-predator 

dynamics brings a major interest to the researchers. Here, the reserved zones or refuges can stabilize or 

unstabilize the coexistences of the population species in biological ecology [5–11].  

A predator -prey model that can be incorporate a prey refuge and independent harvesting on either 

species was considered and studied by [17]. In this study, he observed and analyzed that harvesting function can 

destroy cyclic behavior of the dynamical system. 

The role of reserved zone or a refuge on the dynamics of predator-prey system with Holling type I 

predator dependent functional response was investigated by the researcher called Dubey. According to this 

study, he concluded that the biologically interested equilibrium point or the positive equilibrium point, 

whenever exists, is always globally stable. This indicates that reserve zone has a stabilizing effect on the 

predator-prey population dynamics in ecology [6].  

The work done by Dubey was modified by [12]. In this study, he considered and analyzed the 

dynamical behavior of a prey-predator population species with a reserved area where the predator functional 

response has been taken to be Holling type II functional responses.   

In this paper, the interactions of two mutualistic prey populations and one predator have been 

considered. The populations are interacting in two areas: free area and refuge or a reserved area. According to 

this, it is considered that the second prey and the predator population exist and interact in free area while the 
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first prey lives in a refuge area. In the free area, it is not possible for the predator to enter and attack the first 

prey.  

 

Assumptions of the model  
The following assumptions have been considered in order to construct the current model. 

(a) There are three populations: two preys whose population densities are 𝑁1 and 𝑁2, and one predator whose 

population density is denoted by 𝑁3. 

(b) In absence of the predator the second prey population grows according to logistic law of growth. 

(c) In absence of the second prey the predator population grows logistically. 

(d) Two prey species help each other or there is mutualistic interaction between them.  

(e) The first prey population helps the second prey population according to type I functional response and the 

second prey population helps the first prey population according to type II functional response. 

(f) The first prey population lives in a refuge or in a reserved zone. 

(g) It is impossible for the predator to enter and attack the first prey population.  

(h) The second prey and the predator interact according to type II functional response. 

(i) It is assumed that the predator population has alternative food. That is, the predator does not depend on the 

second prey alone for food to survive. 

(j) The second population species are harvested with density dependent function or proportionally harvested. 

The following flow diagram represents the interactions among the three species based on the above 

assumptions: 

 

 

 
Figure 1 Interaction among two mutualistic preys 𝑵𝟏,  𝑵𝟐 and one predator 𝑵𝟑 

 

The variables  
The following variables are used in this model: 

i. 𝑁1(𝜏) – The density of the first population at time  𝜏. 

ii. 𝑁2(𝜏) – The density of the second population at time  𝜏. 

iii. 𝑁3(𝜏) – The density of the third population at time  𝜏. 

Here, the variables   𝑁1 𝜏 ,   𝑁2 𝜏   and   𝑁3 𝜏  are dependent variables and time 𝜏 is independent variable. In 

this paper, for the simplicity we can let  𝑁1 𝜏 , 𝑁2 𝜏   and   𝑁3 𝜏   be represented as  𝑁1 , 𝑁2  and 𝑁3. 

 

The parameters  

The following parameters are used in this model: 

i. The parameters  𝑟1 , 𝑟2  and   𝑟3   are the intrinsic growth rate of the first, second and third population 

respectively. 

ii. The parameters  𝑎12   and  𝑎21   are the positive impacts of the second populations on the first population 

and vice versa respectively. 

iii.   is helping time  

iv. The parameters  𝑘1, 𝑘2  and  𝑘3  are the carrying capacity of the first, second and third populations 

respectively. 

v. The parameters  𝑞2    and   𝐸2   are the catch ability and the effort applying on the second population 

respectively. 

vi. The parameters   𝑏23   and   𝑏32   are the negative impact of the third populations on the second 

population and positive impact of the second population on the third population respectively. 
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II. The model formulations 
In this section, the three population species of two preys and a predator interaction have been 

described. This interaction consists of the interaction among two mutualistic preys and a predator. These 

populations interact in two areas: refuge and free area.  From the model description, assumptions, definition of 

variables and parameters the dynamics of the three populations represent the following nonlinear differential 

equations:  

  
𝑑𝑁1

𝑑𝜏
= 𝑟1𝑁1  1 −

𝑁1

𝑘1
 +  

𝑎12𝑁1𝑁2

1+𝑎12𝑁1
                                                                                      (1) 

𝑑𝑁2

𝑑𝜏
= 𝑟2𝑁2  1 −

𝑁2

𝑘2
 + 𝑎21𝑁2𝑁1  − 𝑞2𝐸2𝑁2  −    

𝑏23 𝑁3𝑁2

1+𝑏23𝑁2
                                               (2)               

𝑑𝑁3

𝑑𝜏
= 𝑟3𝑁3  1 −

𝑁3

𝑘3
 +  

𝑏32𝑁3𝑁2

1+𝑏23𝑁2
                                                                                       (3) 

The system of differential equations (1) – (3) represents the interaction of two mutualistic prey and predator 

population.  

 

III. Normalization of the model 
In order to reduce the number of parameters, we transform the system of equations (1) – (3) to the non 

dimensional form by using the following transformation of the variables. In this case let as assume  𝑁1 = 𝑘1𝑥,
𝑁2 = 𝑘2𝑦, 𝑁3 = 𝑘3𝑧   and   𝜏 =  1 𝑟1   𝑡   then, the original system of equation can be written as:  
𝑑𝑥

𝑑𝑡  
= 𝑥  1 − 𝑥 +  

𝛼12𝑥𝑦

1+𝛿1𝑥
                                                                                                          (4) 

𝑑𝑦

𝑑𝑡  
= 𝛿2𝑦  1 − 𝑦 + 𝛼21𝑦𝑥 − 𝛿3𝑦 −    

𝛿23𝑧𝑦

1+𝛿𝑦
                                                                           (5)                                                                              

𝑑𝑧

𝑑𝑡
= 𝛾1𝑧  1 − 𝑧 +  

𝛿32𝑧𝑦

1+𝛿𝑦
                                                                                                        (6) 

In the scaled equations (4) – (6) some notations are used to represent expressions as:   𝛼12 =  𝑎12𝑘2 𝑟1  ,  𝛿1 =
 𝑎12𝑘1 ,   𝛿2 =  𝑟2 𝑟1  ,   𝛼21 =  𝑎21𝑘1 𝑟1  ,    𝛿3 =  𝑞2𝐸2 𝑟1  ,   𝛿23 =  𝑏23𝑘3 𝑟1  ,   𝛿 = 𝑏23𝑘2  ,   𝛾1 =
 𝑟3 𝑟1  ,   𝛿32 =  𝑏32𝑘2 𝑟1  . 

 

IV. Positivity of the solutions 
Proposition 1 All solutions  𝑥 𝑡 ,   𝑦 𝑡    and  𝑧 𝑡   of the system of equation (4), (5) and (6) with positive 

initial conditions      𝑥0 , 𝑦0 , 𝑧0   are positive for all   𝑡 ≥ 0. 

Proof: The system of differential equation(4) can be given as, 𝑑𝑥 𝑑𝑡 = 𝑥  1 − 𝑥 +  
𝛼12𝑦

1+𝛿1𝑥
  . In this equation, 

𝑥 and 𝑦 are the function of   𝑡. So by using change of variables and performing some algebraic manipulations, 

the solution of this differential equation can be obtained as: 𝑥 𝑡 = 𝑥0  𝑒𝑥𝑝   1 − x 𝑠 +  
𝛼12𝑌 𝑠 

1+𝛿1𝑋 𝑠 
  

𝑡

0
𝑑𝑠. Here, 

𝑥0 is the density of the initial population of the first species at time  𝑡 = 0. For every time  𝑡, the exponential 

function of 𝑒𝑥𝑝   1 − x 𝑠 +  
𝛼12𝑌 𝑠 

1+𝛿1𝑋 𝑠 
  

𝑡

0
𝑑𝑠 is always positive. Therefore, the solution of  𝑥 𝑡 =

𝑥0  𝑒𝑥𝑝   1 − x 𝑠 +  
𝛼12𝑌 𝑠 

1+𝛿1𝑋 𝑠 
  

𝑡

0
𝑑𝑠   of the model is positive for all 𝑡.  

 Similarly, the solution of an equation (5),   
𝑑𝑦

𝑑𝑡  
= 𝑦  𝛿2 − 𝛿2𝑦+𝛼21𝑥 − 𝛿3  −    

𝛿23𝑧

1+𝛿𝑦
    can be obtained 

as  𝑦 𝑡 = 𝑦0  𝑒𝑥𝑝   𝛿2 − 𝛿2𝑦 𝑠 + 𝛼21𝑥 𝑠 − 𝛿3 −  
𝛿23𝑧 𝑠 

1+𝛿𝑦 𝑠 
  

𝑡

0
𝑑𝑠. Here,  𝑦0   is the initial population of the 

second species at 𝑡 = 0. The exponential function in the solution of 𝑦 𝑡  is always positive for all time 𝑡. 

Therefore, the solution   𝑦 𝑡 = 𝑦0  𝑒𝑥𝑝   𝛿2 − 𝛿2𝑦 𝑠 + 𝛼21𝑥 𝑠 − 𝛿3 −  
𝛿23𝑧 𝑠 

1+𝛿𝑦 𝑠 
  

𝑡

0
𝑑𝑠 is always positive for 

all  𝑡.  

Finally, consider the equation (6),   
𝑑𝑧

𝑑𝑡
= 𝑧  𝛾1 − 𝛾1𝑧 +  

𝛿32𝑦

1+𝛿𝑦
  . The solution of this equation can be obtained 

as   𝑧 𝑡 = 𝑧0 𝑒𝑥𝑝   𝛾1 − 𝛾1𝑧 𝑠  +  
𝛿32𝑦 𝑠 

1+𝛿𝑦 𝑠 
  𝑑𝑠

𝑡

0
. Here also the constant 𝑧0  is the initial population of the 

third species at 𝑡 = 0 and the exponential function is also positive for all  𝑡. Therefore, the solution  𝑧 𝑡 =

𝑧0 𝑒𝑥𝑝   𝛾1 − 𝛾1𝑧 𝑠  +  
𝛿32𝑦 𝑠 

1+𝛿𝑦 𝑠 
  𝑑𝑠

𝑡

0
  is always positive for all  𝑡.  

Hence, from the above three conditions the solutions 𝑥 𝑡  , 𝑦 𝑡   and 𝑧 𝑡 of the model equation (4) – (6) are 

positive for all  𝑡 ≥ 0.  
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V. Boundedness of the solutions 
Lemma1. From the equation (4), the differential equation   𝑑𝑋 𝑑𝑡 ≤ 𝑥[1 − x(1 − 𝛿1)]   if   𝛿1𝑥2 − 𝛼12𝑦 > 0. 

Proof: From the differential equation (4), the system of equation can be given as 
𝑑𝑥

𝑑𝑡  
= 𝑥 1 − 𝑥 +  

𝛼12𝑥𝑦

1+𝛿1𝑥
 . 

Now, this equation can be written as    
𝑑𝑥

𝑑𝑡  
=  

𝑥  1−𝑥  1+𝛿1𝑥 +𝛼12𝑦 

1+𝛿1𝑥
  . It is clear that  𝑑𝑥 𝑑𝑡 ≤ 𝑥  1 − 𝑥  1 +

𝛿1𝑥+𝛼12𝑦= 𝑥1+𝛿1𝑥−x1+𝛿1𝑥+𝛼12𝑦. Now, 𝑑𝑥𝑑𝑡=𝑥[1−x(1−𝛿1)−(𝛿1𝑥2−𝛼12𝑦  ≤𝑥[1−x(1−𝛿1)]    if  
𝛿1𝑥2−𝛼12𝑦>0 is satisfied. Therefore,    𝑑𝑥𝑑𝑡≤𝑥1−x1−𝛿1    if  𝛿1𝑥2−𝛼12𝑦>0. 

Theorem 1: All solution of  𝑥 𝑡  , 𝑦 𝑡  and  𝑧 𝑡  of the system of model equation (4) – (6) together with initial 

condition    𝑥0 , 𝑦0 , 𝑧0   bounded with in a region   ℜ =   𝑥, 𝑦, 𝑧 : 0 ≤ 𝑥 𝑡 ≤  1  1 − 𝛿1    ,   0 ≤ 𝑦 ≤

1+𝛼21𝛿21−𝛿1,  0≤ 𝑧𝑡≤1+ 𝛼21𝛾1𝛿+𝛿32𝛾1𝛿21−𝛿1 . 

 Proof: Boundedness of 𝑥(𝑡): From lemma 1, the differential equation    𝑑𝑥 𝑑𝑡 ≤ 𝑥[1 − x(1 − 𝛿2)] . So by 

using partial fraction method, the solution of  𝑥(𝑡) is given as:  𝑥 𝑡 ≤  𝑐𝑒𝑡  1 + (1 − 𝛿1)𝑐𝑒𝑡   . Here, c is a 

constant obtained after substituting the initial condition and is given by 𝑐 =  𝑥0  1 − 𝑥0(1 − 𝛿1)    . Then, by 

using limit as 𝑡 → ∞ the solution 𝑥 𝑡  converges to    1  1 − 𝛿1      for all  𝛿1 < 1.  This shows that the solution 

of the given equation is bounded for all  𝑡 ≥ 0.  

Boundedness of  𝑦(𝑡): From the system of equation (5), 

  𝑑𝑦 𝑑𝑡 = 𝛿2𝑦 1 − 𝑦 + 𝛼21𝑦𝑥 − 𝛿3𝑦 −    𝛿23𝑧𝑦  1 + 𝛿𝑦   . In fact this differential equation can be written as 

 𝑑𝑦 𝑑𝑡 ≤ 𝑦 𝛿2 + 𝛼21𝑥 − 𝛿2𝑦 .  However, from the first model equation, we have the solution of  𝑥 𝑡 ≤

 1  1 − 𝛿1    . Thus, the solution of the equation (5) can be given as 𝑦 𝑡 ≤  
𝑐𝑒  𝛿2+ 𝛼21  1−𝛿1    𝑡   𝛿2+ 𝛼21  1−𝛿1    

1+𝑐𝛿2𝑒  𝛿2+ 𝛼21  1−𝛿1    𝑡    

where  𝑐  is a constant obtain after substituting the initial condition and is given by  𝑐 =  
𝑦0

 𝛿2+ 𝛼21  1−𝛿1    −𝑦0𝛿2
   . 

Then, by using limit as 𝑡 → ∞ the solution 𝑦 𝑡  converges to  1 +  𝛼21  𝛿2 1 − 𝛿1       for all  𝛿1 < 1. This 

shows that the solution is bounded from above for all  𝑡 ≥ 0.  

Boundedness of 𝑧(𝑡): Similarly, from the equation (6), it is given 

that   𝑑𝑧 𝑑𝑡 = 𝛾1𝑧 1 − 𝑧 +  𝛿32𝑧𝑦  1 + 𝛿𝑦   .  In fact from the system of equation (6),    𝑑𝑧 𝑑𝑡 ≤
𝑧 𝑎 − 𝛾1𝑧   where   𝑎 = 𝛾1 +  𝛾1𝛿 + 𝛿32 𝑦  can be obtained.  However, from the boundedness of the equation 

(5),  𝑦 = 1 +   𝛼21 𝛿2 1 − 𝛿1    . The solution of the equation (6) can be given as  

𝑧 𝑡 ≤  𝑎𝑐𝑒𝑎𝑡  1 + 𝑐𝑒𝑎𝑡 𝛾1    . Here, 𝑐 is a constant obtain after substituting the initial condition and is given 

as 𝑐 = 𝑧0  𝑎 − 𝑧0𝛾1   . Then, by using limit as 𝑡 → ∞ the solution 𝑧 𝑡  converges to  

1 +  𝛼21 𝛾1𝛿 + 𝛿32 𝛾1𝛿2 1 − 𝛿1     for all  𝛿1 < 1.  

Therefore, from the above all cases the solutions are bounded from above for all 𝑡 ≥ 0. 

 

VI. The existence of equilibrium points 
In this section, the conditions for the existence of the equilibrium points of the system can be identified and 

established as the following way. 

1. 𝐸0 =  0, 0, 0  Trivial equilibrium point. 
2. 𝐸1 =  1, 0, 0    
3. 𝐸2 =  0, 𝑦2 , 0   where 𝑦2 =  1 −  𝛿3 𝛿2   > 0 if  𝛿2 > 𝛿3 

4. 𝐸3 =  0, 0, 1   

5.  𝐸4 =  𝑥4 , 𝑦4 , 0  . The predator population free equilibrium point  Here, 

𝑥4 =   𝛿3 + 𝛿2 𝑦4 − 1  𝛼21  > 0  𝑖𝑓 𝑦4 > 1 𝑜𝑟  𝑦4 < 1 𝑎𝑛𝑑 𝛿3 > 𝛿2(𝑦4 − 1), 𝑦4 =  𝑥4 − 1  1 + 𝛿1𝑥4 𝛼12    
for 𝑥4 > 1 and  𝑧4 = 0 

6.  𝐸5 =  0, 𝑦5 , 𝑧5   The first prey populations free equilibrium point. Here,  

𝑦5 =  𝛾1𝑧5 𝑧5 − 1  𝛿32 − 𝛾1𝛿𝑧5 + 𝛾1𝛿   > 0,  𝑧5 > 1 and 𝛿32 > 𝛾1𝛿𝑧5 + 𝛾1𝛿 

and 𝑧5 =  𝛿2 − 𝛿2𝑦5 − 𝛿3  1 + 𝛿𝑦5 𝛿23 > 0, if 𝛿2 − 𝛿2𝑦5 − 𝛿3 > 0. 

7. 𝐸6 =  1, 0, 1  The second prey population free equilibrium point 

8. 𝐸7 =  𝑥7 , 𝑦7 , 𝑧7   Coexistence equilibrium point. Here, after some algebraic manipulation, the 

following solutions have been obtained:  𝑦7 =  𝛾1𝑧7 𝑧7 − 1  𝛿32 + 𝛾1𝛿 1 − 𝑧7    > 0   𝑤𝑒𝑟𝑒   𝛿32 +
𝛾1𝛿 >𝛾1𝛿𝑧7 ,  𝑧7>1 and 𝑥7=−𝑏±𝑏2−4𝑎𝑐2𝑎  provided that 𝑎=𝛿1, 𝑏=1−𝛿1 and 𝑐=− 1+𝛼12𝑦7). Here, 

there are two possibilities for   𝑥7 : 𝑥∗
1 =   −𝑏 +  𝑏2 + 4𝑎𝑐 2𝑎  > 0 for 𝑏 > 0  or 

𝑥∗
2 =   𝑏 +  𝑏2 + 4𝑎𝑐 2𝑎  > 0 for 𝑏 < 0. Since, 1 − 𝛿1 > 0 only the first solution can be the possible 

solution. Further,  𝑧7 =   𝛿2 − 𝛿2𝑦7 − 𝛿3 + 𝛼21𝑥7 (1 + 𝛿𝑦7) 𝛿23  > 0 for 𝛿2 − 𝛿2𝑦7 − 𝛿3 + 𝛼21𝑥7 > 0. 
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VII. Local stability analysis 
         The local and asymptotically stability of an equilibrium point can be determined by constructing the 

community matrix for the model equation and finding the eigenvalues of the matrix at each equilibrium point. 

According to this, from the model equations (5) – (6), there is the community matrix that determines the 

dynamical behavior of the system and is given as following:  

𝐽 =

 

 
 

𝜕𝑓

𝜕𝑥

𝜕𝑓  

𝜕𝑦

𝜕𝑓  

𝜕𝑧

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧  

 
 

                                                                                                      (7) 

Here in (7) the partial derivatives have the following expressions: 

    
𝜕𝑓

𝜕𝑥
= 1 − 2𝑥 +  

𝛼12𝑦

 1+𝛿1𝑥 𝟐
  ;   

𝜕𝑓  

𝜕𝑦
=

𝛼12𝑥

1+𝛿1𝑥
 ;   

𝜕𝑓  

𝜕𝑧
= 0 ;  

𝜕𝑔

𝜕𝑥
= 𝛼21𝑦 ;   

𝜕𝑔

𝜕𝑦
= 𝛿2 − 2𝛿2y + 𝛼21𝑥 − 𝛿3 −

𝛿23𝑧

(1+𝛿𝑦)2  ;    
𝜕𝑔

𝜕𝑧
=

𝛿23𝑦

1+𝛿𝑦
 ;  

𝜕

𝜕𝑥
= 0 ;  

𝜕

𝜕𝑦
=

𝛿32𝑧

(1+𝛿𝑦)2    ;  
𝜕

𝜕𝑧
= 𝛾1 − 2𝛾1𝑧 +

𝛿32𝑦

1+𝛿𝑦
  . 

 

Theorem 2: The trivial equilibrium point  𝐸0 and the boundary equilibrium points 𝐸1  , 𝐸2 and 𝐸3 are unstable.  

Proof: Stability of   𝐸0: The community matrix at the equilibrium point 𝐸0  can be given 

as   𝐽 =  
1 0 0
0 δ2 − δ3 0
0 0 𝛾1

 . So, from the characteristics equation of this matrix, the following eigenvalues are 

obtained   𝜆1 = 1 > 0 , 𝜆2 = δ2 − δ3 > 0 and   𝜆3 = 𝛾1 > 0. This indicates, all eigenvalues are positive which 

tell us that the system is unstable.   

Stability of  𝐸1: Similarly the community matrix at the equilibrium point  𝐸1 is given 

as  𝐽 =  
−1 𝛼12  1 + δ1  0
0 δ2 − α21 − δ3 0
0 0 𝛾1

 . From the characteristic equation of this matrix, an eigenvalues of 𝜆1 =

−1 < 0 , 𝜆2 = δ2 − α21 − δ3 and  𝜆3 = 𝛾1 > 0  are obtained. Thus for every value of 𝜆2  the behavior of the 

system of equation at the given equilibrium point is saddle point which is unstable in general.  

Stability of  𝐸2: By following the same procedure, from the community matrix at the equilibrium point  𝐸2   the 

following eigenvalues are obtained as  𝜆1 = 1 + 𝛼12  𝑦2 > 0 , 𝜆2 = −𝛿2 + 𝛿3 < 0 

and  𝜆3 = 𝛾1 +  𝛿32  𝑦2  1 + 𝛿 𝑦2 2  > 0. Therefore, from the values of an eigenvalues the system is stable in 

the direction of  𝑦  and unstable in the direction of  𝑥  and  𝑧. In general, the system at the given equilibrium 

point is saddle point which is unstable.  

Stability of  𝐸3: Similarly, from the community matrix at the equilibrium point  𝐸3 there exists an eigenvalues 

of  𝜆1 = 1 > 0 , 𝜆2 = 𝛿2 − 𝛿3 − 𝛿23   and  𝜆3 = −𝛾1 < 0. Thus, it is clear that the system is stable in the 

direction of  𝑧, unstable in the direction of  𝑥  and unstable in the direction of  𝑦  if  𝛿2 − 𝛿3 − 𝛿23 > 0 or stable 

in the direction of  𝑦  if  𝛿2 − 𝛿3 − 𝛿23 < 0 . Since, one eigenvalues is positive, the system of equation is saddle 

point which is unstable in general. 

Theorem 3: The predators free equilibrium point  𝐸4  and the first prey free equilibrium points  𝐸5   are saddle 

point which are unstable in general. 

Proof:  Stability of  𝐸4: The community matrix at the equilibrium point  𝐸4   can be given as  𝐽 =  

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

  

where    𝑎1 = 1 − 2 𝑥4 +  𝛼12  𝑦4  1 + 𝛿1 𝑥4 𝟐  =  𝑥4   𝛿1 1 − 2 𝑥4 − 1 < 0 , 𝑎2 =  𝛼12  𝑥4  1 + 𝛿1 𝑥4   >
0 , 𝑎3 = 0 = 𝑎7 = 𝑎8  , 𝑎4 = 𝛼21  𝑦4 > 0 , 𝑎5 = −𝛿2 𝑦4 < 0 , 𝑎6 =  𝛿23  𝑦4  1 + 𝛿 𝑦4   > 0 , 𝑎9 = 𝛾1 +
 𝛿32   𝑦4  1 + 𝛿 𝑦4   > 0. Now, from the characteristics equation of this matrix, the following eigenvalues are 

obtained   𝜆1 =   𝑎1+𝑎5  +  (𝑎1−𝑎5)2 + 4𝑎2𝑎4  2  , 𝜆2 =   𝑎1+𝑎5  −  (𝑎1−𝑎5)2 + 4𝑎2𝑎4  2     and   𝜆3 =

𝛾1 +  𝛿32  𝑦4  1 + 𝛿 𝑦4   > 0. Here, since both  𝑎1   and  𝑎5  are negative  𝑎1 + 𝑎5 < 0 . So, the eigenvalues are 

𝜆1 > 0  or,   𝜆2 < 0  and  𝜆3 > 0.  To determine the stability of the system there are two options: (i) 𝜆1 , 𝜆3 > 0  
and  𝜆2 < 0  (ii)  𝜆1 , 𝜆2 < 0  and   𝜆3 > 0.  In both the cases the system is saddle point which is unstable in 

general. 

Stability of 𝐸5: Similarly, the community matrix at the equilibrium point  𝐸5   can be given 

as 𝐽 =  

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

  where  𝑎1 = 1 + 𝛼12  𝑦5 > 0 ,  𝑎2 = 0 , 𝑎3 = 0 = 𝑎7  , 𝑎4 = 𝛼21  𝑦5 > 0 ,  𝑎5 =

  −𝛿2 𝑦5 + 𝛿 𝑦5 𝛿2 − 𝛿2 𝑦5 − 𝛿3   1 + 𝛿 𝑦5    ,  𝑎6 =  𝛿23  𝑦5  1 + 𝛿 𝑦5   > 0  ,
𝑎8 =  𝛿32  𝑧5  1 + 𝛿 𝑦5 2  > 0  , 𝑎9 = 𝛾1 − 2𝛾1 𝑧5 +  𝛿32  𝑦5  1 + 𝛿 𝑦5   . Thus, after performing some 

algebraic manipulations the eigenvalues are obtained as 
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  𝜆1 = 1 + 𝛼12  𝑦5 > 0  

𝜆2 =   𝑎9 + 𝑎5  +  (𝑎5 − 𝑎9)2 + 4𝑎6𝑎8  2  

 𝜆3 =   𝑎9 + 𝑎5  −   𝑎5 − 𝑎9 
2 + 4𝑎6𝑎8  2  .  

Here, there are three cases to determine the values of the eigenvalues of the above community matrix based 

on 𝑎9 + 𝑎5 . 

Case I. For   𝑎9 + 𝑎5 > 0  , then, an eigenvalues of  𝜆2 > 0  and  𝜆3 < 0 𝑜𝑟 > 0  are obtained. In this case there 

are two possibilities:  𝜆1 , 𝜆2  and 𝜆3 > 0 which is unstable or   𝜆1  , 𝜆2 > 0  and   𝜆3 < 0  which is saddle point. 

Case II. For  𝑎9 + 𝑎5 < 0 , the eigenvalues are 𝜆2 > 0 𝑜𝑟 < 0 and 𝜆3 < 0 .  Here, again there are two 

possibilities based on the values of eigenvalues: 𝜆1 > 0 , 𝜆2 < 0 and   𝜆3 < 0  which is a saddle point; and  

𝜆1, 𝜆2 > 0  and 𝜆3 < 0  which is also a saddle point. However, in both the cases the dynamical system is saddle 

point which is unstable. 

Case III.  For 𝑎9 + 𝑎5 = 0 the eigenvalues are 𝜆1 , 𝜆2 > 0  and  𝜆3 < 0.  So the system under this condition is 

also a saddle point. 

Theorem 4: The second prey free equilibrium point  𝐸6  is saddle point if  𝑎5 = 𝛿2 − 𝛿3 + 𝛼21 − 𝛿23 > 0 and 

locally asymptotically stable if 𝑎5 = 𝛿2 − 𝛿3 + 𝛼21 − 𝛿23 < 0. 

Proof: Stability of  𝐸6 :The community matrix at the given equilibrium point can be represented as 𝐽 =

 

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

   where   𝑎1 = −1 < 0 ,  𝑎2 =  𝛼12  1 + 𝛿1   > 0 , 𝑎3 = 𝑎6 = 𝑎7 = 𝑎4 = 0 =  𝑎5 = 𝛿2 − 𝛿3 +

𝛼21 − 𝛿23 = 𝑎8 = 𝛿32 > 0, 𝑎9 = −𝛾1 < 0. Here, 𝜆1 = −1 < 0,  𝜆2,3 =
(𝑎9+𝑎5 )± (𝑎5−𝑎9)2

2
  which are 

𝜆2 = 𝑎5 > 𝑜𝑟 < 0  and 𝜆3 = 𝑎9 < 0. Here, based on the second eigenvalues 𝜆2 there are two cases: 

i. 𝜆1 < 0 , 𝜆2 > 0 and  𝜆3 < 0  

ii. 𝜆1 < 0 , 𝜆2 < 0 and  𝜆3 < 0  

From the first case, it is clear that the system is saddle point and from the second case, since all eigenvalues are 

negative it is observed that the system is locally asymptotically stable. 

Theorem 5: The coexistence equilibrium point  𝐸7  is locally asymptotically stable. 

Proof:  Stability of   𝐸7: The community matrix at the coexistence equilibrium point can be given as  𝐽 =

 

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

    where   𝑎1 = 1 − 2 𝑥7 +  
𝛼12  𝑦7

 1+𝛿1  𝑥7 𝟐
  , 𝑎2 =  

𝛼12  𝑥7

1+𝛿1  𝑥7
 > 0 , 𝑎3 = 0 = 𝑎7  , 𝑎4𝛼21  𝑦7 > 0 ,

𝑎5 = 𝛿2 − 2𝛿2 𝑦7 + 𝛼21  𝑥7 − 𝛿3 −  
𝛿23  𝑧7

(1+𝛿  𝑦7)2 = −𝛿2 𝑦7 < 0 ,  𝑎6 =  
𝛿23  𝑦7

1+𝛿  𝑦7
 > 0 ,  𝑎8 =  

𝛿32  𝑧7

(1+𝛿  𝑦7)2 > 0 , 𝑎9 =

𝛾1 − 2𝛾1 𝑧7 +  
𝛿32  𝑦7

1+𝛿  𝑦7
 . In this case, the local stability of such kind of system can be obtained by using Routh – 

Hurwitz criteria. According to this criterion, the characteristics equation of the community matrix at the given 

equilibrium point can be written as: 

λ3 + Aλ2 + Bλ + C = 0                                                                          (8) 

Here in (8),     𝐴 = − 𝑎1 + 𝑎5 + 𝑎9  , 𝐵 = − 𝑎6𝑎8 − 𝑎1𝑎5 − 𝑎1𝑎9 − 𝑎5𝑎9 + 𝑎2𝑎4 + 𝑎3𝑎7  and 𝐶 = −
  𝑎1𝑎9𝑎5 − 𝑎1 𝑎6𝑎8 − 𝑎2 𝑎4𝑎9 + 𝑎2 𝑎6𝑎7 + 𝑎3 𝑎4𝑎8 − 𝑎3 𝑎7𝑎5 . The objective of this criterion is, to find the 

roots of the characteristics equation without solving it. Here, the stability of the system can be determined by 

using a great mathematician Routh - Hurwitz criteria. According to this, if the root lies on the left half of a plane 

then the system is stable. In other word, from the equation (8), the system is stable if  𝐴 > 0 , 𝐶 > 0  and  𝐴𝐵 >
𝐶. 

 

VIII. Global Stability by Using Lyapunov Quadratic Function 
Theorem 6: The coexistence equilibrium point  𝐸7  is globally asymptotically stable for   −𝑥2 − 𝑧2 + 𝑐 < 0 

Proof: Consider the community matrix at the coexistence equilibrium point  𝐸7  which can be given as:  

𝑋′ = 𝑀𝑋                                                                                                          (9) 

Here, in (9), the matrix notations used are   𝑋′ = (𝑥 ′   𝑦′  𝑧′ ),  𝑀 =  

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

  and 𝑋 = (𝑥,   𝑦,   𝑧)𝑇 . The 

objective here is to study the dynamical behavior of   𝑋′ = 𝑀𝑋 by Lyapunov direct method. Consider a 

quadratic Lyapunov function candidate as   𝑉 𝑋 = 𝑋𝑇𝑝𝑋. Here p is a real symmetric positive definite matrix. 

Let the matrix  𝑝 is of the form  𝑝 =  

𝑝11 𝑝12 𝑝13

𝑝12 𝑝22 𝑝23

𝑝13 𝑝23 𝑝33

  . Now, Lyapunov equation of the form  𝑝𝑀 + 𝑀𝑇𝑝 =

−Q  can be used to find the entries of  𝑝. Here  𝑄 is any symmetric positive matrix and without loss of generality 

it can be selected as  Q = I3.  Thus, on solving Lyapunov equation and after performing some algebraic 

operations the entries of matrix 𝑝 are obtained as:  
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 𝑝11 = − 1 𝑎1     1 2  + 𝑝12𝑎4  , 𝑝22 = − 1 𝑎5    1 2  + 𝑝13𝑎2 + 𝑝33𝑎8  , 𝑝33 = − 1 𝑎9    1 2  +
𝑝23𝑎6 ,  𝑝12=−1𝑎1+𝑎5𝑝11𝑎2+𝑝13𝑎8+𝑝22𝑎4 ,  𝑝13=−1𝑎1+𝑎9𝑝12𝑎6+𝑝23𝑎4 , 𝑝23=−1𝑎5+𝑎9 
 𝑝22𝑎6+𝑝33𝑎8 .  

Here, it is straight forward to verify that the six elements  𝑝11  , 𝑝12  , 𝑝13  , 𝑝23  , 𝑝22   and  𝑝33  are all positive 

quantities. Recall that a matrix 𝑝 is said to be a real symmetric positive definite matrix if the determinant of each 

of the minor of the matrix p are positive: That is,   if 

   𝑝11 > 0 ,  
𝑝11 𝑝12

𝑝12 𝑝22
 > 0  𝑓𝑜𝑟   𝑝11𝑝22 − 𝑝12

2 > 0  and      

𝑝11 𝑝12 𝑝13

𝑝12 𝑝22 𝑝23

𝑝13 𝑝23 𝑝33

  > 0  for    𝑝11 𝑝33𝑝22 −

𝑝232−𝑝12𝑝12𝑝33−𝑝13𝑝23+𝑝13𝑝12𝑝23−𝑝13𝑝22>0. 

Hence, the eigenvalues of matrix   𝑝  also positive and thus the matrix  𝑝 is a positive definite. So the Lyapunov 

function that is defined by the equation  𝑉 𝑋 = 𝑋𝑇𝑝𝑋  and also can be expressed as: 

𝑉 𝑥 𝑦 𝑧 = 𝑥 𝑥𝑝11 + 𝑦𝑝12 + 𝑝13𝑧 + 𝑦 𝑥𝑝12 + 𝑦𝑝22 + 𝑝23𝑧 + 𝑧(𝑝13𝑥 + 𝑦𝑝23 + 𝑧𝑝33).  

Here, it is observed that  𝑉 𝑥, 𝑦, 𝑧   is a positive function since    𝑥, 𝑦, 𝑧   is an interior equilibrium point 

 𝑥, 𝑦  and  𝑧 are positive quantities. 

    Now, the time derivative of 𝑉 𝑋  is given by  𝑉 ′ 𝑥, 𝑦, 𝑧 =  𝜕𝑉 𝜕𝑥   𝑑𝑥 𝑑𝑡  +  𝜕𝑉 𝜕𝑦   𝑑𝑦 𝑑𝑡  +
 𝜕𝑉 𝜕𝑧   𝑑𝑧 𝑑𝑡    and it reduces to the form as  𝑉 ′ 𝑥, 𝑦, 𝑧 = −𝑥2 − 𝑧2 + 𝑐.  Here  𝑐 = 2𝑦2 𝑝12𝑎2 + 𝑝23𝑎8 +
𝑝22𝑎5+2𝑦𝑧𝑝13𝑎2.  Now, the Lyapunov function  𝑉′𝑥,  𝑦,  𝑧 is negative if  

i. If   𝑐 < 0   then the negativity of   𝑉 ′ 𝑥, 𝑦, 𝑧   is trivial 

ii. If  𝑐 > 0 then  𝑉 ′ 𝑥, 𝑦, 𝑧  is negative if   −𝑥2 − 𝑧2 + 𝑐 < 0  
Hence, the differential of Lyapunov function   𝑉 ′ 𝑋   is negative if the above two conditions are satisfied.  

      Recall that an equilibrium point is said to be globally asymptotically stable if the Lyapunov function   𝑉 𝑋   
satisfies the following three conditions on the entire state space: 

(i) 𝑉 𝑋  is positive definite 

(ii)  its time derivative 𝑉 ′ 𝑋  is negative and 

(iii)  The function  𝑉 𝑋  → ∞  as   |𝑋| → ∞. 

    Thus, the following result: It is all ready shown that the Lyapunov function  𝑉 𝑋   satisfies all the cited three 

conditions in case of the interior equilibrium point. Hence,  𝐸7  is globally asymptotically stable based on the 

above two conditions. 

 

IX. Numerical simulation 
In this paper, we studied the dynamical behaviors of two mutualistic prey and one predator system with 

a prey refuge. Holling type I and type II functional response and proportional harvesting is taken to represent the 

interaction among the three population species. The coexistences of three population species are shown below 

by using numerical simulation at different initial population. Figure 2-4 shows the dynamical behavior of the 

three population species at different initial population with time 𝑡. Moreover, from the above simulation study 

we observed the following results 

 

 
Figure 2 the dynamics of  𝒙, 𝒚 and 𝒛 versus time  𝒕 at  𝜶𝟏𝟐 = 𝟎. 𝟏 , 𝜹𝟏 = 𝟎. 𝟐𝟓 , 𝜹𝟐 = 𝟏 , 𝜶𝟐𝟏 = 𝟎. 𝟏 , 𝜹𝟑 =

𝟎. 𝟐 , 𝜹𝟐𝟑 = 𝟏 , 𝜹 = 𝟎. 𝟓 , 𝜸𝟏 = 𝟎. 𝟐 , 𝜹𝟑𝟐 = 𝟏 

 

Figure 2 shows that the dynamics of three species at the initial population of  𝑥 = 𝑧 = 0.1  and  𝑦 =
0.3. In this case, it is observed that starting from the initial population, the three population species grow in their 

densities but after some time t the second prey population 𝑦 and the predator population  𝑧  become equal. 
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Starting from this point, the second prey population decreases with high speed and become zero. However, the 

first population species  𝑥  and the predator continue growing but after a time the first prey species reach its 

maximum growing while the predator again continue its growing up to its maximum values. After the  𝑧  
population reaches its maximum point, it starts to decline and become saturated. So that, the predator  𝑧 

population dominated by the first species population in which the dominance will continue forever. 

 

 
Figure 3 the dynamics of   𝒙, 𝒚  and  𝒛  versus time  𝒕  at  𝜶𝟏𝟐 = 𝟎. 𝟏 , 𝜹𝟏 = 𝟎. 𝟐𝟓 , 𝜹𝟐 = 𝟏 , 𝜶𝟐𝟏 = 𝟎. 𝟏 ,

𝜹𝟑 = 𝟎. 𝟓 , 𝜹𝟐𝟑 = 𝟏 , 𝜹 = 𝟎. 𝟓 , 𝜸𝟏 = 𝟎. 𝟐 , 𝜹𝟑𝟐 = 𝟏. 

 

Figure 3 shows that the dynamics of three population at the initial population of  𝑥 = 𝑦 = 𝑧 = 0.1. 

Here, the initial populations of the three population species are equal. In this simulation the harvested values of 

the second species is increased. According to this, starting from the initial population all species attempt to grow 

but this will not go far because the size of the prey and the predator become equal and also the amount of the 

prey harvested is increased. This brings that the second prey species become zero. And also, since there is no 

interaction between the first prey species and the predator, both are growing up to their maximum point and 

become saturated. 

 

 
Figure 4 the dynamics of   𝒙, 𝒚  and  𝒛  versus time  𝒕  when 𝜶𝟏𝟐 = 𝟎. 𝟏 , 𝜹𝟏 = 𝟎. 𝟐𝟓 , 𝜹𝟐 = 𝟏 , 𝜶𝟐𝟏 = 𝟎. 𝟏 ,

𝜹𝟑 = 𝟎. 𝟐 , 𝜹𝟐𝟑 = 𝟎. 𝟓 , 𝜹 = 𝟎. 𝟓 , 𝜸𝟏 = 𝟎. 𝟐 , 𝜹𝟑𝟐 = 𝟏 

 

In figure 4, the initial populations of the three species are equal as figure 3. The difference is the 

negative impact of the 𝑧 population on the 𝑦 population is less when it compared with figure 2 and 3. So that 

from this simulation one can observes that, all population grow according to their intrinsic growth rate but 

within a few time the second prey 𝑦 and the predator 𝑧 becomes equal. However, starting from this point, the 

predator population continues its growing while the second prey population decline in its abundance. Here, the 

second prey species will not go to zero rather it become saturated at some constant value. The growth of the 
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predator species continues until they reach a maximum population but after some time they start to declines and 

saturate. 

 

X. Conclusion 
In this paper, the ecological interactions of three population species were considered and analyzed. In 

these interactions, two mutualistic preys and one predator species were participated. Here, based on the 

interaction of these populations, the area of interactions divided into two patches: free area and a reserved area 

or a refuge. In the free area, only the 𝑦 population and the 𝑧 population were interacted while in a reserved area 

only the first prey species exist. But, it is impossible for the 𝑧 population to enter and attack the 𝑥 population. In 

this model, all population grows logistically.  

According to this interaction, from the simulation result, the growth rate of the second prey population 

species 𝑦 decreases and approaches to zero because this species is both harvested and attacked by the predator. 

If the negative impact of the z population over the y population is less than the positive impact of y population 

on z population, then, growth rate of the z population dominates the others forever otherwise the first x prey 

population dominate the z population. Since the first prey species is living in a refuge they grow up to their 

maximum point because the predator cannot control their growth in this area. 
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